

FCC Test Report

Product Name	NFC sensor Module	
Model No.	ASUS NFC-PN544	
FCC ID	MSQ-ASUSNFC-PN544	

Applicant	ASUSTeK COMPUTER INC.
Address	4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan

Date of Receipt	Apr. 19, 2013
Issued Date	May 08, 2013
Report No.	134385R-RFUSP39V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issued Date: May 08, 2013

Report No.: 134385R-RFUSP39V01

Product Name	NFC sensor Module
Applicant	ASUSTeK COMPUTER INC.
Address	4F, No. 150, Li-Te Rd., Peitou, Taipei, Taiwan
Manufacturer	NBM Production(DongGuan)Co.,Ltd.
Model No.	ASUS NFC-PN544
FCC ID.	MSQ-ASUSNFC-PN544
EUT Rated Voltage	DC 5V (by USB)
EUT Test Voltage	AC 120V/60Hz
Trade Name	ASUS
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2012
	ANSI C63.4: 2003, ANSI C63.10: 2009
Test Result	Complied

Test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By	:	Anita Chon
---------------	---	------------

(Senior Engineering Adm. Specialist / Anita Chou)

Tested By :

Andy Lin

(Engineer / Andy Lin)

Approved By :

(Manager / Vincent Lin)

TABLE OF CONTENTS

De	scription	Page
1.	GENERAL INFORMATION	4
1.1.	EUT Description	4
1.2.	Operational Description	5
1.3.	Tested System Datails	<i>.</i>
1.4.	Configuration of tested System	<i>.</i>
1.5.	EUT Exercise Software	7
1.6.	Test Facility	3
2.	Conducted Emission	9
2.1.	Test Equipment	9
2.2.	Test Setup	9
2.3.	Limits	10
2.4.	Test Procedure	10
2.5.	Uncertainty	10
2.6.	Test Result of Conducted Emission	11
3.	Radiated Emission	13
3.1.	Test Equipment	13
3.2.	Test Setup	13
3.3.	Limits	14
3.4.	Test Procedure	15
3.5.	Uncertainty	16
3.6.	Test Result of Radiated Emission	17
4.	Band Edge	20
4.1.	Test Equipment	20
4.2.	Test Setup	20
4.3.	Limits	
4.4.	Test Procedure	21
4.5.	Uncertainty	
4.6.	Test Result of Band Edge	22
5.	Frequency Tolerance	23
5.1.	Test Equipment	23
5.2.	Test Setup	23
5.3.	Limits	
5.4.	Test Procedure	
5.5.	Uncertainty	
5.6.	Test Result of Frequency Stability	24
6.	EMI Reduction Method During Compliance Testing	26

1. GENERAL INFORMATION

1.1. EUT Description

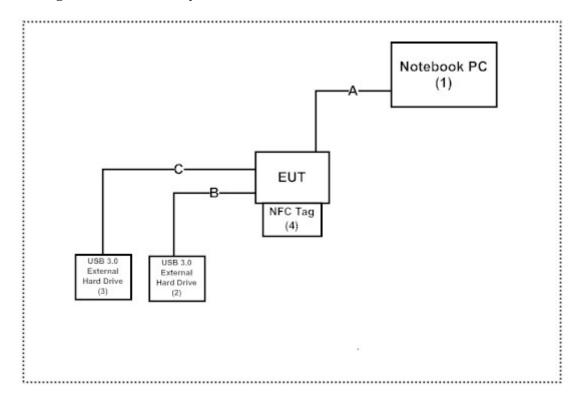
Product Name	NFC sensor Module
Trade Name	ASUS
Model No.	ASUS NFC-PN544
FCC ID	MSQ-ASUSNFC-PN544
Frequency Range	13.56MHz
Modulation	ASK
Antenna Type	Loop Antenna

Frequency of Each Channel:

Channel Frequency
Channel 1: 13.56 MHz

- 1. This device is a NFC sensor Module with a built-in 13.56MHz transceiver.
- 2. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart C Paragraph 15.225
- 3. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode	Mode 1: Transmit mode
-----------	-----------------------


