

Suppleme	Supplemental "Transmit Simultaneously" Test Report							
Report No.:	RF200511E11-2							
FCC ID:	MSQ-CMAXI800							
Test Model:	CMAX6000							
Series Model:	CMAX6000V							
Received Date:	May 11, 2020							
Test Date:	June 01 to 02, 2020							
Issued Date:	Sep. 14, 2020							
Applicant:	ASUSTeK Computer Inc.							
Address:	1F., No. 15, Lide Rd., Beitou Dist., Taipei City 112, Taiwan							
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory							
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwa.							
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan.							
FCC Registration / Designation Number:	723255 / TW2022							

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

R	Release Control Record 3							
1	Certificate of Conformity 4							
2	S	Summary of Test Results	5					
	2.1 2.2	Measurement Uncertainty Modification Record						
3	G	General Information	6					
	3.1 3.1.1 3.2 3.2.1	5	8 9 10					
4	Т	est Types and Results	.11					
	4.1 4.1.1 4.1.2	Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments	.11					
	4.1.3 4.1.4	Test Procedures Deviation from Test Standard	13 13					
	4.1.6	Test Setup EUT Operating Conditions Test Results	15					
		Conducted Emission Measurement Limits of Conducted Emission Measurement	19					
	4.2.3	Test Instruments Test Procedures Deviation from Test Standard	20					
	4.2.5 4.2.6	Test Setup EUT Operating Conditions	20 20					
	4.3	Test Results Conducted Out of Band Emission Measurement Limits of Conducted Out of Band Emission Measurement	23					
	4.3.3	Test Setup Test Instruments Test Procedures	23					
	4.3.5 4.3.6	Deviation from Test Standard EUT Operating Conditions Test Results	23 23					
5		lictures of Test Arrangements						
		lix – Information of the Testing Laboratories						

Release Control Record Description Issue No. Date Issued RF200511E11-2 Original release. Sep. 14, 2020

1 Certificate of Conformity

Product:	AX6000 Dual Band DOCSIS 3.1 Cable Modem Router , AX6000 Dual Band DOCSIS 3.1 Cable Modem Voice Router
Brand:	ASUS
Test Model:	CMAX6000
Series Model:	CMAX6000V
Sample Status:	ENGINEERING SAMPLE
Applicant:	ASUSTeK Computer Inc.
Test Date:	June 01 to 02, 2020
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	47 CFR FCC Part 15, Subpart E (Section 15.407) ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Vivian	Huang	, Date:	Sep. 14, 2020	
Vivian Huang / Specialist					

Approved by :

Date: Sep. 14, 2020

Clark Lin / Technical Manager

2 Summary of Test Results

FCC Part 15, Subpart C, E (SECTION 15.247, 15.407)							
FCC Clause	Test Item	Result	Remarks				
15.207 15.407(b)(6)			Meet the requirement of limit. Minimum passing margin is -11.49 dB at 0.33359 MHz.				
15.205 / 15.209 / 15.247(d) 15.407(b) (1/2/3/4(i/ii)/6)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -5.0 dB at 903.61 MHz.				

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Dedicted Emissions up to 1 CUL	9kHz ~ 30MHz	3.1 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.4 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.0 dB
	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	AX6000 Dual Band DOCSIS 3.1 Cable Modem Router, AX6000 Dual Band DOCSIS 3.1 Cable Modem Voice Router
Brand	ASUS
Test Model	CMAX6000
Series Model	CMAX6000V
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	12Vdc from power adapter
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode and VHT20/40 in 2.4GHz 1024QAM for OFDMA in 11ax HE mode
Modulation Technology	DSSS, OFDM, OFDMA
Operating Frequency	2.4GHz: 2.412GHz ~ 2.462GHz 5GHz: 5.18 ~ 5.24GHz, 5.745 ~ 5.825GHz
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	Adapter x1
Data Cable Supplied	RJ-45 Cable x 1(Unshielded, 1m)

Note:

