Supplemental "Transmit Simultaneously" Test Report **Report No.:** RF200511E11-2 FCC ID: MSQ-CMAXI800 Test Model: CMAX6000 Series Model: CMAX6000V Received Date: May 11, 2020 Test Date: June 01 to 02, 2020 Issued Date: Sep. 14, 2020 **Applicant:** ASUSTeK Computer Inc. Address: 1F., No. 15, Lide Rd., Beitou Dist., Taipei City 112, Taiwan Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwa Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan. FCC Registration / Designation Number: nation Number: 723255 / TW2022 This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. ### **Table of Contents** | R | Release Control Record3 | | | | | | |----------------------------|---|--|---|--|--|--| | 1 | Certificate of Conformity | | | | | | | 2 Summary of Test Results. | | Summary of Test Results | 5 | | | | | | 2.1
2.2 | Measurement Uncertainty | | | | | | 3 | C | General Information | 6 | | | | | | 3.1
3.1.1
3.2
3.2.1 | Description of Support Units | 8
9 | | | | | 4 | T | Fest Types and Results | .11 | | | | | | 4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5 | Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions | .11
12
13
13
14
15
16
19
19
20
20 | | | | | | | Test Results | | | | | | | 4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7 | Conducted Out of Band Emission Measurement. Limits of Conducted Out of Band Emission Measurement. Test Setup. Test Instruments Test Procedures Deviation from Test Standard EUT Operating Conditions. Test Results | 23
23
23
23
23
23
23
23 | | | | | 5 | F | Pictures of Test Arrangements | 25 | | | | | Αį | ppend | dix – Information of the Testing Laboratories | 26 | | | | ### **Release Control Record** | Issue No. | Description | Date Issued | |---------------|-------------------|---------------| | RF200511E11-2 | Original release. | Sep. 14, 2020 | #### **Certificate of Conformity** 1 Product: AX6000 Dual Band DOCSIS 3.1 Cable Modem Router, AX6000 Dual Band DOCSIS 3.1 Cable Modem Voice Router Brand: ASUS Test Model: CMAX6000 Series Model: CMAX6000V Sample Status: ENGINEERING SAMPLE Applicant: ASUSTeK Computer Inc. **Test Date:** June 01 to 02, 2020 **Standards:** 47 CFR FCC Part 15, Subpart C (Section 15.247) 47 CFR FCC Part 15, Subpart E (Section 15.407) ANSI C63.10: 2013 The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. Prepared by: Vivian Huang / Specialist , Date: Sep. 14, 2020 **Date:** Sep. 14, 2020 Approved by: Clark Lin / Technical Manager ### 2 Summary of Test Results | FCC Part 15, Subpart C, E (SECTION 15.247, 15.407) | | | | | | | |--|---|--------|--|--|--|--| | FCC
Clause | Test Item | Result | Remarks | | | | | 15.207
15.407(b)(6) | AC Power Conducted
Emission | PASS | Meet the requirement of limit. Minimum passing margin is -11.49 dB at 0.33359 MHz. | | | | | 15.205 / 15.209 /
15.247(d)
15.407(b)
(1/2/3/4(i/ii)/6) | Radiated Emissions and Band
Edge Measurement | PASS | Meet the requirement of limit. Minimum passing margin is -5.0 dB at 903.61 MHz. | | | | ### Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. ### 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty (k=2) (±) | |------------------------------------|----------------|--------------------------------| | Conducted Emissions at mains ports | 150kHz ~ 30MHz | 1.9 dB | | Radiated Emissions up to 1 GHz | 9kHz ~ 30MHz | 3.1 dB | | Radiated Effissions up to 1 GHZ | 30MHz ~ 1GHz | 5.4 dB | | Radiated