Amber Helm Development L.C.

92723 Michigan Hwy-152 Sister Lakes, Michigan 49047 USA Tel: 888-847-8027

EMC Test Report

SCHTP-WR1810TX Issued: December 27, 2018

regarding

USA: CFR Title 47, Part 15.231 (Emissions) Canada: ISED RSS-210v9/GENv5 (Emissions)

for

AG3PD3

Category: TPMS Transmitter

Judgments 15.231/RSS-210v9 Compliant Transmitter Testing Completed: December 21, 2018

Prepared for:

Schrader Electronics

11 Technology Park, Belfast Road, Antrim Northern Ireland BT41 1QS United Kingdom Phone: +44 28 9448 3067, Fax: +44 28 9446 8440 Contact: James Kyle, jakyle@schrader.co.uk

Data Recorded by: Reviewed by: Gordon Helm, EMC-002401-NE h Brunett. Prepared by: Date of Issue: December 27, 2018 ph Brunett, EMC-002790-NE

Revision History

Rev. No.	Date	Details	Revised By
r0	December 27, 2018	Initial Release.	J. Brunett
Contents			
Revision H	listory		2
Table of Co	ontents		2
 1.1 Lab 1.2 Rep 1.3 Sub 1.4 Test 1.5 Lim 1.6 Cop 1.7 End 1.8 Test 	ort Retention		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	ecifications and Procedures t Specification and General Pro-		6 6
-	cription and Declarations.1EUT Configuration.2Modes of Operation.3Variants.4Test Samples.5Functional Exerciser.6Modifications Made.7Production Intent.		7 7 7 7 7 8 <td< td=""></td<>
4.1. 4.1. 4.2 Inte 4.2. 4.2. 4.2. 4.2.	 1 Radiated Test Setup and F 2 Conducted Emissions Test 3 Power Supply Variation . 1 Fundamental Emission Pul 2 Fundamental Emission Bar 3 Fundamental Emission Fiel ntentional Emissions 	Procedures	9
	ement Uncertainty and Ac		18

List of Tables

1	Test Site List.
2	Equipment List.
3	EUT Declarations
4	Fundamental Emission Pulsed Operation
5	Fundamental Emission Bandwidth.
6	Fundamental Emission Field Strength.
7	Transmit Chain Spurious Emissions
8	Measurement Uncertainty.

List of Figures

1	Photos of EUT.	7
	EUT Test Configuration Diagram.	
	Radiated Emissions Diagram of the EUT.	
4	Radiated Emissions Test Setup Photograph(s))
5	Fundamental Emission Pulsed Operation.	3
5	Fundamental Emission Pulsed Operation.	1
6	Fundamental Emission Bandwidth.	5
7	Accreditation Documents	3

1 Test Report Scope and Limitations

1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: 3161A and 24249). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until December 2028.

1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

1.4 Test Data

This test report contains data included within the laboratories scope of accreditation.

1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C..

1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Table 1: Test Site List.							
Description	Location	Quality Num.					
OATS (3 meter)	3615 E Grand River Rd., Williamston, Michigan 48895	OATSC					

1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 2. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards.

Table 2: Equipment List.

Description	Manufacturer/Model	\mathbf{SN}	Quality Num.	Last Cal By / Date Due
Biconical	EMCO / 93110B	9802-3039	BICEMCO01	Keysight / Aug-2019
Log Periodic Antenna	EMCO / 3146	9305 - 3614	LOGEMCO01	Keysight / Aug-2019
BNC-BNC Coax	WRTL / $RG58/U$	001	CAB001-BLACK	AHD / Mar-2019
BNC-BNC Coax	WRTL / $RG58/U$	001	CAB002-BLACK	AHD / Mar-2019
3.5-3.5MM Coax	PhaseFlex / PhaseFlex	001	CAB015- PURPLE	AHD / Mar-2019
Spectrum Analyzer	Rohde & Schwarz / FSV30	101660	RSFSV30001	RS / Apr-2019
Quad Ridge Horn	Singer / A6100	C35200	HQR1TO18S01	Keysight / Aug-2019

2 Test Specifications and Procedures

2.1 Test Specification and General Procedures

The ultimate goal of Schrader Electronics is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Schrader Electronics AG3PD3 for compliance to:

Country/Region	Rules or Directive	Referenced Section(s)
United States	Code of Federal Regulations	CFR Title 47, Part 15.231
Canada	ISED Canada	ISED RSS-210v9/GENv5

It has been determined that the equipment under test is subject to the rules and directives above at the date of this testing. In conjunction with these rules and directives, the following specifications and procedures are followed herein to demonstrate compliance (in whole or in part) with these regulations.