1. The EUT has two model names which are identical to each other in all aspects except for the followings:

	Brand Name Product Name			odel Nam		Description	
ASUS		ual Band DOCSIS 3.1 odem Voice Router CMAX6000		MAX6000\	/	Main board has FXS RJ11 port X2, RF board has battery status port X1.	
A303	AX6000 Dual Band DOCSIS 3.1 Cable Modem Router		С			Main board hasn't FXS RJ11 port, RF board hasn't battery status port.	
Note: From the above models, the radiated emission and conducted emission worse case was found in Model: CMAX6000 . Therefore only the test data of the mode was recorded in this report.							
2. The EUT h	as two radios	as following table:					
	Rad					Radio 2	
	WLAN 2	2.4GHz				WLAN 5GHz	
3. Simultaneo	ously transmis	sion condition.					
Conditio	on			Technology			
1		WLAN 2.4G	iHz			WLAN 5GHz	
Note: The em	ission of the s	imultaneous operatio	on has b	been evalu	ated	and no non-compliance was found.	
4. The EUT n	nust be suppli	ed with a power adap	oter and	d followina	differ	rent models could be chosen:	
No.	Brand	Model				Spec.	
1	Asian Power			U Input: 100-240Vac, 0.9A, 50/60Hz U Output: 12Vdc, 3.0A			
2	2 HONOR ADS-36FKJ-12 12030		Input: 100-240Vac, 1A, 50/60Hz 12036EPCU Output: 12Vdc, 3.0A		: 100-240Vac, 1A, 50/60Hz		
		els, the worst radiated only the test data of				nducted emission test were found in rded in this report.	

5. The antennas provided to the EUT, please refer to the following table:

Antenna NO.	Chain No.	Antenna Net Gain(dBi)	Frequency range	Antenna Type	Connector Type	Cable Length (mm)
1	0	2.42	2.4~2.4835GHz	PIFA	i-pex(MHF)	227
•	0	0.49	5.15~5.85GHz			221
2	1	0.09	2.4~2.4835GHz	PIFA	i-pex(MHF)	171
2		1.42	5.15~5.85GHz			171
3	0	1.38	2.4~2.4835GHz		i-pex(MHF)	145
3	2	1.44	5.15~5.85GHz	PIFA		145
4	3.69 2.4~2.4835GHz		70			
4	3	2.46	5.15~5.85GHz	PIFA i-	i-pex(MHF)	73

6. The EUT incorporates a MIMO function:

2.4GHz Band							
MODULATION MODE	MODULATION MODE TX & RX CONFIGURATION						
802.11b	802.11b 4TX						
802.11g	4TX	4RX					
802.11n (HT20)	4TX	4RX					
802.11n (HT40)	4TX	4RX					
VHT20	4TX	4RX					
VHT40	4TX	4RX					
802.11ax (HE20)	4TX	4RX					
802.11ax (HE40)	4TX	4RX					
	5GHz Band						
MODULATION MODE	TX & RX CON	FIGURATION					
802.11a	4TX	4RX					
802.11n (HT20)	4TX	4RX					
802.11n (HT40)	4TX	4RX					
802.11ac (VHT20)	4TX	4RX					
802.11ac (VHT40)	4TX	4RX					
802.11ac (VHT80)	4TX	4RX					
802.11ax (HE20)	4TX	4RX					
802.11ax (HE40)	4TX	4RX					
802.11ax (HE80)	4TX	4RX					

Note:

1. All of modulation mode support beamforming function except 802.11a/b/g modulation mode.

2. The EUT support Beamforming and CDD mode, therefore both mode were investigated and the worst case scenario was identified. The worst case data were presented in test report.

7. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.1.1 Test Mode Applicability and Tested Channel Detail

UT Configure		Applica	able To		Description					
Mode	RE≥1G	RE<1G	PLC	ОВ	Description					
-					-					
Vhere RE	≥1G: Radiated	d Emission abo	ve 1GHz	RE<1G: Radia	ated Emission below 1GHz					
PL	.C: Power Line	Conducted Err	ission	OB: Conducte	d Out-Band Emission Measure	ment				
Radiated E) was (were)	selected f	or the final test a		1				
MODE		AVAILA CHANN		TESTED CHANNE	L MODULATION TECHNOLOGY	MODULATION TYPE				
802.11	lb	1 to 1	1	1	DSSS	DBPSK				
+ 802.11ax (HE40)		38 to 4 151 to 1	-	46	OFDMA	BPSK				
	g channel(s		selected f	or the final test a	MODUL ATION					
MOD	E	CHANN		TESTED CHANNE	TECHNOLOGY	MODULATION TYPE				
		1 to 1	1	1	DSSS	DBPSK				
802.11	lb	1 10 1								
-	-	38 to 4 151 to 5	-	46	OFDMA	BPSK				

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
802.11b	1 to 11	1	DSSS	DBPSK
+ 802.11ax (HE40)	38 to 46 151 to 159	46	OFDMA	BPSK

Conducted Out-Band Emission Measurement:

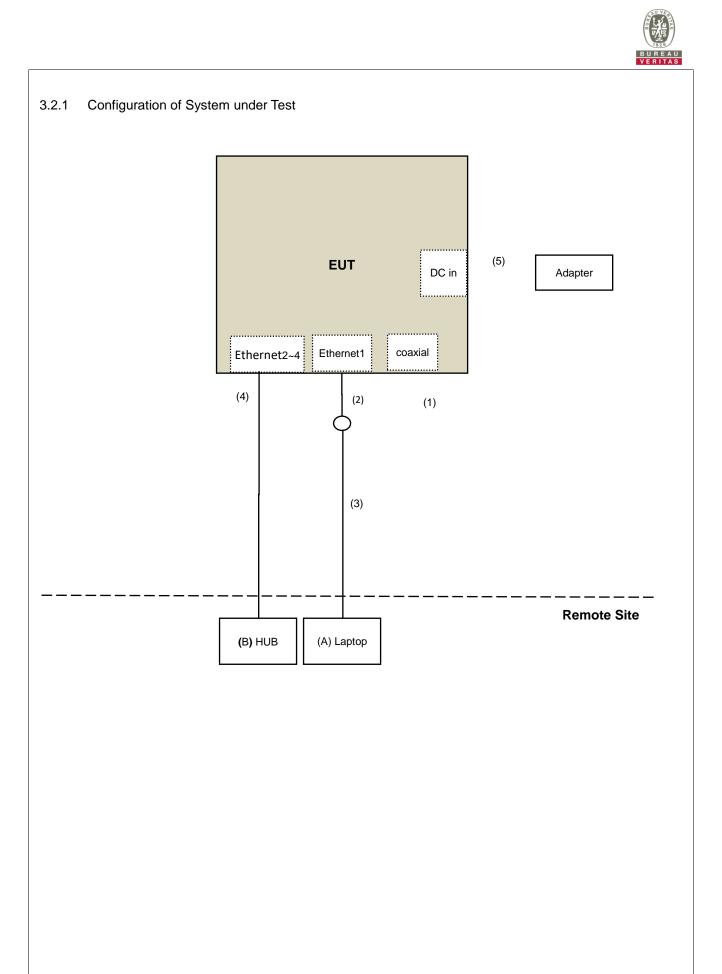
 \boxtimes Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
802.11b	1 to 11	1	DSSS	DBPSK
+ 802.11ax (HE40)	38 to 46 151 to 159	46	OFDMA	BPSK

Test Condition:

Applicable To	Applicable To Environmental Conditions		Tested By
RE≥1G	23deg. C, 68%RH	23deg. C, 68%RH 120Vac, 60Hz Nelson	
RE<1G	22deg. C, 67%RH	22deg. C, 67%RH 120Vac, 60Hz	
PLC	22deg. C, 68%RH	22deg. C, 68%RH 120Vac, 60Hz Nick Lo	
ОВ	25deg. C, 60%RH	120Vac, 60Hz	Anderson Chen

3.2 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	DELL	E5430	HYV4VY1	FCC DoC	Provided by Lab
В.	HUB	D-Link	DGS-1005D	DR8WC92000968	NA	Provided by Lab

Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	Coaxial Cable	1	10	No	0	Provided by Lab
2.	RJ-45 Cable	1	1	No	0	Provided by Lab
3.	RJ-45 Cable	1	10	No	0	Provided by Lab
4.	RJ-45 Cable	3	10	No	0	Provided by Lab
5.	DC Cable	1	1.5	No	0	Supplied by client

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applicable To			Limit		
789033 D02 Genera	al UN	I Test Procedure	Field Strer	ngth at 3m	
New Ru	les v()2r01	PK:74 (dBµV/m)	AV:54 (dBµV/m)	
Frequency Band	Applicable To		EIRP Limit	Equivalent Field Strength at 3m	
5150~5250 MHz		15.407(b)(1)			
5250~5350 MHz		15.407(b)(2)	PK:-27 (dBm/MHz) PK:68.2(dBµV/m)		
5470~5725 MHz	15.407(b)(3)				
5725~5850 MHz		15.407(b)(4)(i)	PK:-27 (dBm/MHz) ^{*1} PK:10 (dBm/MHz) ^{*2} PK:15.6 (dBm/MHz) ^{*3} PK:27 (dBm/MHz) ^{*4}	PK: 68.2(dBµV/m) ^{*1} PK:105.2 (dBµV/m) ^{*2} PK: 110.8(dBµV/m) ^{*3} PK:122.2 (dBµV/m) ^{*4}	
^{*1} beyond 75 MHz or ^{*3} below the band ed of 15.6 dBm/MHz a	ge in	creasing linearly to	a level ^{*4} from 5 MHz above of	e increasing linearly to 10	

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$\mathsf{E} = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts).}$$

4.1.2 Test Instruments

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED	
MANUFACTURER		SERIAL NO.	DATE	UNTIL	
Test Receiver	N9038A	MY54450088	July 03, 2019	July 02, 2020	
Keysight	10000/1	WI 04400000	00ly 00, 2010	001y 02, 2020	
Pre-Amplifier EMCI	EMC001340	980142	May 25, 2020	May 24, 2021	
Loop Antenna Electro-Metrics	EM-6879	264	Feb. 18, 2020	Feb. 17, 2021	
RF Cable	NA	LOOPCAB-001	Jan. 08, 2020	Jan. 07, 2021	
RF Cable	NA	LOOPCAB-002	Jan. 08, 2020	Jan. 07, 2021	
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	Apr. 28, 2020	Apr. 27, 2021	
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 11, 2019	Nov. 10, 2020	
RF Cable	8D	966-3-1	Mar. 17, 2020	Mar. 16, 2021	
RF Cable	8D	966-3-2	Mar. 17, 2020	Mar. 16, 2021	
RF Cable	8D	966-3-3	Mar. 17, 2020	Mar. 16, 2021	
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 26, 2019	Sep. 25, 2020	
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Nov. 24, 2019	Nov. 23, 2020	
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 15, 2020	Jan. 14, 2021	
RF Cable	EMC104-SM-SM-1200	160922	Jan. 15, 2020	Jan. 14, 2021	
RF Cable	EMC104-SM-SM-2000	180601	June 10, 2019	June 09, 2020	
RF Cable	EMC104-SM-SM-6000	180602	June 10, 2019	June 09, 2020	
Spectrum Analyzer Keysight	N9030A	MY54490679	July 17, 2019	July 16, 2020	
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 15, 2020	Jan. 14, 2021	
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 24, 2019	Nov. 23, 2020	
RF Cable	EMC102-KM-KM-1200	160924	Jan. 15, 2020	Jan. 14, 2021	
RF Cable	EMC-KM-KM-4000	200214	Mar. 11, 2020	Mar. 10, 2021	
Software	ADT_Radiated_V8.7.08	NA	NA	NA	
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA	
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA	

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in 966 Chamber No. 3.

