

Nemko Korea Co., Ltd.

300-2, Osan-Ri, 7Mohyun-Myun, Yongin-City, Kyungki-Do, KOREA

TEL:+82 31 322 2333

FAX:+82 31 322 2332

FCC PART 15 Class II Permissive Change

Applicant:

Hansol LCD Inc.

#27-29, Hancheon-Ri, Ducksan-Myun,

Jincheon-Gun, Choongbuk, Korea

Attn: Mr. W. S. Lee

Dates of Issue: October 21, 2004

Test Report No.: NK2EE748

Test Site: Nemko Korea Co., Ltd.

EMC site, Korea

FCC ID

Brand Name

Contact Person

MSAB17DF

Hansol

Hansol LCD Inc.

#27-29, Hancheon-Ri, Ducksan-Myun, Jincheon-Gun,

Choongbuk, Korea

Mr. W. S. Lee

Telephone No.: +82 +43 530 8554

Applied Standard: Part 15 & 2

Classification : FCC Class B Device

EUT Type: 17" LCD Monitor

The device bearing the brand name and FCC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2001.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By: J. H. Ko

Engineer

Reviewed By: H.H. Kim

Manager & Chief Engineer

Hansol LCD Inc. FCC ID:MSAB17DF Page 1 of 34

TABLE OF CONTENTS

SCOPE	3
INTRODUCTION (Site Description)	4
TEST CONDITIONS & EUT INFORMATION	5
SUMMARY OF TEST RESULTS	7
RECOMMANDATION / CONCLUSION	7
SAMPLE CALCULATION	7
DESCRIPTION OF TESTS (Conducted Emissions)	8
DESCRIPTION OF TESTS (Radiated Emissions)	9
TEST DATA (Conducted Emissions)	10
TEST DATA (Radiated Emissions)	11
PLOT OF EMISSIONS (Conducted Emissions Diagram)	13
ACCURACY OF MEASUREMENT	15
LIST OF TEST EQUIPMENT	16
APPENDIX A - SAMPLE LABEL	17
APPENDIX B - PHOTOGRAPHS OF TEST SET-UP	18
APPENDIX C - EUT PHOTOGRAPHS	20
APPENDIX D – BLOCK DIAGRAM	32
APPENDIX E - USER'S MANUAL	33
APPENDIX F - SCHEMATIC DIAGRAM	34

SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15.

Responsible Party: Hansol LCD Inc.

Contact Person: Mr. W. S. Lee

Tel No.: +82 43 530 8554

Manufacturer: Hansol LCD Inc.

#27-29, Hancheon-Ri, Ducksan-Myun, Jincheon-Gun,

Choongbuk, Korea

Tel No.: +82 43 530 8554

Factory: 1) Hansol Electronics (Thailand) Co., Ltd.

168 Moo 1 Tambon Banbung, Amphoe Banbung, Chonburi Province

20170 Thailand

2) Namsong Industrial Co., Ltd.

2-Da, 509 Sihwa Industrial Complex, Shiheung-Shi, Kyonggi-Do,

429-450(429-849), Korea

● FCC ID: MSAB17DF

Model: B17DFBrand Name: Hansol

EUT Type: 17" LCD Monitor

Electric Rating: 100-240V AC, 50/60Hz, 0.6A

Port/Connector: D-Sub, Audio In, Audio Out

Classification: FCC Class B

Applied Standard: FCC Part 15 & Part 2
 Test Procedure(s): ANSI C63.4 (2001)

Dates of Test: October 07, 2004 to October 19,2004
 Place of Tests: Nemko Korea Co., Ltd. EMC Site

Test Report No.: NK2EE748

Description of the Changes according to FCC part 2.1043

1. Add the LCD Panel (HT17E13-***, BOE HYDIS Technology Co., Ltd.)

2. Add the scaler IC (TSU16AJ)

INTRODUCTION

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSI C63.4-2001) was used in determining radiated and conducted emissions emanating from **Hansol LCD Inc.**

FCC ID: MSAB17DF, 17" LCD Monitor.

These measurement tests were conducted at Nemko Korea Co., Ltd. EMC Laboratory .

The site address is 300-2, Osan-Ri, Mohyun-Myun, Yongin-City, Kyungki-Do, KOREA The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 kilometers (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 kilometers (18miles) south-southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on June 06, 2001.

