Amber Helm Development L.C.

92723 Michigan Hwy-152 Sister Lakes, Michigan 49047 USA Tel: 888-847-8027

EMC Test Report

SCHTP-WR1808TX Issued: December 23, 2018

regarding

USA: CFR Title 47, Part 15.231 (Emissions) Canada: ISED RSS-210v9/GENv5 (Emissions)

for

G6GB4-F, G6GB4-D

Category: TPMS Transmitter

Judgments 15.231/RSS-210v9 Compliant Transmitter Testing Completed: December 21, 2018

Prepared for:

Schrader Electronics

11 Technology Park, Belfast Road, Antrim Northern Ireland BT41 1QS United Kingdom Phone: +44 28 9448 3067, Fax: +44 28 9446 8440 Contact: James Kyle, jakyle@schrader.co.uk

	1 15	_	co 1 + Wallan
Data Recorded by:	for 110	Reviewed by:	Dodon A. Hame
	Dr Jøeph Brunett EMC 002790-NE		Gordon Helm, EMC-002401-NE
Prepared by:	Die Joseph Brunett, EMC-002790-NE	Date of Issue:	December 23, 2018

A copy of this report will remain on file until December 2028.

Revision History

R	ev.	No.	Date	Details	Revised By	
			December 23, 2018 January 10, 2019	Initial Release. Minor typo + sigs.	J. Brunett J. Brunett	
r0 December 23, 2018 Initial Release. J. Brunett r1 January 10, 2019 Minor typo + sigs. J. Brunett Contents Revision History 2 Table of Contents 2 1 Test Report Scope and Limitations 4 1.1 Laboratory Authorization 4 1.2 Report Retention 4 1.3 Subcontracted Testing 4 1.4 Test Data 4 1.5 Limitation of Results 4 1.6 Copyright 4 1.7 Endorsements 5 1.9 Traceability and Equipment Used 5 2 Test Specification and General Procedures 6 2.1 Test Specification and General Procedures 6 3.1.1 EUT configuration 7 3.1.2 Modifications Made 8 3.1.4 Test Specification Intent 8 3.1.6 Molifoations Made 8 3.1.7 Production Intent 8						
Re	visi	on History	y		2	
Та	ble (of Conten	\mathbf{ts}		2	
1	$1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.6 \\ 1.7 \\ 1.8$	Laboraton Report Re Subcontra Test Data Limitation Copyright Endorsem Test Loca	y Authorization		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2						
3		Description 3.1.1 EU 3.1.2 Mo 3.1.3 Va 3.1.4 Te 3.1.5 Fu 3.1.6 Mo 3.1.7 Pr	on and Declarations JT Configuration odes of Operation riants st Samples nctional Exerciser odifications Made oduction Intent		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4	4.1	General T 4.1.1 Ra 4.1.2 Cc 4.1.3 Po Intentiona 4.2.1 Fu 4.2.2 Fu	diated Test Setup and onducted Emissions Tes wer Supply Variation al Emissions ndamental Emission Pu ndamental Emission Ba	Procedures	9 9 11 11 11 11 12 15	
	-	4.3.1 Tr	ansmit Chain Spurious	Emissions		
5	Me	asurement	t Uncertainty and A	ccreditation Documents	19	

List of Tables

Test Site List.
Equipment List.
EUT Declarations.
Fundamental Emission Pulsed Operation
Fundamental Emission Bandwidth.
Fundamental Emission Field Strength.
Transmit Chain Spurious Emissions
Measurement Uncertainty.

List of Figures

1	Photos of EUT.
	EUT Test Configuration Diagram.
	Radiated Emissions Diagram of the EUT.
4	Radiated Emissions Test Setup Photograph(s)
5	Fundamental Emission Pulsed Operation.
5	Fundamental Emission Pulsed Operation.
6	Fundamental Emission Bandwidth.
7	Accreditation Documents

1 Test Report Scope and Limitations

1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: 3161A and 24249). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until December 2028.

1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

1.4 Test Data

This test report contains data included within the laboratories scope of accreditation.

1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C..

1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Description	Location	Quality Num.
OATS (3 meter)	3615 E Grand River Rd., Williamston, Michigan 48895	OATSC

1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 2. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards.

Table 2: Equipment List.

