Test Report No.: NK2CE475

FCC Certification

Nemko Korea Co., Ltd.

300-2, Osan-Ri, Mohyun-Myun, Yongin-City, Kyungki-Do, KOREA

TEL:+82 31 322 2333

FAX:+82 31 322 2332

FCC PART 15 Class II Permissive Change

Manufacturer:

Hansol Electronics Inc.

#27-29, Hanchun-ri, Ducksan-Myun,

Jinchun-Kun, Choongbuk, Korea

Attn: Mr. S. P. Yang

Dates of Issue : July 2, 2002

Test Report No.: NK2CE475

Test Site: Nemko Korea Co., Ltd.

EMC site, Korea

FCC ID

MSAB15DF

Brand Name

Contact Person

Hansol

Hansol Electronics Inc. #27-29, Hanchun-ri, Ducksan-Myun, Jinchun-Kun, Choongbuk, Korea

> Mr. S. P. Yang Telephone No. : +82 43 530 8503

FCC Rule Part(s): Part 15 & 2

Classification: FCC Class B Device

EUT Type: LCD Monitor

The device bearing the brand name and FCC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-1992.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By: S. K. Lee

ocul

Engineer

Reviewed By: H.H. Kim

Manager & Chief Engineer

TABLE OF CONTENTS

SCOPE	3
INTRODUCTION (Site Description)	4
GENERAL TEST CONDITION	5
DESCRIPTION OF TEST (Conducted Emissions)	6
DESCRIPTION OF TEST (Radiated Emissions)	7
TEST DATA (Conducted Emissions)	8
TEST DATA (Radiated Emissions)	9
PLOT OF EMISSION	10
SAMPLE CALCULATIONS	12
ACCURACY of MEASUREMENT	13
TEST EQUIPMENT	14
RECOMMENDATION/CONCLUSION	15
APPENDIX A - LABELLING REQUIREMENTS	16
APPENDIX B - CIRCUIT DIAGRAM	17
APPENDIX C - PHOTOGRAPHS of TEST SET-UP	18
APPENDIX D - EUT PHOTOGRAPHS	20
APPENDIX E - USER'S MANUAL	33
APPENDIX F - SCHEMATIC DIAGRAM	34

Test Report No.: NK2CE475

FCC Certification

SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15.

Responsible Party*: Hansol Electronics Inc.

Contact Person: Mr. S. P. Yang

Tel No.: +82 43 530 8503

Manufacturer: Hansol Electronics Inc.

#27-29, Hanchun-ri, Ducksan-Myun, Jinchun-Kun,

Choongbuk, Korea

Tel No.: +82 43 530 8503

FCC ID: MSAB15DF

B15DF Model: Brand Name: Hansol

LCD Monitor EUT Type:

Classification: FCC Class B

Rule Part(s): FCC Part 15 & Part 2 Test Procedure(s): ANSI C63.4 (1992)

Dates of Test: June 24, 2002 to June 25,2002 Place of Tests: Nemko Korea Co., Ltd. EMC Site

Test Report No.: NK2CE475

Description of the Changes according to FCC part 2.1043

1.Add the Main board (u-com, ADC, Scale)

2.Add the internal power supply(Appro System)

^{*} NOTE: Please refer to the duties and responsibilities of the Responsible Party attached.

INTRODUCTION

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSI C63.4-1992) was used in determining radiated and conducted emissions emanating from **Hansol Electronics Inc.**

FCC ID: MSAB15DF, LCD Monitor.

These measurement tests were conducted at **Nemko Korea Co., Ltd. EMC Laboratory** .

The site address is 300-2, Osan-Ri, Mohyun-Myun, Yongin-City, Kyungki-Do, KOREA The area of Nemko Korea Corporation LTD. EMC Test Site is located in a mountain area at 50 kilometers (30 miles) southeast and Seoul International Airport (Kimpo Airport), 30 kilometers (18miles) south-southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on October 19, 1992.