3. Tested Date: June 01 to 02, 2020

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

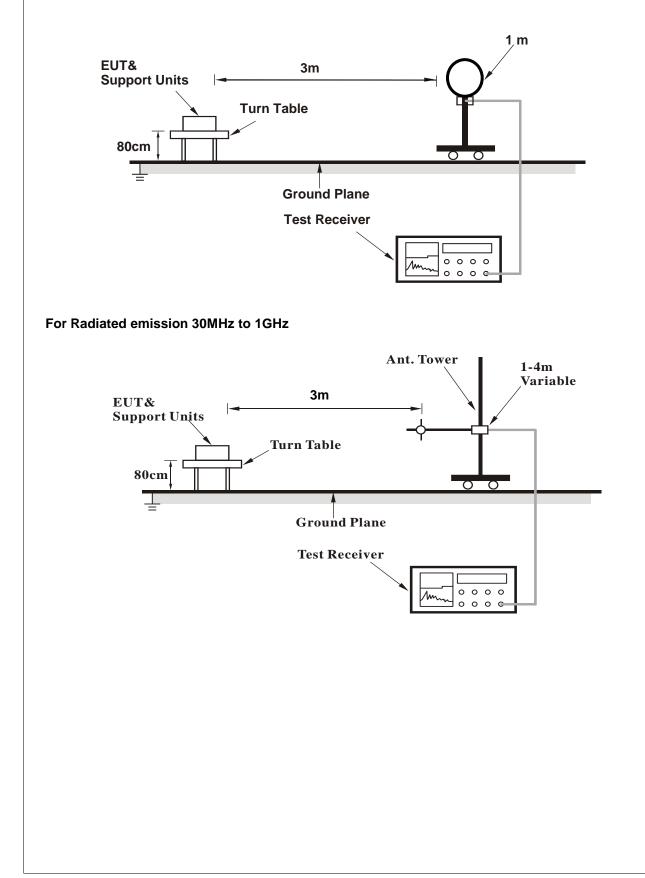
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

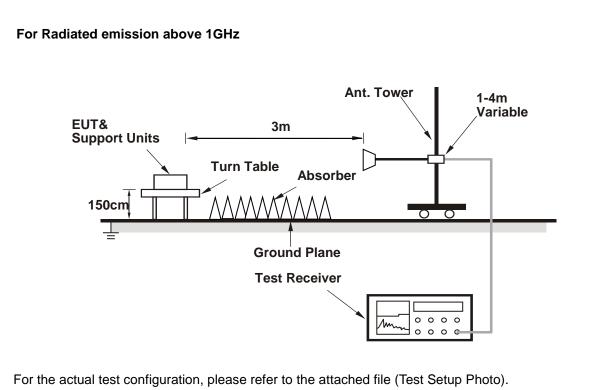
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz

- 4.1.6 EUT Operating Conditions
- a. Connected the EUT with the Laptop which is placed on remote site.
- b. Controlling software (accessMtool v3.1.01) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data:

|--|

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	4824.00	50.9 PK	74.0	-23.1	3.24 H	359	48.0	2.9			
2	4824.00	47.6 AV	54.0	-6.4	3.24 H	359	44.7	2.9			
3	#10460.00	47.7 PK	68.2	-20.5	1.78 H	316	34.7	13.0			
4	#10460.00	36.1 AV	54.0	-17.9	1.78 H	316	23.1	13.0			
5	15690.00	46.3 PK	74.0	-27.7	1.97 H	154	32.4	13.9			
6	15690.00	33.6 AV	54.0	-20.4	1.97 H	154	19.7	13.9			
	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	4824.00	47.6 PK	74.0	-26.4	1.57 V	155	44.7	2.9			
2	4824.00	44.3 AV	54.0	-9.7	1.57 V	155	41.4	2.9			
3	#10460.00	47.0 PK	68.2	-21.2	1.76 V	264	34.0	13.0			
4	#10460.00	35.7 AV	54.0	-18.3	1.76 V	264	22.7	13.0			
5	15690.00	45.7 PK	74.0	-28.3	2.43 V	257	31.8	13.9			
6	15690.00	33.5 AV	54.0	-20.5	2.43 V	257	19.6	13.9			

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

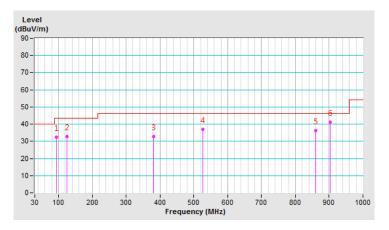
5. " # ": The radiated frequency is out of the restricted band.