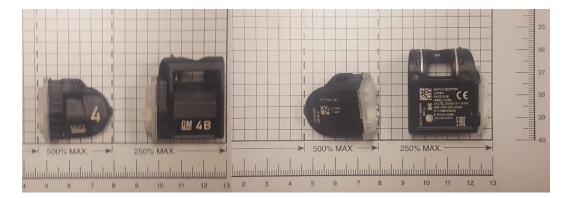
Description	Manufacturer/Model	\mathbf{SN}	Quality Num.	Last Cal By / Date Due
Biconical	EMCO / 93110B	9802-3039	BICEMCO01	Keysight / Aug-2019
Log Periodic Antenna	EMCO / 3146	9305-3614	LOGEMCO01	Keysight / Aug-2019
BNC-BNC Coax	WRTL / $RG58/U$	001	CAB001-BLACK	AHD / Mar-2019
BNC-BNC Coax	WRTL / $RG58/U$	001	CAB002-BLACK	AHD / Mar-2019
3.5-3.5MM Coax	PhaseFlex / PhaseFlex	001	CAB015- PURPLE	AHD / Mar-2019
Spectrum Analyzer	Rohde & Schwarz / FSV30	101660	RSFSV30001	RS / Apr-2019
Quad Ridge Horn	Singer / A6100	C35200	HQR1TO18S01	Keysight / Aug-2019

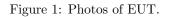
2 Test Specifications and Procedures

2.1 Test Specification and General Procedures

The ultimate goal of Schrader Electronics is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Schrader Electronics G6GB4-F, G6GB4-D for compliance to:

Country/Region	Rules or Directive	Referenced Section(s)		
United States	Code of Federal Regulations	CFR Title 47, Part 15.231		
Canada	ISED Canada	ISED RSS-210v9/GENv5		


It has been determined that the equipment under test is subject to the rules and directives above at the date of this testing. In conjunction with these rules and directives, the following specifications and procedures are followed herein to demonstrate compliance (in whole or in part) with these regulations.


ANSI C63.4:2014	"Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" $$
ANSI C63.10:2013	"American National Standard of Procedures for Compliance Testing of Unli- censed Wireless Devices"
TP0102RA	"AHD Internal Document TP0102 - Radiated Emissions Test Procedure"
ISED Canada	"The Measurement of Occupied Bandwidth"

3 Configuration and Identification of the Equipment Under Test

3.1 Description and Declarations

The equipment under test is a UHF transmitter for automotive tire pressure monitoring. The EUT is approximately $3.5 \ge 4 \ge 2$ cm in dimension, and is depicted in Figure 1. It is powered by 3 VDC Lithium cell battery. In use, this device is permanently installed in the tire of a motor vehicle. Table 3 outlines provider declared EUT specifications.

General Declarations			
Equipment Type:	TPMS Transmitter	Country of Origin:	United Kingdom
Nominal Supply:	3 VDC	Oper. Temp Range:	Not Declared
Frequency Range:	433.92 MHz	Antenna Dimension:	Not Declared
Antenna Type:	PCB Trace	Antenna Gain:	-26 dBi (declared)
Number of Channels:	1	Channel Spacing:	Not Applicable
Alignment Range:	Not Declared	Type of Modulation:	ASK+FSK
United States			
FCC ID Number:	MRXG6GB4	Classification:	DSC
Canada			
IC Number:	2546A-G6GB4	Classification:	Remote Control Device, Ve-
io number:	2040A-000D4	Classification:	hicular Device

Table 3:	EUT	Declarations.
----------	-----	---------------

3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 2.

3.1.2 Modes of Operation

This device is capable of three key modes of operation. Upon manually activated LF interrogation (through the use of special LF tool at a vehicle dealership), the EUT responds with a single transmission containing a number of frames used to configure the device with the vehicle. When the EUT is placed in the vehicle tire and the vehicle drives, it can, in the worst case, periodically transmit where the duration of each transmission is always less than 1 second and the silent period between transmissions is at least 30 times the duration of the transmission, and never less than 10 seconds. (See duty cycle table and operational description exhibit for details.) In the case of an emergency condition (delta Pressure), the EUT will transmit tire pressure and temperature information throughout the duration of the condition.

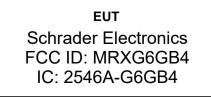


Figure 2: EUT Test Configuration Diagram.

3.1.3 Variants

There are two variants of the EUT. Both employ the exact same PCB and software, but the plastic housing (chassis) into which they are placed consist of a smaller version G6GB4-F and a larger version G6GB4-D. Fundamental and harmonic spurious are measured in both housings.

3.1.4 Test Samples

Four samples in total were provided; two normal operating and one capable of CW after application of a special LF test tool for each housing variant. The normal operating samples were tested for LF activation response using an LF diagnostic tool provided by the manufacturer.

3.1.5 Functional Exerciser

Normal operating EUT functionality was verified by observation of transmitted signal.

3.1.6 Modifications Made

There were no modifications made to the EUT by this laboratory.

3.1.7 Production Intent

The EUT appears to be a production ready sample.

3.1.8 Declared Exemptions and Additional Product Notes

The EUT is permanently installed in a transportation vehicle. As such, digital emissions are exempt from US and Canadian digital emissions regulations (per FCC 15.103(a) and IC correspondence on ICES-003).

The EUT also employs some modes of operation that alert the vehicle user of sudden changes in tire pressure. Such alert modes fall under FCC 15.231(a)(4), and may operate during the pendency of the alarm condition. A detailed list of all operating modes is included in the Description of Operation exhibit included in this application.