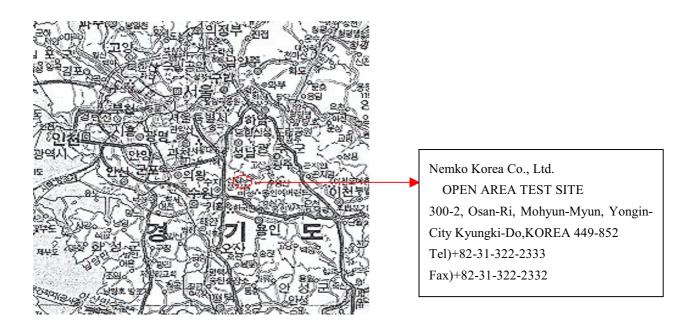


Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab and Kimpo Airport.

TEST CONDITIONS & EUT INFORMATION

Operating During Test

The EUT was connected to PC and the monitor was displayed "H" pattern on the screen. And the EUT was set to video resolution 1024*768, vertical refresh rate 75Hz

Support Equipment

PC	Trigem , Model: emachines 540 1.8m unshielded AC power cable		
Monitor(EUT)	Hansol, FCC ID: MSAB15DF 1.5m unshielded AC power cable 1.8m shielded D-sub cable	S/N: N/A	
Keyboard	Samsung, Model: TRI-350 1.8m shield Din cable	S/N: N/A	
PS/2 Mouse	Logitech, Model: M-S48a 1.5m shield Din cable	S/N: HCA11807841	
Printer	HP, Model No: C5870K 1.5m unshielded AC power cable 1.8m Shield D-sub cable	S/N: SG88R131GW	

EUT Information

Clock	12MHz(X101, X301)		
Chipset(s)	MASCOTV(U101), NT68F63(U302)		
Horizontal Frequency	60kHz(Max)		
Vertical Frequency	75Hz(Max)		
Port(s)	VGA		

DESCRIPTION OF TESTS

Conducted Emissions

The Line conducted emission test facility is located inside a 4 X 7 X 2.5 meter shielded enclosure.

It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6.

A 1mX 1.5M wooden table 0.8m height is placed 0.4m away from the vertical wall and 1.5m away from the side of wall of the shielded room

Rohde & Schwarz LISN and PMM LISN L3-32 50ohm/50uH line impedance stabilization network are bonded to the shielded room.

The EUT is powered from the Rohde & Schwarz LISN and the support equipment is powered from the PMM LISN. Power to the LISN s are filtered by high-current high insertion loss Power line filters. The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1/2".

If DC power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs,

All interconnecting cables more than 1 meter were shortened by non inductive bundling (serpentine fashion) to a 1 meter length.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 450KHz to 30MHz with 20msec sweep time.

The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCS30).

The detector function was set to CISPR quasi-peak mode.

The bandwidth of receiver was set to 9KHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux AC outlet, if applicable; which ever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

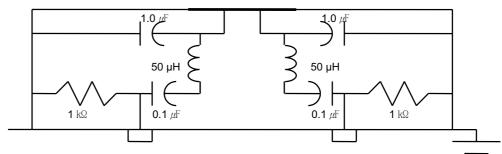


Fig. 2. LISN Schematic Diagram

DESCRIPTION OF TESTS

Radiated Emissions

Preliminary measurement were made indoors at 1 meter using broad band antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The Technology configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna was note for each frequency found.

The spectrum was scanned from 30 to 1000MHz using Biconical log Antenna(ARA, LPB-2520/A). Above 1GHz, log periodic antenna (Rohde Schwarz HL025:upto 18GHz) was used.

Final Measurements were made outdoors at 3 or 10m test range using Logbicon Super Antenna(Schwarzbeck, VULB9166) or log periodic antenna.(Rohde Schwarz HL025) The test equipment was placed on a wooden table.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

Each frequency found during pre-scan measurements was reexamined and investigated using EMI test receiver.(ESCS30)

The detector function was set to CISPR quasi-peak mode and the bandwidth of the receiver was set to 120KHz or 1MHz depending on the frequency or type of signal.

The half wave dipole antenna was tuned to the frequency found during preliminary radiated measurements.