1.3. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	duct	Manufacturer	Model No.	Serial No.	Power Cord
(1)	Notebook PC	ASUS	N56JZ	CAN0AS59268444H	Non-Shielded, 1.8m
(2)	USB 3.0	WD	WDBACW0010HBK-SESN	WCAV5U322516	Non-Shielded, 1.5m
	External Hard				
	Drive				
(3)	USB 3.0	WD	WDBACW0010HBK-SESN	WCAV5U133437	Non-Shielded, 1.5m
	External Hard				
	Drive				
(4)	NFC Tag	ASUS	N/A	N/A	N/A

Signal Cable Type		Signal cable Description
A	USB 3.0 Cable	Non-shielded, 1.3m
В	USB 3.0 Cable	Non-shielded, 1.3m
C	USB 3.0 Cable	Non-shielded, 1.3m

1.4. Configuration of tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute Software on the Notebook PC.
- (3) Start the continuous transmitter.
- (4) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: http://www.quietek.com/tw/ctg/cts/accreditations.htm

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/

Site Description: File on

Federal Communications Commission

FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046

Registration Number: 92195

Accreditation on NVLAP NVLAP Lab Code: 200533-0

Site Name: Quietek Corporation Site Address: No.5-22, Ruishukeng,

Linkou Dist. New Taipei City 24451,

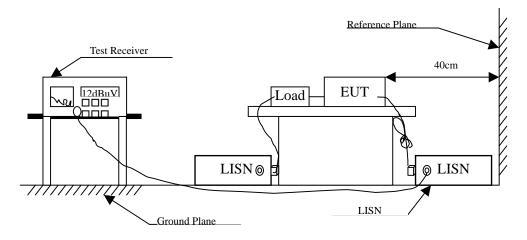
Taiwan, R.O.C.

TEL: 886-2-8601-3788 / FAX: 886-2-8601-3789

E-Mail: service@quietek.com

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
X	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2012	
X	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2013	Peripherals
X	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2013	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2013	EUT
X	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2013	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit						
Frequency	Limits					
MHz	QP	AV				
0.15 - 0.50	66-56 _(±)	56-46 _(\$\pm\)				
0.50-5.0	56	46				
5.0 - 30	60	50				

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product : NFC sensor Module
Test Item : Conducted Emission Test

Power Line : Line 1

Test Mode : Mode 1: Transmit mode

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
LINE 1					
Quasi-Peak					
0.162	9.790	30.940	40.730	-24.927	65.657
0.216	9.790	24.950	34.740	-29.374	64.114
0.345	9.790	16.190	25.980	-34.449	60.429
2.970	9.810	13.010	22.820	-33.180	56.000
8.021	9.922	19.580	29.502	-30.498	60.000
15.927	10.100	25.010	35.110	-24.890	60.000
Average					
0.162	9.790	27.190	36.980	-18.677	55.657
0.216	9.790	20.090	29.880	-24.234	54.114
0.345	9.790	7.430	17.220	-33.209	50.429
2.970	9.810	7.730	17.540	-28.460	46.000
8.021	9.922	11.790	21.712	-28.288	50.000
15.927	10.100	18.300	28.400	-21.600	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product : NFC sensor Module
Test Item : Conducted Emission Test

Power Line : Line 2

Test Mode : Mode 1: Transmit mode

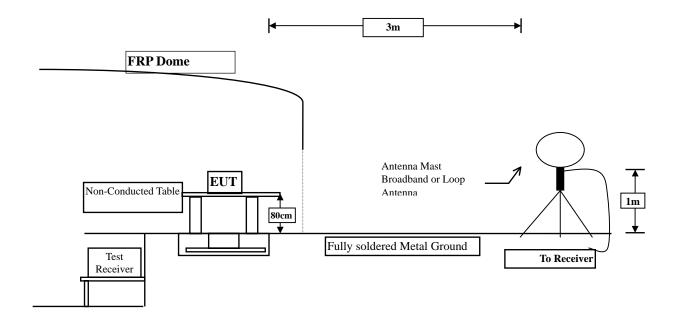
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
LINE 2					
Quasi-Peak					
0.173	9.770	27.180	36.950	-28.393	65.343
0.216	9.770	25.390	35.160	-28.954	64.114
0.486	9.770	26.780	36.550	-19.850	56.400
7.966	9.921	22.140	32.061	-27.939	60.000
16.095	10.170	28.970	39.140	-20.860	60.000
21.732	10.230	21.720	31.950	-28.050	60.000
Average					
0.173	9.770	26.010	35.780	-19.563	55.343
0.216	9.770	22.590	32.360	-21.754	54.114
0.486	9.770	21.680	31.450	-14.950	46.400
7.966	9.921	16.140	26.061	-23.939	50.000
16.095	10.170	24.260	34.430	-15.570	50.000
21.732	10.230	15.000	25.230	-24.770	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Radiated Emission