Emissions above 1 GHz | 1GHz ~ 18GHz | 5.0 dB | | Radiated Emissions above 1 GHz | 18GHz ~ 40GHz | 5.3 dB | ### 2.2 Modification Record There were no modifications required for compliance. #### 3 General Information ### 3.1 General Description of EUT | Product | AX6000 Dual Band DOCSIS 3.1 Cable Modem Router , AX6000 Dual Band DOCSIS 3.1 Cable Modem Voice Router | | |-----------------------|---|--| | Brand | ASUS | | | Test Model | CMAX6000 | | | Series Model | CMAX6000V | | | Status of EUT | ENGINEERING SAMPLE | | | Power Supply Rating | 12Vdc from power adapter | | | Modulation Type | CCK, DQPSK, DBPSK for DSSS
64QAM, 16QAM, QPSK, BPSK for OFDM
256QAM for OFDM in 11ac mode and VHT20/40 in 2.4GHz
1024QAM for OFDMA in 11ax HE mode | | | Modulation Technology | DSSS, OFDM, OFDMA | | | Operating Frequency | 2.4GHz: 2.412GHz ~ 2.462GHz
5GHz: 5.18 ~ 5.24GHz, 5.745 ~ 5.825GHz | | | Antenna Type | Refer to Note | | | Antenna Connector | Refer to Note | | | Accessory Device | Adapter x1 | | | Data Cable Supplied | RJ-45 Cable x 1(Unshielded, 1m) | | #### Note: ### 1. The EUT has two model names which are identical to each other in all aspects except for the followings: | Brand Name | | Product Name | Model Name | Description | | |------------|------|---|--------------|--|--| | A \$1.15 | ASUS | AX6000 Dual Band DOCSIS 3.1
Cable Modem Voice Router | | Main board has FXS RJ11 port X2, RF board has battery status port X1. | | | ASO | | AX6000 Dual Band DOCSIS 3.1
Cable Modem Router | CIVIAXACICIC | Main board hasn't FXS RJ11 port,
RF board hasn't battery status port. | | Note: From the above models, the radiated emission and conducted emission worse case was found in Model: **CMAX6000**. Therefore only the test data of the mode was recorded in this report. ### 2. The EUT has two radios as following table: | Radio 1 | Radio 2 | |-------------|-----------| | WLAN 2.4GHz | WLAN 5GHz | 3. Simultaneously transmission condition. | Condition | Technology | | | | | | |--|-----------------------|--|--|--|--|--| | 1 | WLAN 2.4GHz WLAN 5GHz | | | | | | | Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found. | | | | | | | 4. The EUT must be supplied with a power adapter and following different models could be chosen: | | No. | Brand | Model No. | Spec. | | | |---------|--|----------------------------|------------------------|--|--|--| | | 1 | Asian Power
Devices Inc | WA-36A12FU | Input: 100-240Vac, 0.9A, 50/60Hz
Output: 12Vdc, 3.0A
DC Output cable: Unshielded, 1.5m | | | | | 2 | HONOR | ADS-36FKJ-12 12036EPCU | Input: 100-240Vac, 1A, 50/60Hz
Output: 12Vdc, 3.0A
DC Output cable: Unshielded, 1.5m | | | | N I - 4 | Note: From the above weedels the constructional engineers and conducted engineers test come found in | | | | | | Note: From the above models, the worst radiated emission test and conducted emission test were found in **Adapter 2**. Therefore only the test data of the models were recorded in this report. 5. The antennas provided to the EUT, please refer to the following table: | Antenna
NO. | Chain No. | Antenna
Net
Gain(dBi) | Frequency range | Antenna Type | Connector
Type | Cable
Length