ANSI C63.4:2014	"Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" $$
ANSI C63.10:2013	"American National Standard of Procedures for Compliance Testing of Unli- censed Wireless Devices"
TP0102RA	"AHD Internal Document TP0102 - Radiated Emissions Test Procedure"
ISED Canada	"The Measurement of Occupied Bandwidth"

Date: December 27, 2018

3 Configuration and Identification of the Equipment Under Test

3.1 Description and Declarations

The equipment under test is a UHF transmitter for automotive tire pressure monitoring. The EUT is approximately $6.5 \ge 6 \ge 1.5$ cm in dimension, and is depicted in Figure 1. It is powered by 3 VDC Lithium cell battery. In use, this device is permanently installed in the tire of a motor vehicle. Table 3 outlines provider declared EUT specifications.

Figure 1: Photos of EUT.

Table 5: LUI Declarations	Table	3:	EUT	Declarations.
---------------------------	-------	----	-----	---------------

General Declarations			
Equipment Type:	TPMS Transmitter	Country of Origin:	United Kingdom
Nominal Supply:	3 VDC	Oper. Temp Range:	Not Declared
Frequency Range:	314.9 MHz	Antenna Dimension:	Not Declared
Antenna Type:	Valve Stem	Antenna Gain:	-26 dBi (declared)
Number of Channels:	1	Channel Spacing:	Not Applicable
Alignment Range:	Not Declared	Type of Modulation:	ASK
United States			
FCC ID Number:	MRXAG3PD3	Classification:	DSC
Canada			
IC Number:	2546A-AG3PD3	Classification:	Remote Control Device, Ve- hicular Device

3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 2.

3.1.2 Modes of Operation

This device is capable of three key modes of operation. Upon manually activated LF interrogation (through the use of special LF tool at a vehicle dealership), the EUT responds with a single transmission containing a number of frames used to configure the device with the vehicle. When the EUT is placed in the vehicle tire and the vehicle drives, it can, in the worst case, periodically transmit where the duration of each transmission is always less than 1 second and the silent period between transmissions is at least 30 times the duration of the transmission, and never less than 10

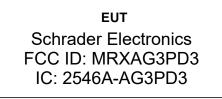


Figure 2: EUT Test Configuration Diagram.

seconds. (See duty cycle table and operational description exhibit for details.) In the case of an emergency condition (delta Pressure), the EUT will transmit tire pressure and temperature information throughout the duration of the condition.

3.1.3 Variants

There is only a single variant of the EUT, as tested.

3.1.4 Test Samples

Four samples in total were provided; three normal operating and one un-potted for photos. The normal operating samples were tested for LF activation response using an LF diagnostic tool provided by the manufacturer, where shaken to activate normal drive mode, and were placed into CW mode via a manufacturer LF tool.

3.1.5 Functional Exerciser

Normal operating EUT functionality was verified by observation of transmitted signal.

3.1.6 Modifications Made

There were no modifications made to the EUT by this laboratory.

3.1.7 Production Intent

The EUT appears to be a production ready sample.

3.1.8 Declared Exemptions and Additional Product Notes

The EUT is permanently installed in a transportation vehicle. As such, digital emissions are exempt from US and Canadian digital emissions regulations (per FCC 15.103(a) and IC correspondence on ICES-003).

The EUT also employs some modes of operation that alert the vehicle user of sudden changes in tire pressure. Such alert modes fall under FCC 15.231(a)(4), and may operate during the pendency of the alarm condition and do not require further testing. A detailed list of all operating modes is included in the Description of Operation exhibit included in this application.