Below 1GHz Data:

FREQUENCY RANGE	9kHz ~ 1GHz	DETECTOR FUNCTION	Quasi-Peak (QP)					
ANTENI	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	94.94	32.4 QP	43.5	-11.1	2.00 H	45	45.0	-12.6
2	124.96	32.6 QP	43.5	-10.9	3.00 H	77	41.2	-8.6
3	380.17	32.8 QP	46.0	-13.2	1.00 H	34	36.4	-3.6
4	525.82	36.9 QP	46.0	-9.1	1.50 H	53	36.7	0.2
5	860.56	36.1 QP	46.0	-9.9	3.00 H	203	29.4	6.7
6	903.61	41.0 QP	46.0	-5.0	2.00 H	16	33.5	7.5

REMARKS:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

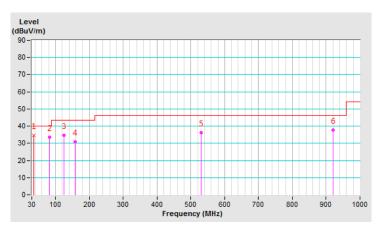
3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

FREQUENCY RANGE 9k		9kHz ~ 1(-Hz		DETECTOR FUNCTION		Quasi-Peak (QP)		
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSIO LEVEL (dBuV/m	(dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	36.77	34.5 QF	P 40.0	-5.5	1.00 V	360	43.0	-8.5
2	81.94	33.6 QF	40.0	-6.4	2.00 V	14	46.5	-12.9
3	125.01	34.8 QF	9 43.5	-8.7	1.00 V	337	43.4	-8.6
4	157.58	31.0 QF	9 43.5	-12.5	1.00 V	42	37.8	-6.8
5	530.57	36.2 QF	46.0	-9.8	1.00 V	333	36.0	0.2
6	920.61	37.7 QF	46.0	-8.3	1.50 V	308	29.9	7.8

REMARKS:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted I	_imit (dBuV)		
Frequency (MHz)	Quasi-peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 19, 2020	Mar. 18, 2021
50 ohms Terminator	50	3	Oct. 23, 2019	Oct. 22, 2020
RF Cable	5D-FB	COCCAB-001	Sep. 27, 2019	Sep. 26, 2020
Fixed attenuator EMCI	STI02-2200-10	005	Aug. 30, 2019	Aug. 29, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

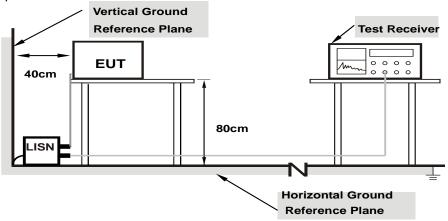
Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Conduction 1.

3 Tested Date: June 01, 2020

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Average (AV)	Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
--------------	-------	----------	-------------------	-----------------------------------

	Phase Of Power : Line (L)									
No	Frequency	Correction Factor		g Value uV)		on Level aV)		nit uV)		·gin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.03	30.22	21.99	40.25	32.02	66.00	56.00	-25.75	-23.98
2	0.18906	10.04	28.92	21.14	38.96	31.18	64.08	54.08	-25.12	-22.90
3	0.33359	10.05	34.70	27.82	44.75	37.87	59.36	49.36	-14.61	-11.49
4	0.60703	10.07	24.39	16.99	34.46	27.06	56.00	46.00	-21.54	-18.94
5	7.60938	10.59	25.87	21.21	36.46	31.80	60.00	50.00	-23.54	-18.20
6	15.58984	11.16	19.88	15.59	31.04	26.75	60.00	50.00	-28.96	-23.25