4 Emissions

4.1 General Test Procedures

4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 3. All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

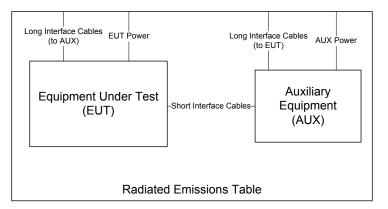


Figure 3: Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broadband probes are used depending on the regulations. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, the broadband probes employed are 10cm diameter single-axis shielded transducers and measurements are repeated and summed over three axes.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4×5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to $dB\mu V/m$ at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

Figure 4: Radiated Emissions Test Setup Photograph(s).

4.1.2 Conducted Emissions Test Setup and Procedures

The EUT is not subject to measurement of power line conducted emissions as it is powered solely by its internal battery.

4.1.3 Power Supply Variation

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

In the case the EUT is designed for operation from a battery power source, the extreme test voltages are evaluated over the range specified in the test standard; no less than $\pm 10\%$ of the nominal battery voltage declared by the manufacturer. For all battery operated equipment, worst case intentional and spurious emissions are re-checked employing a new (fully charged) battery.

1

2

5-Dec-18

Test Date:

4.2 Intentional Emissions

4.2.1 Fundamental Emission Pulsed Operation

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Duty cycle is reported for all relevant modes of operation. The test equipment employed includes RSFSV30001, LOGEMCO01.

Measurement Results The details and results of testing the EUT are summarized in Table 4. Plots showing the measurements made to obtain these values are provided in Figure 5.

Table 4:	Fundamental	Emission	Pulsed	Operation.

			Detector Pk	Span 0	IF Bandwidth 3 MHz		Bandwidth MHz	Test Engineer: EUT:		oh Brunett GB4-F, G6GB4-D
								EUT Mode: Meas. Distance:		dulated 0 cm
										FCC/IC
			Over	all Trans	mission		Internal	Frame Characteristics		
#	Frequency (MHz)	EUT Test Mode*	Min. Repetition Rate (sec)	Max. No. of Frames	Total Transmission Length (sec)	Max. Frame Length (ms)	Min. Frame Period (ms)	Frame Encoding	Compute	d Duty Cycle (dB)
1	433.92	Drive Mode	21.7	8	0.5739	5.900	<100 ms	In Drive (Roll) mode the EUT transmits 6 FSK frames. Two frames may occur within 100 ms window.	11.8	-18.6
2	433.92	LF Manual Activated	single	16	1.71	50.120	100.0	When manually activated by LF service tool, the EUT transmits 16 ASK and FSK frames in 1.71 seconds. Only a single frame may occur in a given 100ms window, and the worst case frame is a 50.12 ms ASK frame with 50% duty.	25.1	-12.0

Example Calculation: Worst Case Duty (%) = (50% x 50.12 ms/ 100 ms) x 100 = 25.1 %