4 Emissions

4.1 General Test Procedures

4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 3. All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

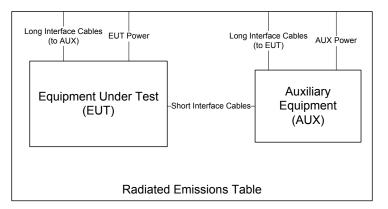


Figure 3: Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broadband probes are used depending on the regulations. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, the broadband probes employed are 10cm diameter single-axis shielded transducers and measurements are repeated and summed over three axes.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4×5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to $dB\mu V/m$ at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

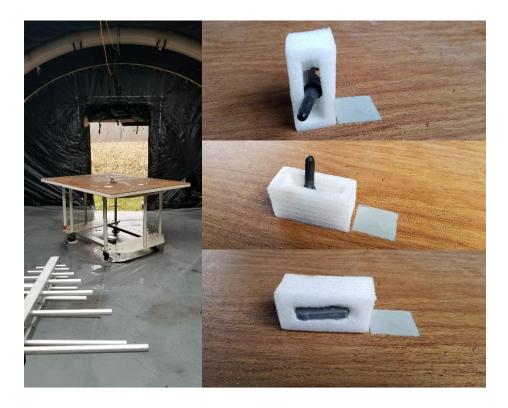


Figure 4: Radiated Emissions Test Setup Photograph(s).

4.1.2 Conducted Emissions Test Setup and Procedures

The EUT is not subject to measurement of power line conducted emissions as it is powered solely by its internal battery.

4.1.3 Power Supply Variation

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

In the case the EUT is designed for operation from a battery power source, the extreme test voltages are evaluated over the range specified in the test standard; no less than $\pm 10\%$ of the nominal battery voltage declared by the manufacturer. For all battery operated equipment, worst case intentional and spurious emissions are re-checked employing a new (fully charged) battery.

2

4.2 Intentional Emissions

4.2.1 Fundamental Emission Pulsed Operation

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Duty cycle is reported for all relevant modes of operation. The test equipment employed includes RSFSV30001, LOGEMCO01.

Measurement Results The details and results of testing the EUT are summarized in Table 4. Plots showing the measurements made to obtain these values are provided in Figure 5.

		Detector Pk	Span 0	IF Bandwidth 3 MHz		Bandwidth) MHz	Test Date: Test Engineer: EUT: EUT Mode: Meas. Distance:	Joseph Brunett Schrader AG3PD3 Modulated		
		Overall Transmission Internal Frame Characteristics								
Frequency (MHz)	EUT Test Mode*	Min. Repetition Rate (sec)	Max. No. of Frames	Total Transmission Length (sec)	Max. Frame Length (ms)	Min. Frame Period (ms)	Frame Encoding	Compute	d Duty Cycle (dB)	
314.9	Drive Mode (see Figure 5(b))	60.8	6	0.779	28.440	116.0	In Drive (Roll) mode the EUT transmits 6 ASK frames every 60.8 seconds, with 116 ms minimum inter-frame spacing. Only a single 28.44ms ASK frame occurs in a 100 ms window with 0.120 ms / 0.238 ms duty.	14.3	-16.9	
314.9	LF Manual Activated (see Figure 5(a))	single	16	2.12	28.410	116.0	When manually activated by LF service tool, the EUT transmits 16 ASK frames in 2.12 seconds. Only a single 28.41 ms ASK frame may occur in a given 100ms window with .120 ms /0.238 ms duty.	13.7	-17.2	

Table 4: Fundamental Emission Pulsed Operation.

Example Calculation: Worst Case Duty (%) = (28.44 ms x (0.120 ms / 0.238 ms) / 100 ms) x 100 = 14.6 % = -16.9 dB Field Strength Duty