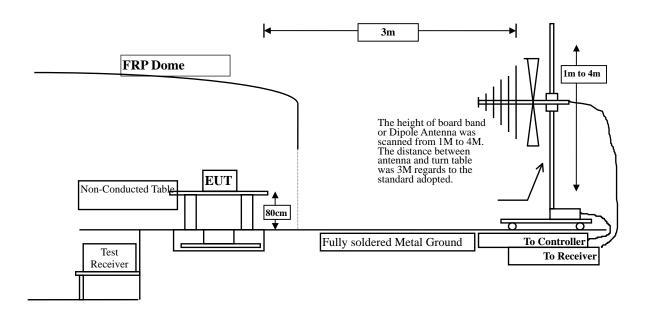
3.1. Test Equipment

The following test equipment are used during the radiated emission test:


Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
⊠Site # 3	X	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2012
	X	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2012
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2012
	X	Loop Antenna	Teseq	HLA6120 / 26739	Jul., 2012
	X	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2012
	X	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2013
	X	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2012
	X	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2013
	X	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.


3.2. Test Setup

9kHz~30MHz

30MHz~1GHz

3.3. Limits

> Fundamental electric field strength Limit

T undamental electric field strength En						
FCC Part 15 Subpart C Paragraph 15.225 Limits						
Fundamental Frequency	F	Field strength of fundamental				
MHz	uV/m	Distance (meter)	dBuV/m	Distance (meter)		
13.553 – 13.567	15848	30	124	3		
13.410 – 13.553 and 13.567 – 13.710	334	30	90.47	3		
13.110 – 13.410 and 13.710 – 14.010	106	30	80.50	3		
Outside of the 13.110 – 14.010	See 15.209 Limits					

Remarks: 1. RF Voltage $(dBuV) = 20 \log RF \text{ Voltage } (uV)$

- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- 3. The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

1	\triangleright	Spurious	electric	field	strenoth	Lit	mit

FCC Part 15 Subpart C Paragraph 15.209 Limits							
Frequency MHz	uV/m	dBuV/m	Measurement distance (meter)				
0.009-0.490	2400/F(kHz)	See Remark ¹	300				
0.490-1.705	24000/F(kHz)	See Remark ¹	30				
1.705-30	30	29.5	30				
30-88	100	40	3				
88-216	150	43.5	3				
216-960	200	46	3				
Above 960	500	54	3				

Remarks: 1. RF Voltage $(dBuV) = 20 \log RF \text{ Voltage } (uV)$

- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

3.4. Test Procedure

Fundamental electric field strength:

The EUT and its simulators are placed on a turn table which is 1 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum electric field strength.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna which is 1 meter above ground. All X-axis, Y-axis and Z-axis polarization of the antenna are set on measurement.

Spurious electric field strength:

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2009 on radiated measurement.

On any frequency the radiated limits shown are based upon the use of measurement instrumentation employing an average detector function. When average radiated emission measurement are included emission measurement below 1000 MHz, there also is a limit on the radio frequency emissions, as

measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.

The bandwidth below 30MHz setting on the field strength meter is 9kHz and above 30MHz is 120kHz.