Spectrum 🔆			ĺ	F Spectrum						
Ref Level -10 00 dBm	👄 RBW - 3 MHz			Ref Level -1	0 00 dBm	e RBW	3 MHz			(·
	_00 s 👄 VBW 10 MHz			🖬 Att	20 dB 🖷 SWT	🗉 s 🖝 VBW .	10 MHz			
SGL				SGL TRG: VID						
11Pk Cirw				●1Pk Crw		_,,				
		D2[1]	-2.21					D2[1]		-33.50 di
and the		M1[1]	21.73 -25.02 di	m				M1[1]		573.91 m -24.76 dBn
27.den		and all	3.04	S r				and all		0.00000
1 P										
30 dBm				-30 dBm						
43 <mark>d2n</mark>				-40 dBm						
				TRG	-46.000 dBm					
52 dBm				-50 dBm						
and the state of t	Mon description of the low low	in a more marked and the second states	and the second							
50 dem				-60 dem	www.mec.levies.levies.	unionalismikasp	weblenniki kuru	يد الإراكار المراجعة (10 ماريد المراك <mark>م</mark> المسأور ورام المراجع المراجع المراجع المراجع المراجع المراجع المراجع الم	University	يه ويهي 10 مداور والماريل الماليلية.
ru dem				-/J d8m						
20 den				-vu uerr						
BD dBm				-80 dBm						
90 dem				-90 dem						
100 cGm				-100 cBm		++			_	
GF 483.92 MHz	69	1 pts	10.0 :	/ CF 433.92 MH	z		691	ots		100.0 ms/
CF 433.92 MHz	69	1 pts		_	z		691	ots		
CF 433.92 MHz	69	1 pts		_	<u></u>		691	ots		
	69	1 pts				e rev	691 V 3 MHz	ots		100.0 ms/
Spectrum Ref Level - 10 00 dBm Att 20 dB s SWT		1 pts		Spectrum Ref Level -11	0 00 dBm	● RBV 30 ms ● VBV	V 3 MHz	ots		
Spectrum RefLevel - 10 00 dBm Att 20 dB - SWT SSL TRG: VID	😑 RBW 3 MHz	1 pts		Spectrum Ref Level -1 Att SSL TRG:VID	0 00 dBm		V 3 MHz	ots		
Spectrum Ref Level -10 00 dBm	😑 RBW 3 MHz		(Spectrum Ref Level -1 Att SGL TRG:VID 01Pk Crw	0 00 dBm		V 3 MHz			
Spectrum RefLevel - 10 00 dBm Att 20 dB - SWT SSL TRG: VID	😑 RBW 3 MHz	D2[1]	-32.46	Spectrum Ref Level -11 Att SGL TRG: VID OTPK Crw	0 00 dBm		V 3 MHz	D2[1]		-34.28 di
Spectrum Ref Level - 10 00 :8m Att 20 dB = SWT S3L TR6:VID 10k C rw	😑 RBW 3 MHz	D2[1]	-32,46 100.00	Ref Level -1 Att SGL TRG:VID PIPK CTW SGL	0 00 dBm		V 3 MHz	D2[1]		-34.28 dl 5.8696 m
Spectrum RefLevel - 10 00 dBm Att 20 dB SWT S3L TRS: VID IPK C IW	😑 RBW 3 MHz		-32,46 100,00 -24,74 di	Spectrum Ref Level -1 Att SGL TRG:VID OIPk Crw IB S S -20 dBm	0 00 dBm		V 3 MHz			- 34.28 d 5.8696 m - 24.79 dBr
Spectrum 20 db m Ref Level - 10 00 dbm 8m Att 20 db m SSL TRG:VID 10k Crw 20 dbm 10k Crw 20 dbm 11k Crw	😑 RBW 3 MHz	D2[1]	-32,46 100.00	Spectrum Ref Level -1 Att S3L TR6:VID DIPk C tw Is r20 dBm r20 dBm	0 00 dBm		V 3 MHz	D2[1]		- 34.28 d 5.8696 m - 24.79 dBr
Spectrum Ref Level - 10 00 dBm Att 20 dB = 8WT SSL TRG/VID IPk Crw 20 dBm	😑 RBW 3 MHz	D2[1]	-32,46 100,00 -24,74 di	Spectrum Ref Level -1 Att SGL TRG:VID OIPk Crw IB S S -20 dBm	0 00 dBm		V 3 MHz	D2[1]		-34.28 d 5.8695 m -24.79 dB
Spectrum Ref Level - 10 00 dBm Att 20 dB = 8WT SSL TRG/VID IPk Crw 20 dBm	😑 RBW 3 MHz	D2[1]	-32,46 100,00 -24,74 di	Spectrum Ref Level -1 Att S3L TR6:VID DIPk C tw Is r20 dBm r20 dBm	0 00 dBm		V 3 MHz	D2[1]		-34.28 d 5.8695 m -24.79 dB
Spectrum Ref Level - 10 00 :Bm Att 20 dB = SWT SIL TRG:VID Infk C (W	😑 RBW 3 MHz	D2[1]	-32,46 100,00 -24,74 di	Spectrum Ref Level -1 Att S3L TR6:VID DIPk C tw Is r20 dBm r20 dBm	0 00 dBm		V 3 MHz	D2[1]		-34.28 di
Spectrum 00 dBm Ref Level -10 00 dBm Att 20 dB swT S3L TRG: VID 30 dPn 10k Crw M1 30 dPn M1 +0 dPn M1	😑 RBW 3 MHz	D2[1]	-32,46 100,00 -24,74 di	7 Spectrum Ref Leval -1: Att S3L TRG: VID 01Pk Crw 01Pk Crw 01Pk Crw 15	20 dB - SWT		V 3 MHz	D2[1]		-34.28 d 5.8696 m -24.79 dB
Spectrum Ref Level - 10 00 dBm Att 20 dB • SWT SSL TRG: VID 1Pk Grw 20 dBm 40 dBm 40 dBm 176 - 46, 300 dBm	😑 RBW 3 MHz	D2[1]	-32,46 100,00 -24,74 di	Spectrum Ref Level -1 Att S3LTR6:VID 910K Crw 8 15 -20 den +20 den +20 den	0 00 dBm		V 3 MHz	D2[1]		-34.28 d 5.8696 m -24.79 dB
Spectrum 20 db swr Ref Level - 10 00 dbm 20 db swr sit 20 db swr sit 10 dbm swr sit 20 db swr sit 10 dbm swr sit 10 dbm swr sit 10 dbm swr sit 10 dbm stat	RBW 3 MH2 S VBW 10 MH2	D2[1] M1[1]	-32.46 100.00 -24.74 d 237.68	Spectrum Ref Level -1 Att S3LTR6:VID 91% Crw B 15 20 d8n +20 d8n -42 d8n +50 d8n TR6	20 dB - SWT		V 3 MHz	D2[1]		-34.28 d 5.8695 m -24.79 dB