Ē Spectrum Spectrum Ref Level 20.00 dBm Att 40 dB Ref Level 10.00 dBm Att 20 dB SGL TRG: SGL ●1Pk Clrw 1Pk Cirv D3[1] -23.15 (D2[1] -0.01 d 116.00 m 14.49 dBn 428.00 m 5.00000 LO dBm -14.17 dB 490.00 m M1[1] M1[1] l dBn 10 d8m ŕ 10 <mark>60</mark>n 20 dBm -20 dBm-30 dBm -30 d3n 0 dBm w.RZ. م¥اؤلاسانان 4∩ H⊇r if) d8m l lub 1 he -60 dBm 50 d8n -60 dBm -70 dBm 70 dBm 80 dBm CE 314.9 1001 pts 1001 pts 200.0 ms/ 1.0 s/ CE 314.9 X-value 490.0 ms 2.12 s 5.0 s larkei larkei Type Ref Trc M1 1 1 D2 M1 1 D3 M1 1 Type Ref Trc Y-value -14.17 dBm -23.18 dB -23.15 dB | Function X-value 428.0 ms 116.0 ms 1.572 s Y-value -14.49 dBm -0.01 dB -43.07 dB Function Result | Function Function Result D2 D3 M1 M1 1 Spectrum Spectrum RefLevel 10.00 dBm ● RBW 3 MHz Att 20 dB ● SWT 1 ms ● VBW 10 MHz SGL TRG:VID SGL TRG: VID ⊖1Pk Clr -14.45 dB 0.0000000 -46.26 d 28.4100 m -0.13 dB 238.000 µs -14.20 dBm 239.000 µs M1[1] D3[1] n dBm l dBn D2[1] M1[1] 10 dBm 10 dBm -20 dBm 30 d8n 40 d8m -40.0 50 d8m -60 d8m Shim an way hundrende all her a line of the second sec Walthalachan 70 dBm -70 dBm -80 dBm -80 d8m CF 314.9 MH 1001 pts 100.0 μs/ 1001 pts CF 314.9 3.0 ms, larkei Type Ref Trc Y-value -14.20 dBm -47.08 dB -0.13 dB Marker Function Function Result value 239.0 µs 120.0 µs 238.0 µs Y-value -14.45 dBm -46.26 dB Type Ref Trc Function Function Result X-value M1 D2 D3 1 1 M1 M1 0.0 s 28.41 ms M1 D2 1 M1

MANUAL ACTIVATED TRANSMISSION FROM LF

Figure 5(a): Fundamental Emission Pulsed Operation.