The EUT support equipment and interconnecting cables were re configured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8m high non- metallic 1.0X 1.5 meter table.

The EUT, support equipment and interconnecting cables were re-arranged and manipulated to maximize each EME emission.

The turn table containing the Technology was rotated; the antenna height was varied 1 to 4meter and stopped at the azimuth or height producing the maximum emission Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux AC outlet, if applicable; which ever determined the worst case emission.

Each EME reported was calibrated using the R/S signal generator.

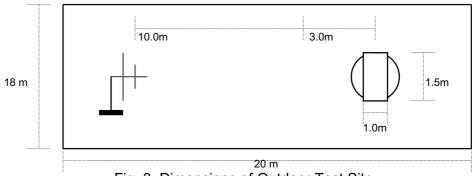


Fig. 3. Dimensions of Outdoor Test Site

TEST DATA

Conducted Emissions

FCC ID: MSAB15DF

Test Mode: Display "H" pattern on the screen

FREQ (MHz)	LEVEL(dB ^ル)	LINE	LIMIT(⊅)	(^{µV})	MARGIN*(dB)
0.46	29.5	N	250	29.85	18.5
0.65	29.0	N	250	28.18	19.0
0.84	29.2	Ν	250	28.84	18.8
1.29	30.5	N	250	33.50	17.5
2.64	38.5	N	250	84.14	9.5
19.21	39.3	L	250	92.26	8.7

Table 1. Line Conducted Emissions Tabulated Data

NOTES:

- 1. Measurements using CISPR quasi-peak mode
- 2. All modes of operation were investigated and the worst -case emission are reported. See attached Plots.
- 3. The limit for Class B device is 250 μV from 450 kHz to 30MHz.
- 4.LINE : L = Line, N = Neutral

Tested by S. K. Lee

Radiated Emissions

FCC ID: MSAB15DF

Test Mode: Display "H" pattern on the screen

Frequency	Reading	Pol*	AF+CL+Amp	Result	Limit	Margin
(MHz)	$(dB^{\mu V})$	(H/V)	(dB)**	$(dB^{\mu V}/m)$	$(dB^{\mu V}/m)$	(dB)
145.41	46.7	V	-13.3	33.4	43.5	10.1
196.30	45.6	V	-13.6	32.0	43.5	11.5
421.68	45.6	Н	-8.2	37.4	46.0	8.6
436.22	44.7	Н	-7.8	36.9	46.0	9.1
959.68	33.3	V	5.0	38.3	46.0	7.7
966.95	33.3	V	5.1	38.4	46.0	7.6

Table 2. Radiated Measurements at 3meters

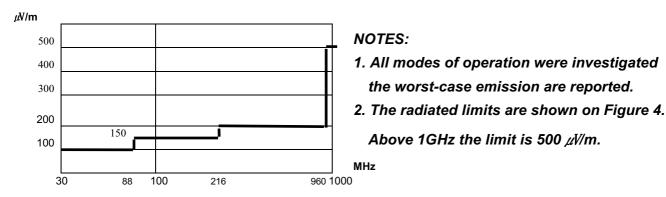
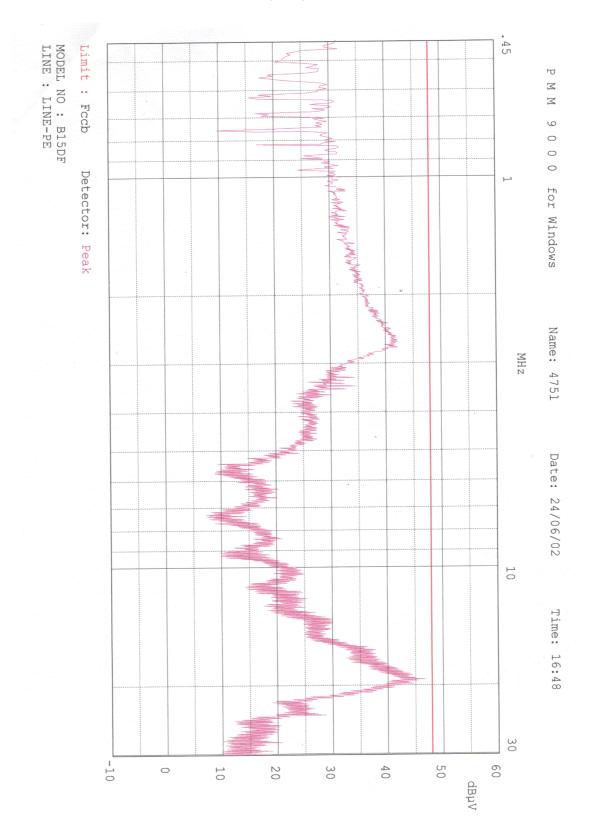