Spectrum Note of the sector of t	RBW 3 MH2 S VBW 10 MH2	D2[1] M1[1]	-32,46 100,00 -24,74 di	7 Spectrum 86fLevel -1 Att 4Lt SELTR6:VID 917k Crw 917k Crw 10 5 12 JER:VID 917k Crw 15 -20 dBn -40 dBn -50 dBn -50 dBn TRG	0 00 3Bm 20 db swr	· 30 ms •• VBV	V 3 MHz V 10 MHz	D2[1] N1[1]		-34.28 d 5.8695 m -24.79 dB 0.000000
Spectrum Ref Level - 10 00 dBm Att 20 dB = 8WT S3L TRG: VID 1Pk Crw 20 dBm 42 dBm 42 dBm 42 dBm TRG -46.000 dBm 50 dBm	RBW 3 MH2 S VBW 10 MH2	D2[1] M1[1]	-32.46 100.00 -24.74 d 237.68	Spectrum Ref Level -1 Att S3LTR6:VID 91% Crw B 15 20 d8n +20 d8n -42 d8n +50 d8n TR6	0 00 3Bm 20 db swr	· 30 ms •• VBV	V 3 MHz V 10 MHz	D2[1] N1[1]		- 34.28 d 5.8696 m - 24.79 dBr
Spectrum No <	RBW 3 MH2 S VBW 10 MH2	D2[1] M1[1]	-32.46 100.00 -24.74 d 237.68	Spectrum Ref Level -1 Att S3LTR6:VID 910k Crw 15 15 -20 d8n -40 d8n -50 d8n	0 00 3Bm 20 db swr	· 30 ms •• VBV	V 3 MHz V 10 MHz	D2[1] N1[1]	444	-34.29 d 5.8696 m -24.79 dB 0.000000
Spectrum No <	RBW 3 MH2 S VBW 10 MH2	D2[1] M1[1]	-32.46 100.00 -24.74 d 237.68	7 Spectrum 86fLevel -1 Att 4Lt SELTR6:VID 9176.Crw 9176.Crw 10 5 12.020 4000 -30.020	0 00 3Bm 20 db swr	· 30 ms •• VB•	V 3 MHz V 10 MHz	D2[1] N1[1]		-34.29 d 5.8696 m -24.79 dB 0.000000
Spectrum Ref Level - 10 00 :#Em Att 20 d8 = SWI SSL TRG: VID 10k C rw 20 d8n 40 d8n TRG -46.000 d8m SSL TRG: VID 30 d8n 40 d8n 70 d8n	RBW 3 MH2 S VBW 10 MH2	D2[1] M1[1]	-32.46 100.00 -24.74 d 237.68	Spectrum Ref Level -1 Att S3LTR6:VID 910k Crw 15 15 -20 d8n -40 d8n -50 d8n -60 d8n	0 00 3Bm 20 db swr	· 30 ms •• VB•	V 3 MHz V 10 MHz	D2[1] N1[1]		-34.28 d 5.8695 m -24.79 dB 0.000000
Spectrum No <	RBW 3 MH2 S VBW 10 MH2	D2[1] M1[1]	-32.46 100.00 -24.74 d 237.68	Spectrum Ref Level -1 Att S3LTR6:VID 910k Crw 15 15 -20 d8n -40 d8n -50 d8n -60 d8n	0 00 3Bm 20 db swr	· 30 ms •• VB•	V 3 MHz V 10 MHz	D2[1] N1[1]		-34.28 d 5.8695 m -24.79 dB 0.000000
Spectrum Ref Level - 10 00 :slm Att 20 d8	RBW 3 MH2 S VBW 10 MH2	D2[1] M1[1]	-32.46 100.00 -24.74 d 237.68	Spectrum RefLevel -1 Att SILTRG:VID BLMC INV BLMC INV BLMC INV -30 dBm -40 dBm -50 dBm -60 dBm -7J dBm	0 00 3Bm 20 db swr	· 30 ms •• VB•	V 3 MHz V 10 MHz	D2[1] N1[1]	4.000	-34.28 d 5.8695 m -24.79 dB 0.000000
Spectrum No <	RBW 3 MH2 S VBW 10 MH2	D2[1] M1[1]	-32.46 100.00 -24.74 d 237.68	Spectrum Ref Level -1 Att S3LTRG:VID 910k Crw 15 15 -20 d8n -40 d8n -50 d8n -60 d8n -7J d8n -80 d8n	0 00 3Bm 20 db swr	· 30 ms •• VB•	V 3 MHz V 10 MHz	D2[1] N1[1]	444-00000-000	-34.28 d 5.8695 m -24.79 dB 0.000000
Spectrum No <	RBW 3 MH2 S VBW 10 MH2	D2[1] M1[1]	-32.46 100.00 -24.74 d 237.68	Spectrum RefLevel -1 Att SILTRG:VID BLMC INV BLMC INV BLMC INV -30 dBm -40 dBm -50 dBm -60 dBm -7J dBm	0 00 3Bm 20 db swr	· 30 ms •• VB•	V 3 MHz V 10 MHz	D2[1] N1[1]	4404	-34.28 d 5.8695 m -24.79 dB 0.000000
Spectrum Ref Level - 10 00 dBm Att 20 dB = SWI SSL TRG: VID 10k C m 20 dBm 40 dBm 30 dBm TRG -46.000 dBm 50 dBm 70 dBm 20 dBm 40 dBm 50 dBm 70 dBm 90 dBm	RBW 3 MH2 S VBW 10 MH2	D2[1] M1[1]	-32.46 100.00 -24.74 d 237.68	Spectrum Rof Level - 1 Att Salt TRG: VID Salt TRG: VID Salt TRG: VID	0 00 3Bm 20 db swr	· 30 ms •• VB•	V 3 MHz V 10 MHz	D2[1] N1[1]	4 4 1 1	-34.29 d 5.8696 m -24.79 dB 0.000000
Spectrum No <	RBW 3 MH2 S VBW 10 MH2	D2[1] M1[1]	-32.46 100.00 -24.74 d 237.68	Spectrum Ref Level -1 Att S3LTRG:VID 910k Crw 15 15 -20 d8n -40 d8n -50 d8n -60 d8n -7J d8n -80 d8n	0 00 3Bm 20 db swr	· 30 ms •• VB•	V 3 MHz V 10 MHz	D2[1] N1[1]		-34.28 d 5.8695 m -24.79 dB 0.000000
pectrum Ref Level - 10 00 :Bm Att 20 db S WI Isk C w :0 dbn	RBW 3 MH2 S VBW 10 MH2	D2[1] M1[1]	-32.46 100.00 -24.74 d 237.68	Spectrum Rof Level - 1 Att Salt TRG: VID Salt TRG: VID Salt TRG: VID	0 00 3Bm 20 db swr	· 30 ms •• VB•	V 3 MHz V 10 MHz	D2[1] N1[1]	4.00 (-34.28 d 5.8695 m -24.79 dB 0.000000