(mm) | |----------------|-----------|-----------------------------|-----------------|--------------|-------------------|-------------------------| | 1 | 0 | 2.42 | 2.4~2.4835GHz | PIFA | i-pex(MHF) | 227 | | | 0 | 0.49 | 5.15~5.85GHz | PIFA | | | | 2 | 1 | 0.09 | 2.4~2.4835GHz | PIFA | i-pex(MHF) | 171 | | 2 | | 1.42 | 5.15~5.85GHz | | | | | 2 | 2 | 1.38 | 2.4~2.4835GHz | PIFA | i-pex(MHF) | 4.45 | | 3 | | 1.44 | 5.15~5.85GHz | | | 145 | | 4 | 2 | 3.69 | 2.4~2.4835GHz | DIEV | PIFA i-pex(MHF) | 73 | | 4 | 3 | 2.46 | 5.15~5.85GHz | PIFA | | | 6. The EUT incorporates a MIMO function: | 6. The EUT incorporates a MIMO function: | | | | | | | |--|---------------------------------------|------------|--|--|--|--| | MODULATION MODE | MODULATION MODE TX & RX CONFIGURATION | | | | | | | | | | | | | | | 802.11b | 4TX | 4RX | | | | | | 802.11g | 4TX | 4RX | | | | | | 802.11n (HT20) | 4TX | 4RX | | | | | | 802.11n (HT40) | 4TX | 4RX | | | | | | VHT20 | 4TX | 4RX | | | | | | VHT40 | 4TX | 4RX | | | | | | 802.11ax (HE20) | 4TX | 4RX | | | | | | 802.11ax (HE40) | 4TX | 4RX | | | | | | | 5GHz Band | | | | | | | MODULATION MODE | TX & RX CON | FIGURATION | | | | | | 802.11a | 4TX | 4RX | | | | | | 802.11n (HT20) | 4TX | 4RX | | | | | | 802.11n (HT40) | 4TX | 4RX | | | | | | 802.11ac (VHT20) | 4TX | 4RX | | | | | | 802.11ac (VHT40) | 4TX | 4RX | | | | | | 802.11ac (VHT80) | 4TX | 4RX | | | | | | 802.11ax (HE20) | 4TX | 4RX | | | | | | 802.11ax (HE40) | 4TX | 4RX | | | | | | 802.11ax (HE80) | 4TX | 4RX | | | | | #### Note: - 1. All of modulation mode support beamforming function except 802.11a/b/g modulation mode. - 2. The EUT support Beamforming and CDD mode, therefore both mode were investigated and the worst case scenario was identified. The worst case data were presented in test report. - 7. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual. Report No.: RF200511E11-2 Page No. 7 / 26 Report Format Version: 6.1.1 ### 3.1.1 Test Mode Applicability and Tested Channel Detail | EUT Configure | | Applic | able To | | Description | |---------------|----------|--------|---------|----|-------------| | Mode | RE≥1G | RE<1G | PLC | ОВ | Description | | - | √ | √ | √ | √ | - | Where **RE≥1G:** Radiated Emission above 1GHz RE<1G: Radiated Emission below 1GHz PLC: Power Line Conducted Emission **OB:** Conducted Out-Band Emission Measurement #### Radiated Emission Test (Above 1GHz): Following channel(s) was (were) selected for the final test as listed below. | MODE | AVAILABLE
CHANNEL | TESTED CHANNEL | MODULATION
TECHNOLOGY | MODULATION TYPE | |----------------------|------------------------|----------------|--------------------------|-----------------| | 802.11b | 1 to 11 | 1 | DSSS | DBPSK | | +
802.11ax (HE40) | 38 to 46
151 to 159 | 46 | OFDMA | BPSK | ### Radiated Emission Test (Below 1GHz): Following channel(s) was (were) selected for the final test as listed below. | MODE | AVAILABLE
CHANNEL | TESTED CHANNEL | MODULATION
TECHNOLOGY | MODULATION TYPE | |----------------------|------------------------|----------------|--------------------------|-----------------| | 802.11b | 1 to 11 | 1 | DSSS | DBPSK | | +
802.11ax (HE40) | 38 to 46
151 to 159 | 46 | OFDMA | BPSK | ### **Power Line Conducted Emission Test:** ☐ Following channel(s) was (were) selected for the final test as listed below. | MODE | AVAILABLE
CHANNEL | TESTED CHANNEL | MODULATION
TECHNOLOGY | MODULATION TYPE | |----------------------|------------------------|----------------|--------------------------|-----------------| | 802.11b | 1 to 11 | 1 | DSSS | DBPSK | | +
802.11ax (HE40) | 38 to 46