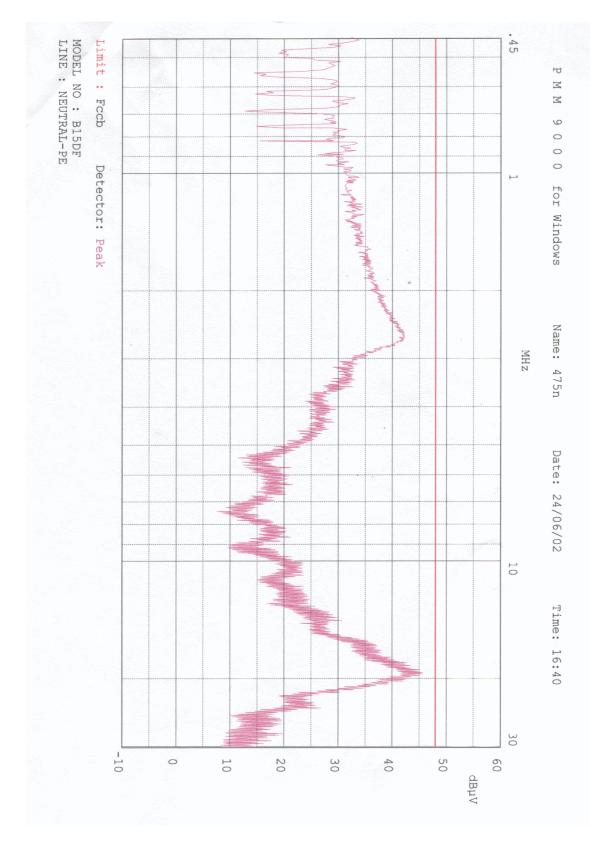
Fig. 4. Limits at 3 meters

NOTES:


- 1. *Pol. H =Horizontal V=Vertical
- 2. **AF+CL+Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Measurements using CISPR quasi-peak mode. Above 1GHz, peak detector function mode is used using a resolution bandwidth of 1MHz and a video bandwidth of 1MHz. The peak level complies with the average limit. Peak mode is used with linearly polarized horn antenna and low-loss microwave cable.

Tooted by C. K. Lor

Tested by S. K. Lee


PLOTS OF EMISSIONS

• Conducted Emission at the Mains port(Line)

PLOTS OF EMISSIONS

• Conducted Emission at the Mains port(Neutral)

SAMPLE CALCULATIONS

$$dB \mu V = 20 \log_{10} (\mu V/m)$$

$$\mu V = 10^{(dB \, \mu V/20)}$$

EX. 1.

@20.3 MHz

Class B limit = 250 μ V = 48.0 dB μ V

Reading = $40.8 \text{ dB } \mu\text{V}$ (calibrated level)

10 ^(40.8/20) = 109.64 μV

Margin = 48.0 - 40.8 = 7.2

7.2 dB below limit

EX. 2.