Figure 5(a): Fundamental Emission Pulsed Operation.

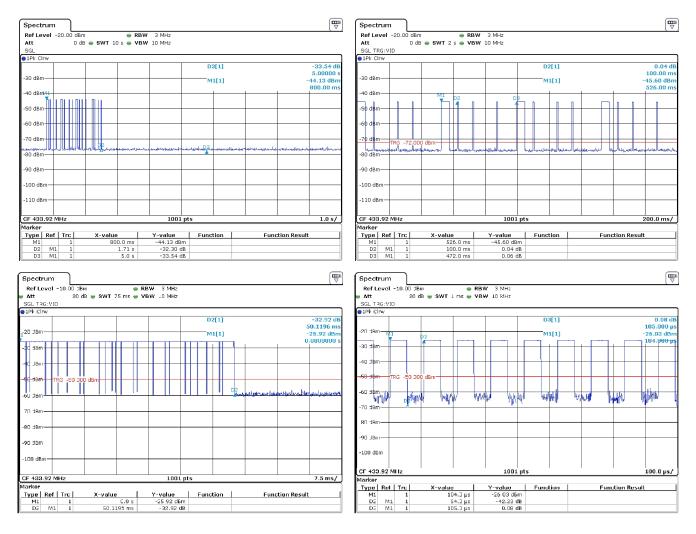


Figure 5(b): Fundamental Emission Pulsed Operation.

4.2.2 Fundamental Emission Bandwidth

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Emission bandwidth (EBW) of the EUT is measured with the device placed in the test mode(s) with the shortest available frame length and minimum frame spacing. The 20 dB EBW is measured as the max-held peak-detected signal when the IF bandwidth is greater than or equal to 1% of the receiver span. For complex modulations other than ASK and FSK, the 99% emission bandwidth per IC test procedures has a different result, and is also reported. The test equipment employed includes RSFSV30001, LOGEMCO01.

Measurement Results The details and results of testing the EUT are summarized in Table 5. Plots showing the measurements made to obtain these values are provided in Figure 6.

Table 5: Fundamental Emission Bandwidth.