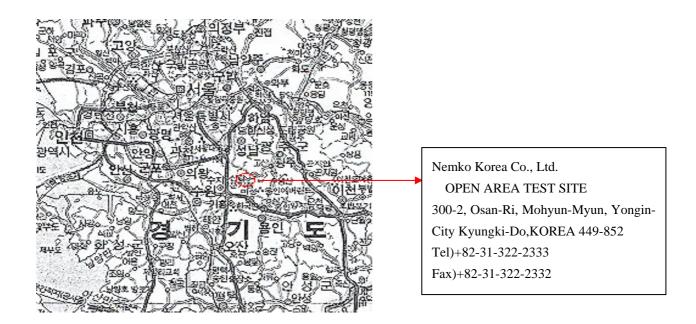


Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab and Incheon Airport.

TEST CONDITIONS & EUT INFORMATION

Operating During Test

The EUT was connected to the PC and it displayed an "H" pattern on the screen. The EUT was set to 1280 x 1024 video resolution, with 75Hz vertical refresh rate. A sinusoidal signal of 1kHz from the hard disk played continuously

Support Equipment

Monitor(EUT)	Hansol, FCC ID: MSAB17DF 1.5m unshielded AC power cable 1.8m shielded D-sub cable	S/N: N/A
PC	Maxdata, Model: PC2000-Line Future 1.8m unshielded AC power cable	S/N: 30073880044
PS/2 Mouse	Logitech, Model: M-S48 1.5m unshielded Din cable	S/N: LZA82186807
Serial Mouse	ALLSPIRIT, Model: WS-V1-400 1.5m unshielded D-Sub cable	S/N: B050402
Keyboard	Samsung Electro- Mechanics, Model: KB3V082SPAAA 1.8m unshielded Din cable	S/N: 4029193
Speaker	GOWOONSORI, Model: DS-9802 1.2m unshielded Stereo Jack cable	S/N: N/A
Printer	EPSON, Model: C80 1.8m shielded D-sub cable 1.8m unshielded AC power cable	S/N: N/A

EUT Information

Clock	12MHz(Y1), 14.31818MHz(Y2)
Chipset(s)	U4(WT61P4), U6(TSU16AJ), U7(TDA7496L/DIP20)
Horizontal Frequency	79.976kHz(Max)
Vertical Frequency	75Hz(Max)
LCD panel	HT17E13-*** / BOE HYDIS Technology Co., Ltd.
Combo Board	Hips 17 / Hansol LCD Inc.
Main Board	H750B_MP / Hansol LCD Inc.
OSD Board	H550/H750D / Hansol LCD Inc.
Port(s)	D-Sub, Audio Input, Headphone or Speaker Output

Description of Test Modes

The EUT was pre-tested under the following resolutions mode:

For Analogue video interface port (D-Sub)

- 1. 1280 X 1024 (75Hz/ 79.976kHz), clock frequency 135.00MHz
- 2. 1024 X 768 (75Hz/ 60.023kHz), clock frequency 78.75MHz
- 3. 800 X 600 (75Hz/ 46.875kHz), clock frequency 49.50MHz
- 4. 640 X 480 (75Hz/ 37.500kHz), clock frequency 31.50MHz

The worst emission level was found when the EUT was tested under 1280 X 1024 resolution, therefore, the test data of this mode was recorded in the report.

SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specification:

Name of Test	Paragraph No.	Result	Remark
Conducted Emission	15.107(a)	Complies	
Radiated Emission	15.109(a)	Complies	

RECOMMENDATION/CONCLUSION

The data collected shows that the Hansol LCD Inc.

FCC ID: MSAB17DF, 17" LCD Monitor.

The highest emission observed was at **0.19 MHz** for conducted emissions with a Q.P margin of **14.4 dB**, at **569.36 MHz** for radiated emissions with a margin of **5.0 dB**.

SAMPLE CALCULATION

$$dB \mu V = 20 \log_{10} (\mu V/m)$$

$$\mu V = 10^{(dB \, \mu V/20)}$$

EX. 1.

@57.7 MHz

Class B limit = 100 μ V/m = 40.0 dB μ V/m

Reading = 19.1 dB μV (calibrated level)

Antenna factor + Cable Loss = 10.12 dB

Total = 29.22 dB $\mu V/m$

Margin = 40.0 - 29.22 = 10.78

10.78 dB below the limit

DESCRIPTION OF TESTS

Conducted Emissions

The Line conducted emission test facility is located inside a 4 X 7 X 2.5 meter shielded enclosure.

It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6.