3.5. Uncertainty

- ± 2.6 dB below 30MHz
- ± 3.8 dB above 30MHz

3.6. Test Result of Radiated Emission

Product : NFC sensor Module

Test Item : Fundamental Radiated Emission

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit mode

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
X-axis					
Quasi-Peak					
Horizontal					
13.560	21.158	33.600	54.758	-69.242	124.000
Vertical					
13.560	21.158	30.700	51.858	-72.142	124.000
Y-axis					
Quasi-Peak					
Horizontal					
13.560	21.158	34.400	55.558	-68.442	124.000
Vertical					
13.560	21.158	31.000	52.158	-71.842	124.000
Z-axis					
Quasi-Peak					
Horizontal					
13.560	21.158	23.700	44.858	-79.142	124.000
Vertical					
13.560	21.158	16.800	37.958	-86.042	124.000

- 1. Limit=84dBuV/m + 40*Log (30(m)/3(m))=124dBuV/m
- 2. All Readings below 1GHz are Quasi-Peak, above are average value.
- 3. Measurement Level = Reading Level + Correct Factor.
- 4. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

Product : NFC sensor Module

Test Item : General Radiated Emission Data (below 30MHz)

Test Site : No.3 OATS

Test Mode : Mode 1: Transmit mode

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
27.120	20.560	8.100	28.660	-40.880	69.540
Vertical					
27.120	20.560	8.500	29.060	-40.480	69.540

- 1. Limit=29.54dBuV/m + 40*Log (30(m)/3(m))=69.54dBuV/m
- 2. All Readings below 1GHz are Quasi-Peak, above are average value.
- 3. "means the worst emission level.
- 4. Measurement Level = Reading Level + Correct Factor.

Product : NFC sensor Module

Test Item : General Radiated Emission Data (above 30MHz)

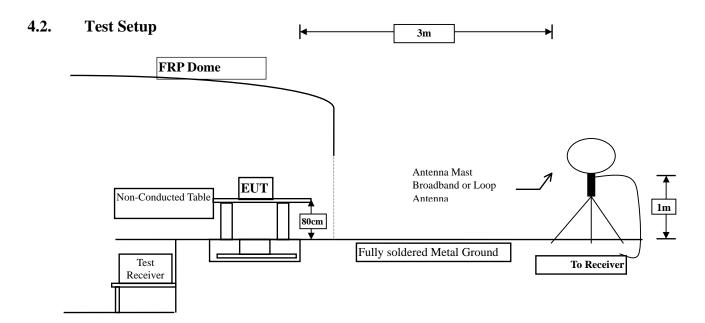
Test Site : No.3 OATS

Test Mode : Mode 1: Transmit mode

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
QP Detector					
124.824	-12.303	46.336	34.033	-9.467	43.500
232.083	-9.447	42.701	33.254	-12.746	46.000
469.920	-0.545	38.091	37.546	-8.454	46.000
564.744	2.884	37.487	40.371	-5.629	46.000
768.381	4.868	33.635	38.504	-7.496	46.000
867.869	5.482	35.842	41.324	-4.676	46.000
Vertical					
QP Detector					
135.705	-7.983	38.753	30.769	-12.731	43.500
239.856	-2.957	38.138	35.181	-10.819	46.000
412.404	-1.840	37.666	35.826	-10.174	46.000
539.872	-0.427	30.938	30.511	-15.489	46.000
729.519	2.342	33.978	36.320	-9.680	46.000
891.186	6.366	31.810	38.176	-7.824	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

4. Band Edge


4.1. Test Equipment

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
⊠Site # 3	X	Loop Antenna	Teseq	HLA6120 / 26739	Jul., 2012
		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2012
		Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2012
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2012
		Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2013
		Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2012
		Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar, 2013
	X	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2013
	X	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2012
	X	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2013
	X	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

4.3. Limits

In any 9 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 50 dB below that in the 9 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

4.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2009 on radiated measurement.

The bandwidth below 30MHz setting on the field strength meter is 9kHz and above 30MHz is 120kHz.