151 to 159 | 46 | OFDMA | BPSK | ### **Conducted Out-Band Emission Measurement:** ⊠ Following channel(s) was (were) selected for the final test as listed below. | MODE | AVAILABLE
CHANNEL | TESTED CHANNEL | MODULATION
TECHNOLOGY | MODULATION TYPE | |----------------------|------------------------|----------------|--------------------------|-----------------| | 802.11b | 1 to 11 | 1 | DSSS | DBPSK | | +
802.11ax (HE40) | 38 to 46
151 to 159 | 46 | OFDMA | BPSK | ### **Test Condition:** | Applicable To | Environmental Conditions | Input Power | Tested By | |---------------|--------------------------|--------------|---------------| | RE≥1G | 23deg. C, 68%RH | 120Vac, 60Hz | Nelson Teng | | RE<1G | 22deg. C, 67%RH | 120Vac, 60Hz | Kevien Ko | | PLC | 22deg. C, 68%RH | 120Vac, 60Hz | Nick Lo | | ОВ | 25deg. C, 60%RH | 120Vac, 60Hz | Anderson Chen | Report No.: RF200511E11-2 Page No. 8 / 26 Report Format Version: 6.1.1 ## 3.2 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|---------|--------|-----------|---------------|---------|-----------------| | A. | Laptop | DELL | E5430 | HYV4VY1 | FCC DoC | Provided by Lab | | B. | HUB | D-Link | DGS-1005D | DR8WC92000968 | NA | Provided by Lab | #### Note: 1. All power cords of the above support units are non-shielded (1.8m). | ID | Descriptions | Qty. | Length (m) | Shielding
(Yes/No) | Cores (Qty.) | Remarks | |----|---------------|------|------------|-----------------------|--------------|--------------------| | 1. | Coaxial Cable | 1 | 10 | No | 0 | Provided by Lab | | 2. | RJ-45 Cable | 1 | 1 | No | 0 | Provided by Lab | | 3. | RJ-45 Cable | 1 | 10 | No | 0 | Provided by Lab | | 4. | RJ-45 Cable | 3 | 10 | No | 0 | Provided by Lab | | 5. | DC Cable | 1 | 1.5 | No | 0 | Supplied by client | Report No.: RF200511E11-2 Page No. 9 / 26 Report Format Version: 6.1.1 ### 4 Test Types and Results ### 4.1 Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. | Frequencies
(MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) | |----------------------|-----------------------------------|-------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | #### Note: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$. - 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. Limits of unwanted emission out of the restricted bands | able To | Lir | mit | | |-----------------------|---|---|--| | I UNII Test Procedure | Field Strength at 3m | | | | es v02r01 | PK:74 (dBµV/m) | AV:54 (dBμV/m) | | | Applicable To | EIRP Limit | Equivalent Field Strength at 3m | | | 15.407(b)(1) | | | | | 15.407(b)(2) | PK:-27 (dBm/MHz) | PK:68.2(dBµV/m) | | | 15.407(b)(3) | | | | | 15.407(b)(4)(i) | PK:-27 (dBm/MHz) *1
PK:10 (dBm/MHz) *2
PK:15.6 (dBm/MHz) *3
PK:27 (dBm/MHz) *4 | PK: 68.2(dBµV/m) *1
PK:105.2 (dBµV/m) *2
PK: 110.8(dBµV/m) *3
PK:122.2 (dBµV/m) *4 | | | | Applicable To 15.407(b)(1) 15.407(b)(3) | UNII Test Procedure es v02r01 PK:74 (dBμV/m) Applicable To EIRP Limit 15.407(b)(1) PK:-27 (dBm/MHz) 15.407(b)(3) PK:-27 (dBm/MHz) PK:10 (dBm/MHz) PK:10 (dBm/MHz) PK:15.6 (dBm/Mz) (dB | | ^{*1} beyond 75 MHz or more above of the band edge. ### Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $$E = \frac{1000000\sqrt{30P}}{3}$$ µV/m, where P is the eirp (Watts). Report No.: RF200511E11-2 Page No. 11 / 26 Report Format Version: 6.1.1 ^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above. ^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above. ^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. ### 