A 1m X 1.5m wooden table 0.8m height is placed 0.4m away from the vertical wall and 1.5m away from the side of wall of the shielded room

Rohde & Schwarz (ESH3-Z5) and Kyoritsu (KNW-407) of the 50ohm/50uH Line Impedance Stabilization Network(LISN) are bonded to the shielded room.

The EUT is powered from the Rohde & Schwarz LISN and the support equipment is powered from the Kyoritsu LISN. Power to the LISN s are filtered by high-current high insertion loss Power line filters. The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1/2".

If DC power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs,

All interconnecting cables more than 1 meter were shortened by non inductive bundling (serpentine fashion) to a 1 meter length.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 150kHz to 30MHz with 20msec sweep time.

The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCS30).

The detector function were set to CISPR quasi-peak mode & average mode.

The bandwidth of receiver was set to 9KHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux AC outlet, if applicable; which ever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

Fig. 2. LISN Schematic Diagram

DESCRIPTION OF TESTS

Radiated Emissions

Preliminary measurement were made indoors at 3 meter using broad band antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The Technology configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna was note for each frequency found. The spectrum was scanned from 27 to 1000MHz using Biconical log Antenna(ARA, LPB-2520/A). Above 1GHz, Horn Antenna (SCHWARZBECK, BBHA9120A: upto 1~2GHz) was used.

Final Measurements were made outdoors at 3 or 10m test range using Logbicon Super Antenna(ARA, LPB-2520/A) or Horn Antenna.(SCHWARZBECK, BBHA9120A)

The test equipment was placed on a wooden table.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

Each frequency found during pre-scan measurements was reexamined and investigated using EMI test receiver.(ESCS30)

The detector function were set to CISPR quasi-peak and peak mode and the bandwidth of the receiver were set to 120KHz and 1MHz depending on the frequency or type of signal. The half wave dipole antenna was tuned to the frequency found during preliminary radiated measurements.

The EUT support equipment and interconnecting cables were re configured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8m high non-metallic 1.0X 1.5 meter table.

The EUT, support equipment and interconnecting cables were re-arranged and manipulated to maximize each EME emission.

The turn table containing the Technology was rotated; the antenna height was varied 1 to 4meter and stopped at the azimuth or height producing the maximum emission. Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux AC outlet, if applicable; which ever determined the worst case emission.

Each EME reported was calibrated using the R/S signal generator.

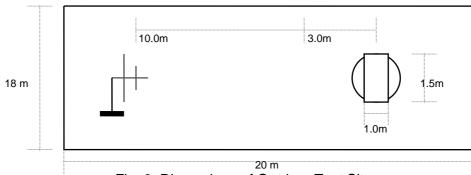


Fig. 3. Dimensions of Outdoor Test Site

Hansol LCD Inc.
FCC ID:MSAB17DF

TEST DATA

Conducted Emissions

FCC ID: MSAB17DF

Frequency Level(dB\(\rho\ld{V}\right)		equency Level(dB\(\mu\)V) Line	Line	Limit(dBµV)		Margin(dB)	
(MHz)	Q-Peak	Average		Q-Peak	Average	Q-Peak	Average
0.19	49.6	-	L	64.0	54.0	14.4	-
0.26	40.5	-	L	61.4	51.4	20.9	-
4.24	31.5	-	L	56.0	46.0	24.5	-
7.51	37.2	-	L	60.0	50.0	22.8	-
13.19	39.0	-	L	60.0	50.0	21.0	-
20.18	38.8	-	L	60.0	50.0	21.2	-

Table 1. Line Conducted Emissions Tabulated Data

NOTES:

- 1. Measurements using CISPR quasi-peak mode & average mode.
- 2. All modes of operation were investigated and the worst -case emission are reported. See attached Plots.
- 3. LINE : L = Line , N = Neutral
- 4. The limit for Class B device is on the FCC Part section 15.107(a).
- 5. If the quasi-peak level is lower than average limit, the average detector measurement is not necessary.