Spectrun	1 🔆									Spectrum	'n								ſ	₩
Ref Level			👄 RBW						(•	Ref Level			RBW							<u> </u>
Att SGL	40 dB	SWT 200	Ds 👄 VBW	10 MHz						Att SGL TRG: V		🖷 SWT 1 🧐	5 👄 VBW 1	0 MHz						
●1Pk Cirw										●1Pk Cirw										
						M1[1]			-10.59 dBm 49.400 s						D3[1]]			0.00	
10 dBm						D2[1]			-0.70 dB	10 dBm					M1[1	1			-9.42 d	IBm
0 dBm									60.808 s	0 d8m									0.00000	00 s
o doni		M1								1	D2	D3								
-10 dBm		Ť			2 			1		~10 dBm—	Ť.	Í								
-20 d8m										-20 dBm										_
										-30 dBm	TRG -31.00	10 dBm								_
-30 dBm										-40 dBm	numental	dermonstown	rempleciella	anner la	madrean ha	سرروسا	menterina D4	cistual laboration and	malaman	(Kaller
-40 d8m-	and the second	مستحصات التاريخ وتحمي	addin and water	raanska Mansanska si s	المهدية المحمد ومنا	allan an a	her manglater manager	ليعتم محروب	and a star of the second s	-40 UBIII										
										-50 dBm										-
-50 d8m										-60 dBm										_
-60 dBm										-70 d8m										
										-70 UBIII										
-70 d8m										CF 314.9 N	1Hz			1001	pts			1	L00.0 m	is/
CF 314.9 N	447			1001	nts				20.0 s/	Marker					1		_			
Marker				1001					20.0 37	Type Re M1	1 Trc 1	X-value	9 0.0 s	<u>Y-value</u> -9.42 dBi	Function	וו	Fun	ction Result		-
Type Re		X-value		Y-value		iction	Fund	ction Res	ult	D2 M			2.0 ms	-0.05 d	iB					
M1 D2 M	1 1		49.4 s 0.808 s	-10.59 dB -0.70 c						D3 D D4 M	2 1 1 1		6.0 ms 9.0 ms	-0.00 d -28.10 d						
Spectrun	ī									Spectrum	'n								ſ	₩
Ref Level	20.00 dBm			3 MHz						Ref Level	10.00 dBr			/ 3 MHz					(♥
Ref Level Att	20.00 dBm 40 dB	swt 30	e RBW ms e VBW						V	Ref Level Att	10.00 dBr 20 di	n B 🖶 SWT 1							(♥
Ref Level	20.00 dBm 40 dB	● SWT 30								Ref Level	10.00 dBr 20 di									
Ref Level Att SGL TRG: V	20.00 dBm 40 dB	● SWT 30				M1[1]			-8.08 dBm	Ref Level Att SGL TRG: V	10.00 dBr 20 di				D3[1]]			-0.13	3 dB
Ref Level Att SGL TRG: V	20.00 dBm 40 dB	● SWT 30				M1[1] D2[1]			-8.08 dBm 0.000000 s -31.29 dB	Ref Level Att SGL TRG: V	10.00 dBr 20 di				D3[1] M1[1			-	-0.13 238.000 14.20 d	3 dB D µs IBm
Ref Level Att SGL TRG:V P1Pk Cirw 10 dBm-	20.00 dBm 40 dB	● SWT 30							-8.08 dBm 0.000000 s	Ref Level Att SGL TRG:V 1Pk Cirw	10.00 dBr 20 di			/ 10 MHz				-	-0.13 238.000	3 dB D µs IBm
Ref Level Att SGL TRG:V 91Pk Cirw	20.00 dBm 40 dB	● SWT 30							-8.08 dBm 0.000000 s -31.29 dB	Ref Level Att SGL TRG:V 1Pk Cirw 0 d8m	10.00 dBr 20 di							-	-0.13 238.000 14.20 d	3 dB D µs IBm
Ref Level Att SGL TRG:V P1Pk Cirw 10 dBm-	20.00 dBm 40 dB	• SWT 30							-8.08 dBm 0.000000 s -31.29 dB	Ref Level Att SGL TRG:V PIPk Cirw O d8m-	10.00 dBr 20 di			/ 10 MHz				-	-0.13 238.000 14.20 d	3 dB D µs IBm
Ref Level Att SGL TRG:V PIPk Cirw 10 dBm	20.00 dBm 40 dB	• SWT 30							-8.08 dBm 0.000000 s -31.29 dB	Ref Level Att SGL TRG:V 1Pk Cirw 0 d8m	10.00 dBr 20 di			/ 10 MHz				-	-0.13 238.000 14.20 d	3 dB D µs IBm
Ref Level Att SGL TRG:V 1Pk Clrw 10 dBm 0 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.00 dBm 40 dB	• SWT 30							-8.08 dBm 0.000000 s -31.29 dB	Ref Level Att SGL TRG:V 1Pk Cirw 0 dBm -10 dBm -20 dBm -30 dBm	I 10.00 dBr 20 dI ID	S • SWT 1		/ 10 MHz				-	-0.13 238.000 14.20 d	3 dB D µs IBm
Ref Level Att SGL TRG:V 1Pk Clrw 10 dBm 0 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.00 dBm 40 dB	• SWT 30							-8.08 dBm 0.000000 s -31.29 dB	Ref Level Att SGL TRG:V IPk Cirw O dBm -10 dBm -20 dBm	10.00 dBr 20 di	S • SWT 1		/ 10 MHz				-	-0.13 238.000 14.20 d	3 dB D µs IBm
Ref Level Att SGL TRG:V 1Pk Clrw 10 dBm 0 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.00 dBm 40 dB	SWT 30							-8.08 dBm 0.000000 s -31.29 dB	Ref Level Att SGL TRG:V 1Pk Cirw 0 dBm -10 dBm -20 dBm -30 dBm	I 10.00 dBr 20 dI ID	S • SWT 1		/ 10 MHz				-	-0.13 238.000 14.20 d	3 dB D µs IBm