4.1.2 Test Instruments | DESCRIPTION & | MODEL NO. | SERIAL NO. | CALIBRATED | CALIBRATED | |---|----------------------|--------------|---------------|---------------| | MANUFACTURER | WIODEL NO. | SERIAL NO. | DATE | UNTIL | | Test Receiver | N9038A | MY54450088 | July 03, 2019 | July 02, 2020 | | Keysight | N9U3OA | W 1 54450066 | July 03, 2019 | July 02, 2020 | | Pre-Amplifier | EMC001340 | 980142 | May 25, 2020 | May 24, 2021 | | EMCI | 20001010 | 0001.2 | may 20, 2020 | may 2 1, 2021 | | Loop Antenna
Electro-Metrics | EM-6879 | 264 | Feb. 18, 2020 | Feb. 17, 2021 | | RF Cable | NA | LOOPCAB-001 | Jan. 08, 2020 | Jan. 07, 2021 | | RF Cable | NA | LOOPCAB-002 | Jan. 08, 2020 | Jan. 07, 2021 | | Pre-Amplifier
Mini-Circuits | ZFL-1000VH2B | AMP-ZFL-05 | Apr. 28, 2020 | Apr. 27, 2021 | | Trilog Broadband Antenna
SCHWARZBECK | VULB 9168 | 9168-361 | Nov. 11, 2019 | Nov. 10, 2020 | | RF Cable | 8D | 966-3-1 | Mar. 17, 2020 | Mar. 16, 2021 | | RF Cable | 8D | 966-3-2 | Mar. 17, 2020 | Mar. 16, 2021 | | RF Cable | 8D | 966-3-3 | Mar. 17, 2020 | Mar. 16, 2021 | | Fixed attenuator Mini-Circuits | UNAT-5+ | PAD-3m-3-01 | Sep. 26, 2019 | Sep. 25, 2020 | | Horn_Antenna
SCHWARZBECK | BBHA9120-D | 9120D-406 | Nov. 24, 2019 | Nov. 23, 2020 | | Pre-Amplifier
EMCI | EMC12630SE | 980384 | Jan. 15, 2020 | Jan. 14, 2021 | | RF Cable | EMC104-SM-SM-1200 | 160922 | Jan. 15, 2020 | Jan. 14, 2021 | | RF Cable | EMC104-SM-SM-2000 | 180601 | June 10, 2019 | June 09, 2020 | | RF Cable | EMC104-SM-SM-6000 | 180602 | June 10, 2019 | June 09, 2020 | | Spectrum Analyzer
Keysight | N9030A | MY54490679 | July 17, 2019 | July 16, 2020 | | Pre-Amplifier
EMCI | EMC184045SE | 980387 | Jan. 15, 2020 | Jan. 14, 2021 | | Horn_Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170519 | Nov. 24, 2019 | Nov. 23, 2020 | | RF Cable | EMC102-KM-KM-1200 | 160924 | Jan. 15, 2020 | Jan. 14, 2021 | | RF Cable | EMC-KM-KM-4000 | 200214 | Mar. 11, 2020 | Mar. 10, 2021 | | Software | ADT_Radiated_V8.7.08 | NA | NA | NA | | Antenna Tower & Turn Table
Max-Full | MF-7802 | MF780208406 | NA | NA | | Boresight Antenna Fixture | FBA-01 | FBA-SIP01 | NA | NA | #### Note: - 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in 966 Chamber No. 3. - 3. Tested Date: June 01 to 02, 2020 #### 4.1.3 Test Procedures #### For Radiated emission below 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. #### NOTE: 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. #### For Radiated emission above 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. - f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. #### Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. - 4. All modes of operation were investigated and the worst-case emissions are reported. ### 4.1.4 Deviation from Test Standard No deviation. Report No.: RF200511E11-2 Page No. 13 / 26 Report Format Version: 6.1.1 ## 4.1.5 Test Setup ## For Radiated emission below 30MHz ### For Radiated emission 30MHz to 1GHz ### For Radiated emission above 1GHz For the actual test configuration, please refer to the attached file (Test Setup Photo). ### 4.1.6 EUT Operating Conditions - a. Connected the EUT with the Laptop which is placed on remote site. - b. Controlling software (accessMtool v3.1.01) has been activated to set the EUT under transmission condition continuously at specific channel frequency. Report No.: RF200511E11-2 Page No. 15 / 26 Report Format Version: 6.1.1 ### 4.1.7 Test Results ### **Above 1GHz Data:** | FREQUENCY RANGE 1GHz ~ 40GHz | DETECTOR Peak (PK) FUNCTION Average (AV) | | |------------------------------|--|--| |------------------------------|--|--| | | Antenna Polarity & Test Distance : Horizontal at 3 m | | | | | | | | |-----------|--|--|---|--|--|----------------------------------|---|--| | No | Frequency