	Detector Pk	IF Bandwidth 10 kHz	Video Bandwidth 30 kHz		Test Date: Test Engineer: EUT: EUT Mode: Meas. Distance:	5-Dec-18 Joseph Brunett Schrader G6GB4-F, G6GB4-D Normal 10 cm
						FCC/IC
		Center Frequency	20 dB EBW	EBW Limit	99% OBW	
#	Modulation	(MHz)	(MHz)	(MHz)	(MHz)	
1	ASK+FSK	433.92	0.262	1.0848	0.441	
2				_		

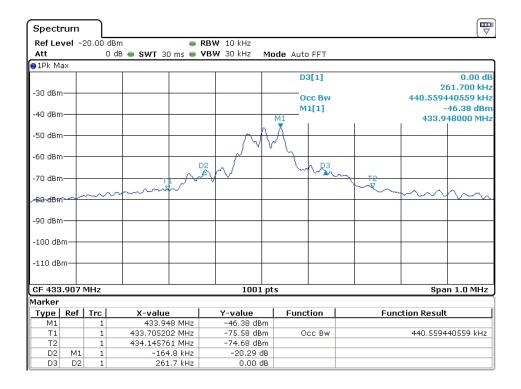


Figure 6: Fundamental Emission Bandwidth.

4.2.3 Fundamental Emission Field Strength

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Fundamental emissions are measured at the regulatory distance on our OATS. The test equipment employed includes RSFSV30001, LOGEMCO01.

Measurement Results The details and results of testing the EUT are summarized in Table 6.

Table 6: Fundamental Emission Field Strength.

	Frequency 25 MHz f	7 Range 1 000 MHz		Det Pk/QPk	IF Bandwi 120 kHz		Video Bandwidth 300 kHz			Test Date: Test Engineer: EUT: EUT Mode: Meas. Distance:		5-Nov-18 Joseph Brunett er G6GB4-F, G6GB4-D CW 3 meters	
													FCC/IC
	Freq.	Ant.	Ant.	Table Azim.	Ant Height	Ka	Kg	E3(Pk)	E3(Avg)*	FCC/IC E3(Pk)	FCC/IC E3(Avg)	Pass	
#	MHz	Used	Pol.	deg	m	dB/m	dB	dBµV/m	dBµV/m	Lim. dBµV/m	Lim. dBµV/m	dB	Comments
1	G6GB4-F Vari	iant											
2	433.9	LOGEMCO01	Η	90.0	1.0	16.3	-1.5	74.6	62.6	92.8	72.8	10.2	end
3	433.9	LOGEMCO01	V	.0	1.3	16.3	-1.5	74.3	62.3	92.8	72.8	10.5	side
4	4 G6GB4-D Variant												
5	433.9	LOGEMCO01	Н	90.0	1.0	16.3	-1.5	72.3	60.3	92.8	72.8	12.5	end
6	433.9	LOGEMCO01	V	.0	1.3	16.3	-1.5	73.4	61.4	92.8	72.8	11.4	side

*Avg data computed from Peak Measured Data and EUT Duty Cycle. EUT in CW mode.

4.3 Unintentional Emissions

4.3.1 Transmit Chain Spurious Emissions

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Spurious radiated emissions measurements are performed to 10 times the highest fundamental operating frequency. The test equipment employed includes RSFSV30001, LOGEMCO01, HQR2TO18S01.

Measurement Results The details and results of testing the EUT are summarized in Table 7.