4.5. Uncertainty

Radiated is \pm 2.6 dB

4.6. Test Result of Band Edge

Product : NFC sensor Module
Test Item : Band Edge Data
Test Site : No.3 OATS

Test Mode : Mode 1: Transmit mode

RF Radiated Measurement

(Horizontal)

Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Emission Level (dBuV/m)	QP Limit (dBuV/m)	Result
13.110	21.110	5.700	26.810	69.540	Pass
13.360	21.140	5.500	26.640	69.540	Pass
13.410	21.140	5.900	27.040	69.540	Pass
14.010	21.200	5.900	27.100	69.540	Pass

Note:

1. All Readings below 1GHz are Quasi-Peak, above are average value.

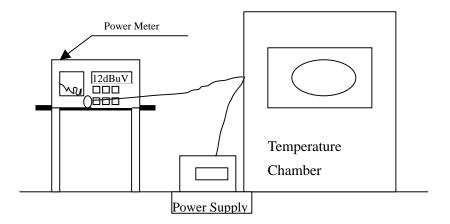
2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

(Vertical)

Frequency (MHz)	Correct Factor (dB)	Correct Factor (dB) Reading Level (dBuV) Emission Level (dBuV/m)		QP Limit (dBuV/m)	Result
13.110	21.110	5.600	26.710	69.540	Pass
13.360	21.140	5.300	26.440	69.540	Pass
13.410	21.140	5.500	26.640	69.540	Pass
14.010	21.200	5.100	26.300	69.540	Pass

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor


5. Frequency Tolerance

5.1. Test Equipment

Equipment		Manufacturer Model No./Serial No.		Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
X	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2013
X	Temperature Chamber	TDE	CHM 150CT	March, 2013

Note: All equipments are calibrated every one year.

5.2. Test Setup

5.3. Limits

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency.

5.4. Test Procedure

The over operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

5.5. Uncertainty

± 150 Hz

5.6. Test Result of Frequency Stability

Product : NFC sensor Module
Test Item : Frequency Tolerance
Test Site : Temperature Chamber
Test Mode : Mode 1: Transmit mode

Temperature $(^{\circ}C)$	Voltage (V)	Observe Time	Declared Frequency (MHz)	Read Frequency (MHz)	Tolerance (%)		Limit (%)	
20	DC 5V	start	13.56	13.56018	0.001327	±		
		2mins	13.56	13.56018	0.001327		0.01	
		5mins	13.56	13.56018	0.001327			%
		10mins	13.56	13.56018	0.001327			
		start	13.56	13.56018	0.001327	- ±	0.01	
		2mins	13.56	13.56018	0.001327			
20	DC 5.75V	5mins	13.56	13.56018	0.001327			%
		10mins	13.56	13.56018	0.001327			
20	DC 4.25V	start	13.56	13.56020	0.001438	±	0.01	
		2mins	13.56	13.56020	0.001438			%
		5mins	13.56	13.56020	0.001438			
		10mins	13.56	13.56020	0.001438			
50	DC 5V	start	13.56	13.56021	0.001549	- - +	0.01	0/
		2mins	13.56	13.56021	0.001549			
		5mins	13.56	13.56021	0.001549			%
		10mins	13.56	13.56021	0.001549			
	DC 5V	start	13.56	13.56020	0.001475	±	0.01	
40		2mins	13.56	13.56020	0.001475			0./
		5mins	13.56	13.56020	0.001475			%
		10mins	13.56	13.56020	0.001475			
30	DC 5V	start	13.56	13.56018	0.001327	±	0.01	%
		2mins	13.56	13.56018	0.001327			
		5mins	13.56	13.56018	0.001327			70
		10mins	13.56	13.56018	0.001327			

10	DC 5V	start	13.56	13.56015	0.001069	- - ± -	0.01	%
		2mins	13.56	13.56015	0.001069			
		5mins	13.56	13.56015	0.001069			
		10mins	13.56	13.56015	0.001069			
0	DC 5V	start	13.56	13.56020	0.001475	±	0.01	
		2mins	13.56	13.56020	0.001475			0/
		5mins	13.56	13.56020	0.001475			%
		10mins	13.56	13.56020	0.001475			
-10	DC 5V	start	13.56	13.56020	0.001438	<u>+</u>	0.01	
		2mins	13.56	13.56020	0.001438			0/
		5mins	13.56	13.56020	0.001438			%
		10mins	13.56	13.56020	0.001438			
-20	DC 5V	start	13.56	13.56022	0.001622			
		2mins	13.56	13.56022	0.001622	<u>+</u>	0.01	0/
		5mins	13.56	13.56022	0.001622			%
		10mins	13.56	13.56022	0.001622			

6. EMI Reduction Method During Compliance Testing

No modification was made during testing.