Ref Level Att SGL TRG:V 10 dBm 10 dBm 10 dBm 11 120 dBm 130 dBm 130 dBm 130 dBm 14 150 dBm 14 150 dBm 14 150 dBm 150 dBm 1	20.00 dBm 40 dB	• SWT 30							-8.08 dBm 0.000000 s -31.29 dB	Ref Level Att SGL TRG:V 1Pk Cirw 0 d8m -10 d8m -20 d8m -30 d8m -40 d8m	1 10.00 dBr 20 dl ID	8 • SWT 1		D3	M1[1]			-0.13 238.000 14.20 d 239.000	3 dB D µs IBm
Ref Level Att SGL TRG:V 1Pk Clrw 10 dBm 0 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.00 dBm 40 dB	• SWT 30							-8.08 dBm 0.000000 s -31.29 dB	Ref Level Att SGL TRG:V 10 d8m -10 d8m	I 10.00 dBr 20 dI ID	8 • SWT 1		/ 10 MHz	M1[1			-	-0.13 238.000 14.20 d 239.000	3 dB D µs IBm
Ref Level Att SGL TRG:V 10 dBm 10 dBm 10 dBm 11 120 dBm 130 dBm 130 dBm 130 dBm 14 150 dBm 14 150 dBm 14 150 dBm 150 dBm 1	20.00 dBm 40 dB	• SWT 30							-8.08 dBm 0.000000 s -31.29 dB	Ref Level Att SGL TRG:V 9 1Pk Clrw 0 d8m -10 d8m -20 d8m -30 d8m -30 d8m -50 d8m	1 10.00 dBr 20 dl ID	8 • SWT 1		D3	M1[1]			-0.13 238.000 14.20 d 239.000	3 dB D µs IBm
Ref Level Att SGL TRG: V 9 1Pk Cinw 10 dBm 0 dBm 12 dBm 12 dBm 13 dBm 14 m 13 dBm 14 m 15 dBm 15 dBm -50 dBm	20.00 dBm 40 dB	• SWT 30							-8.08 dBm 0.000000 s -31.29 dB	Ref Level Att SGL TRG:V 10 d8m -10 d8m	1 10.00 dBr 20 dl ID	8 • SWT 1		D3	M1[1]			-0.13 238.000 14.20 d 239.000	3 dB D µs IBm
Ref Level Att SGL TRG:V PIPK CITW 10 dBm 0 dBm 11 dB m 12 dB m 12 dB m 13 dB m 13 dB m 14 dB m 15 dB m 15 dB m -50 dBm	20.00 dBm 40 dB	• SWT 30							-8.08 dBm 0.000000 s -31.29 dB	Ref Level Att SGL TRG: V SGL TRG: V I dam -10 dbm -20 dbm -30 dbm -60 dbm -70 dbm -80 dbm	TRG -40.00	8 • SWT 1			M1[1]			-0.13 238.000 14.20 d 239.000	3 dB D µs IBm D µs
Ref Level Att SGL TRG: V SGL TRG: V 0 dBm 0 dBm 10 dBm 0 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm +0 dB ID	• SWT 30							-9.09 dBm 0.0000000 s -91.29 dB 28.4400 ms	Ref Level Att SGL TRG: V SGL TRG: V I JPk Cirw 0 dBm -20 dBm -30 dBm -60 dBm -70 dBm -80 dBm -80 dBm	TRG -40.00	8 • SWT 1		D3	M1[1]			-0.13 238.000 14.20 d 239.000	3 dB D µs IBm D µs
Ref Level Att SGL TRG: V SGL TRG: V 10 dBm 0 dBm 10 dBm 20 dBm 42 dBm 42 dBm 50 dBm -50 dBm	20.00 dBm +0 dB ID	• SWT 30							-8.08 dBm 0.000000 s -31.29 dB	Ref Level Att SGL TRG:V SGL TRG:V 0 d8m -10 d8m -20 d8m -30 d8m -60 d8m -70 d8m -80 d8m -80 d8m -70 d8m -80 d8m -80 d8m -70 d8m -80 d8m	10.00 dBr 20 dl ID	8 • SWT 1			M1[1	u Muning			-0.13 238.000 14.20 d 239.000	3 dB D µs IBm D µs
Ref Level Att SGL TRG: V SGL TRG: V 0 dBm 10 dBm 0 dBm 1 10 dBm 30 dBm -50 dBm -60 dBm -70 dBm	20.00 dBm +0 dB ID TRG -31.00 TRG -31.00 TRG -11.00 TRG -11.00 TRG -11.00 TRG -11.00 TRG -11.00 TRG -11.00	• SWT 30	ms • VBW	10 MHz	. pts			tion Result	-9.09 dBm 0.0000000 5 -91.29 dB 28.4400 ms	Ref Level Att SGL TRG:V SGL TRG:V 0 d8m -10 d8m -20 d8m -30 d8m -60 d8m -70 d8m -80 d8m -70 d8m -80 d8m -70 d8m -80 d8m -70 d8m -80 d8m -80 d8m	10.00 dBr 20 dl ID TRG -40.00 WyWWW	X-volute 22	тя • УВУ	10 MHz	m Function	u Muning	Fun		-0.13 238.000 14.20 d 239.000	3 dB D µs IBm D µs
Ref Level Att SGL TRG: V 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 12 dBm 13 dBm 14 dBm 15 dBm -50 dBm -60 dBm -70 dBm CF 314.9 N Marker	20.00 dBm 40 dB ID 10 10 10 10 10 10 10 10 10 10) dBm	ms • VBW	10 MHz				tion Rest	-9.09 dBm 0.0000000 5 -91.29 dB 28.4400 ms	Ref Level Att SGL TRG: V SGL TRG: V I d8m -10 d8m -20 d8m -30 d8m -60 d8m -80 d8m -80 d8m -70 d8m -80 d8m -70 d8m -10 d8m -70 d8m -80 d8m -97 d8m -97 d8m	1 10.00 dBr 20 dl D TRG -40.00 W/W/W/ 1Hz f Trc 1 1 1	X-value 22 1		7 10 MHz	Pts	u Muning	Fun		-0.13 238.000 14.20 d 239.000	3 dB D µs IBm D µs