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

Phas	e	Neutral (N)				Detector Function Quasi-Peak (QP) / Average (AV)				
Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor		g Value SuV)		on Level SuV)		mit BuV)		rgin B)
	(MHz)	(dB)	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.
1	0.15391	10.02	30.57	23.06	40.59	33.08	65.79	55.79	-25.20	-22.71
2	0.22031	10.03	27.68	19.58	37.71	29.61	62.81	52.81	-25.10	-23.20
3	0.32188	10.04	33.80	25.58	43.84	35.62	59.66	49.66	-15.82	-14.04
4	0.96641	10.09	20.64	13.18	30.73	23.27	56.00	46.00	-25.27	-22.73
5	7.60156	10.51	26.62	21.92	37.13	32.43	60.00	50.00	-22.87	-17.57

31.49

27.37

60.00

50.00

-28.51

-22.63

Remarks:

15.71484

6

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

16.40

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

10.97

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

20.52

4.3 Conducted Out of Band Emission Measurement

4.3.1 Limits of Conducted Out of Band Emission Measurement

Below 30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.
- 4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

4.3.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement.

Chain 0	Chain 1
BBW 100 Miz VBV 300 Miz [T1] MP VEW VBV 300 Miz Marker 1 [T1] 	Ref 11.5 dBm Marker 1 [T1] 31 5 Ref 31.5 dBm Alt 20 dB SWT 400 ms T03.44 Miz 20 0 0 SS dBm Marker 1 [T1] 400 ms 10 4 SS dBm Marker 1 [T1] 400 ms 0 0 SS dBm Marker 1 [T1] 400 ms 10 4 SS dBm Marker 1 [T1] 400 ms 0 4 SS dBm SS dBm SS dBm 10 4 Marker 1 [T1] 400 ms SS dBm 0 4 SS dBm SS dBm SS dBm 10 4 SS dBm SS dBm SS dBm -10 0.2 13 26 dBm SS dBm SS dBm SS dBm -20 -3.3 -3.3 SS dBm SS dBm
BBW 100 Miz TTI MP VEW Marker 1 [TI] -46 44 dBm 31.5 Ref 31.5 dBm All 20 dB SWT 400 ms 1.0419 GHz 31.5 Ref 31.5 dBm All 20 dB SWT 400 ms 1.0419 GHz 20 D.1.6.7 4 dBm GMT 400 ms 1.0419 GHz Marker 3 [TI] 20 D.1.6.7 4 dBm -6.84 dBm Marker 3 [TI] -6.82 dBm 10 4 -6.84 dBm -6.82 dBm Marker 5 [TI] -5.82 fBm 20 D.1.6.7 4 dBm -6.87 dBm -6.87 dBm -6.87 dBm -6.87 dBm 0 4 -6.97 dBm -6.87 dBm -3.85 7 dBm <td>RBV 100 Miz (T') MP VEW UBV 300 Miz 46.21 dbm 31.5 Ref 31.5 dBm All 20 dB SWT 400 ms 21.633 GHz 20 07.16.7 /4 dBm 34.82 /400 Marker 1 (Ti) 43.88 dBm 10 4 34.53 dBm Marker 2 (Ti) 34.88 dBm 10 4 4.5316 2 dBm Marker 2 (Ti) 32.68 dBm 0 4.5316 2 dBm Marker 4 (Ti) 7.8 dBm 52.5106 GHz -10 1 1.53 dBm Marker 5 (Ti) -36.86 dBm -20 2 3 38.81014 GHz S8.81014 GHz -30 3 38.81014 GHz 58.81014 GHz 58.81014 GHz</td>	RBV 100 Miz (T') MP VEW UBV 300 Miz 46.21 dbm 31.5 Ref 31.5 dBm All 20 dB SWT 400 ms 21.633 GHz 20 07.16.7 /4 dBm 34.82 /400 Marker 1 (Ti) 43.88 dBm 10 4 34.53 dBm Marker 2 (Ti) 34.88 dBm 10 4 4.5316 2 dBm Marker 2 (Ti) 32.68 dBm 0 4.5316 2 dBm Marker 4 (Ti) 7.8 dBm 52.5106 GHz -10 1 1.53 dBm Marker 5 (Ti) -36.86 dBm -20 2 3 38.81014 GHz S8.81014 GHz -30 3 38.81014 GHz 58.81014 GHz 58.81014 GHz
-60-	-60-

2.4GHz_802.11b CH1 + 5GHz_802.11ax (HE40) CH46

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---