Tested by : J. H. Ko

TEST DATA

Radiated Emissions

FCC ID: MSAB17DF

● 30MHz ~ 1GHz

Frequency	Reading	Pol*	AF+CL+Amp	Result	Limit	Margin
(MHz)	$(\mathbf{dB}\mu V)$	(H/V)	(dB)**	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)
63.44	55.7	V	-21.5	34.2	40.0	5.8
127.60	44.9	Н	-16.1	28.8	43.5	14.7
133.77	46.9	V	-15.1	31.8	43.5	11.7
528.07	46.0	Н	-5.5	40.5	46.0	5.5
569.36	45.4	Н	-4.4	41.0	46.0	5.0
599.98	44.0	Н	-3.6	40.4	46.0	5.6

• 1GHz ~ 2GHz

Frequency	requency Reading (dBµV)		Pol*	AF+CL+Amp	Limit (dBµV/m)		Final Result(dBµV/m)	
(MHz)	Peak	Average	(H/V)	(dB)**	Peak	Average	Peak	Average
1100.00	59.1	53.1	Н	-4.9	74.0	54.0	54.2	48.2
1200.00	56.1	45.6	Н	-5.0	74.0	54.0	51.1	40.6
1300.00	53.3	41.0	Н	-4.6	74.0	54.0	48.7	36.4
1380.00	56.5	47.9	Н	-3.9	74.0	54.0	52.6	44.0
1520.00	51.9	36.3	Н	-3.2	74.0	54.0	48.7	33.1
1660.00	51.9	49.9	V	-2.1	74.0	54.0	49.8	47.8

Table 2. Radiated Measurements at 3meters

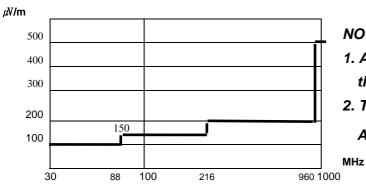


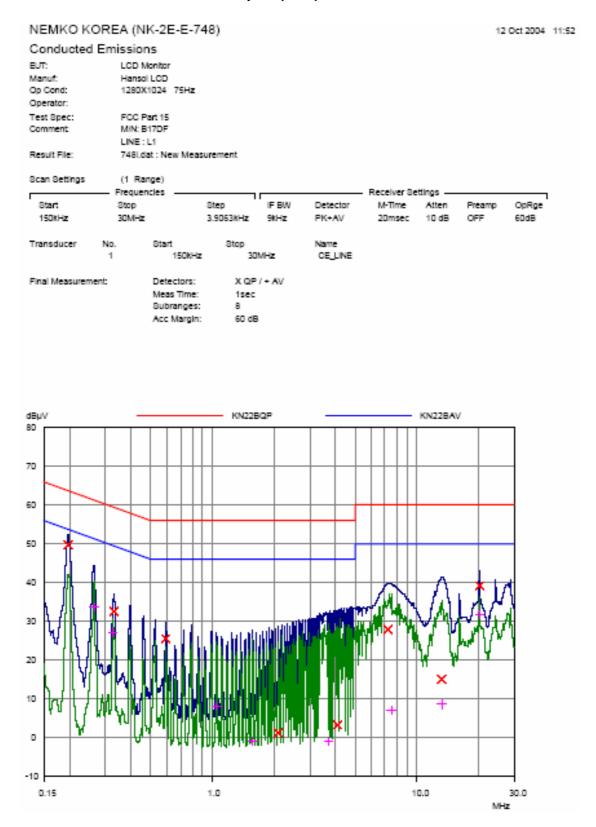
Fig. 4. Limits at 3 meters

NOTES:

- 1. All modes of operation were investigated the worst-case emission are reported.
- 2. The radiated limits are shown on Figure 4.

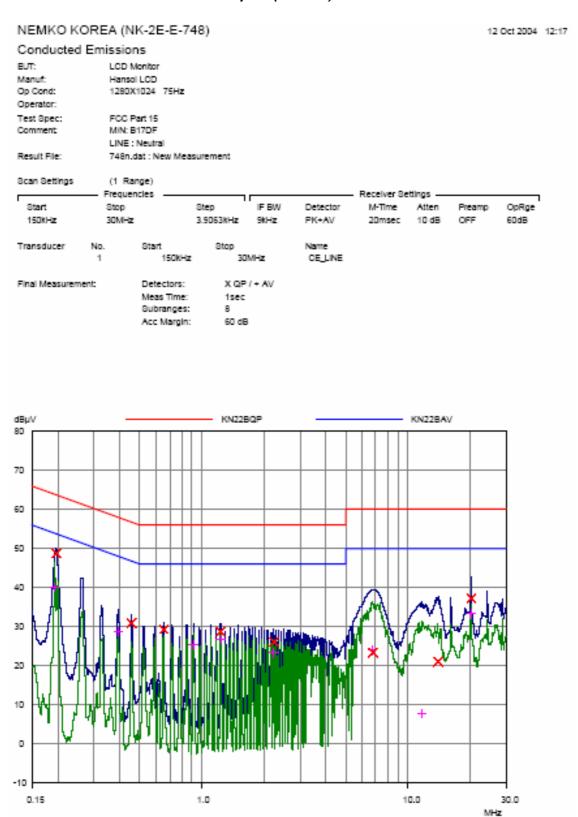
 Above 1GHz the limit is 500 µV/m.