PERIODIC TRAMISSION FROM DRIVE (ROLL) IN VEHICLE.

Figure 5(b): Fundamental Emission Pulsed Operation.

ASK

 $\frac{1}{2}$

314.90

4.2.2 Fundamental Emission Bandwidth

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Emission bandwidth (EBW) of the EUT is measured with the device placed in the test mode(s) with the shortest available frame length and minimum frame spacing. The 20 dB EBW is measured as the max-held peak-detected signal when the IF bandwidth is greater than or equal to 1% of the receiver span. For complex modulations other than ASK and FSK, the 99% emission bandwidth per IC test procedures has a different result, and is also reported. The test equipment employed includes RSFSV30001, LOGEMCO01.

Measurement Results The details and results of testing the EUT are summarized in Table 5. Plots showing the measurements made to obtain these values are provided in Figure 6.

Table 5: Fundamental Emission Bandwidth.

					Test Date:	21-Dec-18	
	Detector	IF Bandwidth	Video Bandwidth		Test Engineer:	Joseph Brunett	
	Pk	10 kHz	30 kHz		EUT:	Schrader AG3PD3	
					EUT Mode:	Normal	
					Meas. Distance:	10 cm	
						FCC	-
		Center Frequency	20 dB EBW	EBW Limit	99% OBW		
#	Modulation	(MHz)	(MHz)	(MHz)	(MHz)		
							2

0.78725

0.687

0.274

Spect				- 0							(⊽
Att	vei u	.00 dBm		_	3W 10 kHz 3W 30 kHz						
		15 UB	■ SW1 3	Ums 💻 🖬	SW BURHZ	Mode	Auto FFT				
∋1Pk Ma	3X										
							D3[1]				-0.04 dE 73.700 kH;
-10 dBm			-			<u>M1</u>	Occ Bw				587313 kH
						A -	M1[1]				-12.87 dBn
-20 dBm			-			//∖					00000 MH:
					~ I	(0		1		
-30 dBm						+	<u></u>				
							~		_	т9	
-40 dBm		1		~~~					~	~ V	
-50 dBm			~~~~								~~~~
-30 0811											
-60 dBm											
00 0011											
-70 d8m			_								
-80 d8m			-	_		+					
-90 dBm				-		+					
CF 314	.9 MF	iz	_		100)1 pt:	s			Spa	n 1.0 MHz
Aarker						<u> </u>					
Type	Ref	Trc	X-va	lue	Y-value	1	Function		Functi	on Resul	t
M1		1	3	14.9 MHz	-12.87 c	-12.87 dBm					
Τ1		1		4326 MHz	-45.37 c		Occ Bw			687.3126	587313 kHz
Т2		1		1638 MHz	-43.47 0						
D2	M1	1		136.9 kHz	-20,52						
D3	D2	1		273.7 kHz	-0.04	dB					

Figure 6: Fundamental Emission Bandwidth.