	Frequency Range		Det		Det IF Bandwidth Video Bandwidth					n	est Date:	5-Nov-18	
	25 MHz f 1 000 MHz Pk/QPk			120 kHz		300 kHz			Test Engineer:		Joseph Brunett		
	f > 1 000 MHz Pk			1 MHz		3 MHz				EUT:	Schrader G6GB4-F, G6GB4-D		
	f > 1 000 MHz Avg		Avg		1 MHz		10kHz			EU	JT Mode:	CW	
											Meas.	Distance:	3 meters
	Transmitter Unintentional Spurious Emissions												FCC/IC
	Freq.	Ant.	Ant.	Table Azim.	Ant Height	Ka	Kg	E3(Pk)	E3(Avg)*	FCC/IC E3lim (Pk)	FCC/IC E3lim (Avg)	Pass	
#	MHz	Used	Pol.	deg	m	dB/m	dB	$dB\mu V/m$	$dB\mu V/m$	$dB\mu V/m$	dBµV/m	dB	Comments
1	G6GB4-F V	ariant											
2	867.8	LOGEMCO01	Н	90.0	1.10	22.2	-2.8	42.3	30.3	72.8	52.8	22.5	end
3	867.8	LOGEMCO01	V	.0	1.20	22.2	-6.9	43.2	31.2	72.8	52.8	21.6	side
4	1301.8	HQR1TO18S01	H/V	max all	1.50	32.4	-3.5	37.8	25.8	74.0	54.0	28.2	max all, noise
5	1735.7	HQR1TO18S01	H/V	max all	1.50	30.4	-4.2	42.8	30.8	74.0	54.0	23.2	max all, noise
6	2169.6	HQR1TO18S01	H/V	max all	1.50	29.8	-4.8	53.4	41.4	74.0	54.0	12.6	max all
7	2603.5	HQR1TO18S01	H/V	max all	1.50	30.1	-5.3	55.8	43.8	74.0	54.0	10.2	max all
8	3037.4	HQR1TO18S01	H/V	max all	1.50	30.7	-5.7	48.7	36.7	74.0	54.0	17.3	max all
9	3471.4	HQR1TO18S01	H/V	max all	1.50	31.3	-6.1	44.8	32.8	74.0	54.0	21.2	max all, noise
10	3905.3	HQR1TO18S01	H/V	max all	1.50	31.8	-6.4	47.9	35.9	74.0	54.0	18.1	max all, noise
11	4339.2	HQR1TO18S01	H/V	max all	1.50	32.1	-6.7	43.1	31.1	74.0	54.0	22.9	max all, noise
12	G6GB4-D V	/ariant											
13	867.8	LOGEMCO01	Н	90.0	1.10	22.2	-2.8	41.8	29.8	72.8	52.8	23.0	end
14	867.8	LOGEMCO01	V	.0	1.20	22.2	-6.9	42.0	30.0	72.8	52.8	22.8	side
15	1301.8	HQR1TO18S01	H/V	max all	1.50	32.4	-3.5	34.7	22.7	74.0	54.0	31.3	max all, noise
16	1735.7	HQR1TO18S01	H/V	max all	1.50	30.4	-4.2	41.2	29.2	74.0	54.0	24.8	max all, noise
17	2169.6	HQR1TO18S01	H/V	max all	1.50	29.8	-4.8	55.3	43.3	74.0	54.0	10.7	max all
18	2603.5	HQR1TO18S01	H/V	max all	1.50	30.1	-5.3	54.1	42.1	74.0	54.0	11.9	max all
19	3037.4	HQR1TO18S01	H/V	max all	1.50	30.7	-5.7	50.9	38.9	74.0	54.0	15.1	max all
20	3471.4	HQR1TO18S01	H/V	max all	1.50	31.3	-6.1	44.3	32.3	74.0	54.0	21.7	max all, noise
21	3905.3	HQR1TO18S01	H/V	max all	1.50	31.8	-6.4	48.5	36.5	74.0	54.0	17.5	max all, noise
22	4339.2	HQR1TO18S01	H/V	max all	1.50	32.1	-6.7	42.3	30.3	74.0	54.0	23.7	max all, noise
23													

Table 7: Transmit Chain Spurious Emissions.

*Avg data computed from Peak Measured Data and EUT Duty Cycle. EUT in CW mode.

Measurement Uncertainty and Accreditation Documents $\mathbf{5}$

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of k = 2.

Table 8: Measurement Uncertainty.

${\bf Measurement} ~ {\bf Uncertainty}^{\dagger}$
$\pm (f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \text{ Hz})$
$\pm 1.9\mathrm{dB}$
$\pm 4.0\mathrm{dB}$
$\pm 5.2\mathrm{dB}$
$\pm 3.7\mathrm{dB}$

[†]Ref: CISPR 16-4-2:2011+A1:2014

United States Department of Commerce National Institute of Standards and Technology	FEDERAL COMMUNICATIONS COMMISSION Laboratory Division 7435 Oakland Nills Read Columbia, MD 21046 July 06, 2018
Certificate of Accreditation to ISO/IEC 17025:2005	National Voluntary Laboratory Accreditation Program 100 Bareau Dirá Gaithersburg, MD 20899-2140
NVLAP LAB CODE: 200129-0 AHD (Amber Helm Development, L.C.) Sister Lakes, MI	Attention: Timothy Rasinski Re: Accreditation of AHD (Andre Halm Development, L.C.) Designmion Number US3318 Test Firm Registration # 639064
is accredited by the National Voluntary Laboratory Accreditation Program for specific services, Ideal on the Scope of Accreditation Program for specific services, Electromagnetic Compatibility & Telecommunications This haboratory is accredited in accreditation with the recognized international Standard (SOUEC 1705:2005 This accreditation the schwise is companies on the defined access and the operation of a shortory gunity management system (only of the Communications) and access and the operation of a shortory gunity management system (only of the Communications) and access and the operation of a shortory gunity (SOUEC Concept 2015-06-00) Meeting Tabas	Dear Sir or Madam: We have been notified by National Voluntary Laboratory Accreditation Program that AHD (Amber Helm Development, L.C.) has been accredited as a testing laboratory. At this time AHD (Amber Helm Development, L.C.) is hereby recognized to perform compliance testing or equipments subject to Declaration Of Conformity (DOC) and Certification of the Commission's Rales. This recognition will expire upon expiration of the accreditation or notification of withdrawal of recognition Ary questions about this recognition should be submitted as an inquiry to the FCC K sowledge Database at www.fcc.gov.hdb. Sincerely,
	George Tannahill Electronics Engineer

Figure 7: Accreditation Documents