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | 1 | 4824.00 | 50.9 PK | 74.0 | -23.1 | 3.24 H | 359 | 48.0 | 2.9 | | 2 | 4824.00 | 47.6 AV | 54.0 | -6.4 | 3.24 H | 359 | 44.7 | 2.9 | | 3 | #10460.00 | 47.7 PK | 68.2 | -20.5 | 1.78 H | 316 | 34.7 | 13.0 | | 4 | #10460.00 | 36.1 AV | 54.0 | -17.9 | 1.78 H | 316 | 23.1 | 13.0 | | 5 | 15690.00 | 46.3 PK | 74.0 | -27.7 | 1.97 H | 154 | 32.4 | 13.9 | | 6 | 15690.00 | 33.6 AV | 54.0 | -20.4 | 1.97 H | 154 | 19.7 | 13.9 | | | Antenna Polarity & Test Distance : Vertical at 3 m | | | | | | | | | | | Ante | Fillia Polatii | y & rest Di | stance : ver | ticai at 3 m | | | | No | Frequency
(MHz) | Emission | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table Angle (Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | No | | Emission
Level | Limit | Margin | Antenna
Height | Table
Angle | Value | Factor | | NO | (MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Value
(dBuV) | Factor
(dB/m) | | 1 | (MHz)
4824.00 | Emission
Level
(dBuV/m)
47.6 PK | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table Angle (Degree) | Value
(dBuV)
44.7 | Factor
(dB/m)
2.9 | | 1 2 | (MHz)
4824.00
4824.00 | Emission
Level
(dBuV/m)
47.6 PK
44.3 AV | Limit
(dBuV/m)
74.0
54.0 | Margin
(dB)
-26.4
-9.7 | Antenna
Height
(m)
1.57 V | Table Angle (Degree) 155 155 | Value
(dBuV)
44.7
41.4 | Factor
(dB/m)
2.9
2.9 | | 1 2 3 | (MHz)
4824.00
4824.00
#10460.00 | Emission
Level
(dBuV/m)
47.6 PK
44.3 AV
47.0 PK | Limit
(dBuV/m)
74.0
54.0
68.2 | Margin
(dB)
-26.4
-9.7
-21.2 | Antenna
Height
(m)
1.57 V
1.57 V
1.76 V | Table Angle (Degree) 155 155 264 | Value
(dBuV)
44.7
41.4
34.0 | Factor
(dB/m)
2.9
2.9
13.0 | ### Remarks: - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " # ": The radiated frequency is out of the restricted band. Report No.: RF200511E11-2 Page No. 16 / 26 Report Format Version: 6.1.1 #### **Below 1GHz Data:** | FREQUENCY RANGE | 9kHz ~ 1GHz | DETECTOR
FUNCTION | Quasi-Peak (QP) | | |-----------------|-------------|----------------------|-----------------|--| |-----------------|-------------|----------------------|-----------------|--| | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | 1 | 94.94 | 32.4 QP | 43.5 | -11.1 | 2.00 H | 45 | 45.0 | -12.6 | | | | 2 | 124.96 | 32.6 QP | 43.5 | -10.9 | 3.00 H | 77 | 41.2 | -8.6 | | | | 3 | 380.17 | 32.8 QP | 46.0 | -13.2 | 1.00 H | 34 | 36.4 | -3.6 | | | | 4 | 525.82 | 36.9 QP | 46.0 | -9.1 | 1.50 H | 53 | 36.7 | 0.2 | | | | 5 | 860.56 | 36.1 QP | 46.0 | -9.9 | 3.00 H | 203 | 29.4 | 6.7 | | | | 6 | 903.61 | 41.0 QP | 46.0 | -5.0 | 2.00 H | 16 | 33.5 | 7.5 | | | ### **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz. - 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. Report No.: RF200511E11-2 Page No. 17 / 26 Report Format Version: 6.1.1 | FREQUENCY RANGE | 9kHz ~ 1GHz | DETECTOR