NOTES:


- 1. *Pol. H =Horizontal V=Vertical
- 2. **AF+CL+Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Measurements using CISPR quasi-peak mode. Above 1GHz, peak detector function mode is used using a resolution bandwidth of 1MHz and a video bandwidth of 1MHz. The peak level complies with the average limit. Peak mode is used with linearly polarized horn antenna and low-loss microwave cable.
- 4. The limit for Class B device is on the FCC Part section 15.109(a).

Tested by : **J. H. Ko**

PLOTS OF EMISSIONS


Conducted Emission at the Mains port (Line)

PLOTS OF EMISSIONS

Conducted Emission at the Mains port (Neutral)

ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 with the confidence level of 95%

1. Radiation Uncertainty Calculation

Contribution	Probability Distribution	Uncertainty(+/-dB)
Antenna Factor	Normal (k=2)	± 0.5
Cable Loss	Normal (k=2)	± 0.04
Receiver Specification	Rectangular	± 2.0
Antenna directivity		
Antenna Factor variation with Height		
Antenna Phase Center Variation	Rectangular	± 1.0
Antenna Factor Frequency Interpolation		
Measurement Distance Variation		
Site Inperfections	Rectangular	± 2.0
Mismatch:Receiver VRC ri=0.3		
Antenna VRC rR=0.1(Bi)0.4(Lp)	U-Shaped	+ 0.25 / - 0.26
Uncertainty Limits 20Log(1+/-ri rR)		
System Repeatibilty	Std.deviation	± 0.05
Repeatability of EUT	-	-
Combined Standard Uncertainty	Normal	± 1.77
Expended Uncertainty U	Normal (k=2)	± 3.5

2. Conducted Uncertainty Calculation

Contribution	Probability Distribution	Uncertainty(+/-dB)
Receiver Specification	Normal (k=2)	± 2.0
LISN coupling spec.	Normal (k=2)	± 0.4
Cable and input attenuator cal.	Rectangular	± 0.4
Mismatch:Receiver VRC ri=0.3		
LISN vrc rg=0.1	U-Shaped	± 0.26
Uncertainty Limits 20Log(1+/-ri rR)		
System Repeatibilty	Std.deviation	± 0.68
Repeatability of EUT	-	-
Combined Standard Uncertainty	Normal	± 1.18
Expended Uncertainty U	Normal (k=2)	± 2.4

LIST OF TEST EQUIPMENT

No.	Instrument	Manufacturer	Model	Calibration Date
1	*Test Receiver	R & S	ESCS 30	2004.08
2	*Test Receiver	R & S	ESCS 30	2003.12
3	*Amplifier	НР	8447F	2004.01
4	*Amplifier	НР	8447D	2004.07
5	Spectrum Analyzer	Advantest	R3265A	2003.12
6	*Spectrum Analyzer	НР	8566B	2004.03
7	*Logbicon Super Antenna	Schwarzbeck	VULB9166	2004.05
8	*Horn Antenna	Schwarzbeck	BBHA9120A	2004.08
9	Dipole Antenna	R & S	VHA9103	2004.05
10	Dipole Antenna	R & S	UHA9105	2004.05
11	*Biconical Log Antenna	ARA	LPB-2520/A	2004.05
12	High Voltage Probe	R & S	ESH2-Z3	2003.10
13	Signal Generater	R & S	SMP02	2004.03
14	*LISN	R & S	ESH3-Z5	2003.11
15	*LISN	Kyoritsu	KNW-407	2004.03
16	LISN	Kyoritsu	KNW-408	2003.12
17	CDN	FCC	NCD-T4	2004.05
18	CDN	FCC	NCD-T2	2004.05
19	*Position Controller	EM Eng.	N/A	N/A
20	*Turn Table	EM Eng.	N/A	N/A
21	*Antenna Mast	EM Eng.	N/A	N/A
22	*Anechoic Chamber	EM Eng.	N/A	N/A

^{*)} Test equipment used during the test

APPENDIX D - BLOCK DIAGRAM

APPENDIX E - USER'S MANUAL

APPENDIX F - SCHEMATIC DIAGRAM