@57.7 MHz

Class B limit = 100 μ V/m = 40.0 dB μ V/m

Reading = 19.1 dB μV (calibrated level)

Antenna factor + Cable Loss = 10.12 dB

Total = 29.22 dB $\mu V/m$

Margin = 40.0 - 29.22 = 10.78

10.78 dB below the limit

ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 with the confidence level of 95%

1. Radiation Uncertainty Calculation

Contribution	Probability Distribution	Uncertainty(+/-dB)	
Antenna Factor	Normal (k=2)	± 0.5	
Cable Loss	Normal (k=2)	± 0.04	
Receiver Specification	Rectangular	± 2.0	
Antenna directivity			
Antenna Factor variation with Height			
Antenna Phase Center Variation	Rectangular	± 1.0	
Antenna Factor Frequency Interpolation			
Measurement Distance Variation			
Site Inperfections	Rectangular	± 2.0	
Mismatch:Receiver VRC ri=0.3			
Antenna VRC rR=0.1(Bi)0.4(Lp)	U-Shaped	+ 0.25 / - 0.26	
Uncertainty Limits 20Log(1+/-ri rR)			
System Repeatibilty	Std.deviation	± 0.05	
Repeatability of EUT	-	-	
Combined Standard Uncertainty	Normal	± 1.77	
Expended Uncertainty U	Normal (k=2)	± 3.5	

2. Conducted Uncertainty Calculation

Contribution	Probability Distribution	Uncertainty(+/-dB)
Receiver Specification	Normal (k=2)	± 2.0
LISN coupling spec.	Normal (k=2)	± 0.4
Cable and input attenuator cal.	Rectangular	± 0.4
Mismatch:Receiver VRC ri=0.3		
LISN vrc rg=0.1	U-Shaped	± 0.26
Uncertainty Limits 20Log(1+/-ri rR)		
System Repeatibilty	Std.deviation	± 0.68
Repeatability of EUT	-	-
Combined Standard Uncertainty	Normal	± 1.18
Expended Uncertainty U	Normal (k=2)	± 2.4

TEST EQUIPMENT

No.	Instrument	Manufacturer	Model	Calibration Date
	Г		1	<u> </u>
1	*Test Receiver	R & S	ESCS 30	2002.02
2	*Test Receiver	PMM	PMM9000	2001.06
3	*Amplifier	HP	8447F	2001.11
4	*Amplifier	НР	8447F	2001.11
5	*Spectrum Analyzer	Advantest	R3265A	2002.03
6	*Logbicon Super Antenna	Schwarzbeck	VULB9166	2002.02
7	Log-Periodic Antenna	R & S	HL025	2002.01
8	Dipole Antenna	R & S	VHA9103	2002.05
9	Dipole Antenna	R & S	UHA9105	2002.05
11	Biconical Log Antenna	ARA	LPB-2520/A	2002.01
12	Asorbing Clamp	R & S	MDS21	2002.03
13	High Voltage Probe	R & S	ESH2-Z3	2001.09
14	Signal Generater	R & S	SMP02	2001.12
15	Matching Pad	R & S	RAM358.5414.02	2002.05
16	*LISN	R & S	ESH3-Z5	2001.10
17	*LISN	PMM	L3-9103	2001.06
18	*Position Controller	EM Eng.	N/A	N/A
19	*Turn Table	EM Eng.	N/A	N/A
20	*Antenna Mast	EM Eng.	N/A	N/A
21	*Anechoic Chamber	EM Eng.	N/A	N/A
22	*Shielded Room	EM Eng.	N/A	N/A

^{*)} Test equipment used during the test

RECOMMENDATION/CONCLUSION

The data collected shows that the **Hansol Electronics Inc.**

FCC ID: **MSAB15DF, LCD Monitor.** complies with § 15.107,15.109 of the FCC Rules. The highest emission observed was at **19.21 MHz** for conducted emissions with a margin

of 8.7 dB, at 966.95 MHz for radiated emissions with a margin of 7.6 dB.

APPENDIX A – SAMPLE LABEL

Labelling Requirements

The sample label shown shall be *permanently affixed* at a conspicuous location on the device and be readily visible to the user at the time of purchase.

FCC ID Location of EUT

Test Report No.: NK2CE475

FCC Certification

APPENDIX B – CIRCUIT DIAGRAM

APPENDIX E – USER'S MANUAL

APPENDIX F – SCHEMATIC DIAGRAM