FUNCTION | Quasi-Peak (QP) | |-----------------|-------------|----------------------|-----------------| |-----------------|-------------|----------------------|-----------------| | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | 1 | 36.77 | 34.5 QP | 40.0 | -5.5 | 1.00 V | 360 | 43.0 | -8.5 | | | | 2 | 81.94 | 33.6 QP | 40.0 | -6.4 | 2.00 V | 14 | 46.5 | -12.9 | | | | 3 | 125.01 | 34.8 QP | 43.5 | -8.7 | 1.00 V | 337 | 43.4 | -8.6 | | | | 4 | 157.58 | 31.0 QP | 43.5 | -12.5 | 1.00 V | 42 | 37.8 | -6.8 | | | | 5 | 530.57 | 36.2 QP | 46.0 | -9.8 | 1.00 V | 333 | 36.0 | 0.2 | | | | 6 | 920.61 | 37.7 QP | 46.0 | -8.3 | 1.50 V | 308 | 29.9 | 7.8 | | | #### **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - $2. \ Correction \ Factor(dB/m) = Antenna \ Factor(dB/m) + Cable \ Factor(dB) Pre-Amplifier \ Factor(dB)$ - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz. - 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. Report No.: RF200511E11-2 Page No. 18 / 26 Report Format Version: 6.1.1 #### 4.2 Conducted Emission Measurement ### 4.2.1 Limits of Conducted Emission Measurement | Frequency (MHz) | Conducted Limit (dBuV) | | | | | | |-----------------|------------------------|---------|--|--|--|--| | | Quasi-peak | Average | | | | | | 0.15 - 0.5 | 66 - 56 | 56 - 46 | | | | | | 0.50 - 5.0 | 56 | 46 | | | | | | 5.0 - 30.0 | 60 | 50 | | | | | Note: 1. The lower limit shall apply at the transition frequencies. 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. ## 4.2.2 Test Instruments | DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED DATE | CALIBRATED UNTIL | |--|-------------------------|------------|-----------------|------------------| | Test Receiver
R&S | ESCS 30 | 847124/029 | Oct. 23, 2019 | Oct. 22, 2020 | | Line-Impedance
Stabilization Network (for
EUT)
R&S | ESH3-Z5 | 848773/004 | Oct. 23, 2019 | Oct. 22, 2020 | | Line-Impedance
Stabilization Network
(for Peripheral)
R&S | ESH3-Z5 | 835239/001 | Mar. 19, 2020 | Mar. 18, 2021 | | 50 ohms Terminator | 50 | 3 | Oct. 23, 2019 | Oct. 22, 2020 | | RF Cable | 5D-FB | COCCAB-001 | Sep. 27, 2019 | Sep. 26, 2020 | | Fixed attenuator EMCI | STI02-2200-10 | 005 | Aug. 30, 2019 | Aug. 29, 2020 | | Software
BVADT | BVADT_Cond_
V7.3.7.4 | NA | NA | NA | ### Note: - 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in Conduction 1. - 3 Tested Date: June 01, 2020 Report No.: RF200511E11-2 Page No. 19 / 26 Report Format Version: 6.1.1 #### 4.2.3 Test Procedures - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument. - Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded. **Note:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz. #### 4.2.4 Deviation from Test Standard No deviation. #### 4.2.5 Test Setup Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo). #### 4.2.6 EUT Operating Conditions Same as 4.1.6. ### 4.2.7 Test Results | Phase | Line (L) | Detector Function | Quasi-Peak (QP) / | | | |--------|----------|-------------------|-------------------|--|--| | Filase | Line (L) | Detector Function | Average (AV) | | | | | Phase Of Power : Line (L) | | | | | | | | | | |----|---------------------------|-------------------|-------|-------------------------------------|-------|-----------------|-------|----------------|--------|--------| | No | Frequency | Correction Factor | | Reading Value Emission Level (dBuV) | | Limit
(dBuV) | | Margin
(dB) | | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15000 | 10.03 | 30.22 | 21.99 | 40.25 | 32.02 | 66.00 | 56.00 | -25.75 | -23.98 | | 2 | 0.18906 | 10.04 | 28.92 | 21.14 | 38.96 | 31.18 | 64.08 | 54.08 | -25.12 | -22.90 | | 3 | 0.33359 | 10.05 | 34.70 | 27.82 | 44.75 | 37.87 | 59.36 | 49.36 | -14.61 | -11.49 | | 4 | 0.60703 | 10.07 | 24.39 | 16.99 | 34.46 | 27.06 | 56.00 | 46.00 | -21.54 | -18.94 | | 5 | 7.60938 | 10.59 | 25.87 | 21.21 | 36.46 | 31.80 | 60.00 | 50.00 | -23.54 | -18.20 | | 6 | 15.58984 | 11.16 | 19.88 | 15.59 | 31.04 | 26.75 | 60.00 | 50.00 | -28.96 | -23.25 | #### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) / | |-------|---------------|----------------------|-------------------| | Tidoc | ricultar (iv) | Detector i dilettori | Average (AV) | | | Phase Of Power : Neutral (N) | | | | | | | | | | |----|------------------------------|-------------------|-------|-------------------------------------|-------|-----------------|-------|----------------|--------|--------| | No | Frequency | Correction Factor | | Reading Value Emission Level (dBuV) | | Limit
(dBuV) | | Margin
(dB) | | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15391 | 10.02 | 30.57 | 23.06 | 40.59 | 33.08 | 65.79 | 55.79 | -25.20 | -22.71 | | 2 | 0.22031 | 10.03 | 27.68 | 19.58 | 37.71 | 29.61 | 62.81 | 52.81 | -25.10 | -23.20 | | 3 | 0.32188 | 10.04 | 33.80 | 25.58 | 43.84 | 35.62 | 59.66 | 49.66 | -15.82 | -14.04 | | 4 | 0.96641 | 10.09 | 20.64 | 13.18 | 30.73 | 23.27 | 56.00 | 46.00 | -25.27 | -22.73 | | 5 | 7.60156 | 10.51 | 26.62 | 21.92 | 37.13 | 32.43 | 60.00 | 50.00 | -22.87 | -17.57 | | 6 | 15.71484 | 10.97 | 20.52 | 16.40 | 31.49 | 27.37 | 60.00 | 50.00 | -28.51 | -22.63 | #### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value #### 4.3 Conducted Out of Band Emission Measurement #### 4.3.1 Limits of Conducted Out of Band Emission Measurement Below 30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth). #### 4.3.2 Test Setup #### 4.3.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.3.4 Test Procedures #### **MEASUREMENT PROCEDURE REF** - 1. Set the RBW = 100 kHz. - 2. Set the VBW ≥ 300 kHz. - 3. Detector = peak. - 4. Sweep time = auto couple. - 5. Trace mode = max hold. - 6. Allow trace to fully stabilize. - 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. #### **MEASUREMENT PROCEDURE OOBE** - 1. Set RBW = 100 kHz. - 2. Set VBW ≥ 300 kHz. - 3. Detector = peak. - 4. Sweep = auto couple. - 5. Trace Mode = max hold. - 6. Allow trace to fully stabilize. - 7. Use the peak marker function to determine the maximum amplitude level. #### 4.3.5 Deviation from Test Standard No deviation. #### 4.3.6 EUT Operating Conditions The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually. #### 4.3.7 Test Results The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement. Report No.: RF200511E11-2 Page No. 23 / 26 Report Format Version: 6.1.1 ### 2.4GHz_802.11b CH1 + 5GHz_802.11ax (HE40) CH46 | 5 Pictures of Test Arrangements | | |---|--| | Please refer to the attached file (Test Setup Photo). | Report No.: RF200511E11-2 Page No. 25 / 26 Report Format Version: 6.1.1 ### Appendix - Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025. Hsin Chu EMC/RF/Telecom Lab If you have any comments, please feel free to contact us at the following: Lin Kou EMC/RF Lab Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END --- Report No.: RF200511E11-2 Page No. 26 / 26 Report Format Version: 6.1.1