4.2.3 Fundamental Emission Field Strength

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Fundamental emissions are measured at the regulatory distance on our OATS. The test equipment employed includes RSFSV30001, LOGEMCO01.

Measurement Results The details and results of testing the EUT are summarized in Table 6.

Table 6: Fundamental Emission Field Strength.

	Frequency Range 25 MHz f 1 000 MHz		Det IF Band Pk/QPk 120 ki								Test Date:21-Dec-18Test Engineer:Joseph BrunettEUT:Schrader AG3PD3EUT Mode:CWMeas. Distance:3 meters		Joseph Brunett Schrader AG3PD3 CW
													FCC/IC
	Freq.	Ant.	Ant.	Table Azim.	Ant Height	Ka	Kg	E3(Pk)	E3(Avg)*	FCC/IC E3(Pk)	FCC/IC E3(Avg)	Pass	
#	MHz	Used	Pol.	deg	m	dB/m	dB	$dB\mu V/m$	$dB\mu V/m$	Lim. dBµV/m	Lim. dBµV/m	dB	Comments
1													
2	314.9	LOGEMCO01	Н	90.0	1.0	14.1	-1.2	82.6	65.7	87.7	67.7	2.0	flat
3	314.9	LOGEMCO01	V	.0	1.5	14.1	-1.2	77.1	60.2	87.7	67.7	7.5	end
4													
5													
6													

*Avg data computed from Peak Measured Data and EUT Duty Cycle. EUT in CW mode.

4.3 Unintentional Emissions

4.3.1 Transmit Chain Spurious Emissions

Test Setup & Procedure The test equipment and facilities were setup in accordance with the standards and procedures listed in Section 2.1. Environmental conditions were set at the appropriate temperature and thermal balance was checked with a thermocouple based probe. Spurious radiated emissions measurements are performed to 10 times the highest fundamental operating frequency. The test equipment employed includes RSFSV30001, LOGEMCO01, HQR2TO18S01.

Measurement Results The details and results of testing the EUT are summarized in Table 7.

	Frequency Range		Det			IF Bandwidth		Video Bandwidth				est Date:	
	25 MHz f 1 000 MHz		Pk/QPk			120 kHz		300 kHz			Test 1	Engineer	1
	$f>1\ 000\ MHz$		Pk			1 MHz		3 MHz				EUT:	
	f > 1 000 MHz		Avg			1 MHz		10kHz				JT Mode:	
											Meas.	Distance	3 meters
	Tra							purious Em				FCC/IC	
	Freq.	Ant.	Ant.	Table Azim.	Ant Height	Ka	Kg	E3(Pk)	E3(Avg)*	FCC/IC E3lim (Pk)	FCC/IC E3lim (Avg)	Pass	
#	MHz	Used	Pol.	deg	m	dB/m	dB	$dB\mu V\!/\!m$	$dB\mu V\!/\!m$	$dB\mu V/m$	dBµV/m	dB	Comments
1				-									
2	629.8	LOGEMCO01	Н	90.0	1.10	19.5	-2.1	48.0	31.1	74.0	54.0	22.9	flat
3	629.8	LOGEMCO01	v	170.0	1.00	19.5	-5.7	47.6	30.7	74.0	54.0	23.3	end
4	944.7	LOGEMCO01	Н	90.0	1.00	23.1	-3.0	42.8	25.9	74.0	54.0	28.1	flat
5	944.7	LOGEMCO01	v	220.0	1.40	23.1	-7.2	41.8	24.9	74.0	54.0	29.1	end
6	1259.6	HQR1TO18S01	H/V	max all	1.50	32.8	-3.5	46.1	29.2	74.0	54.0	24.8	max all
7	1574.5	HQR1TO18S01	H/V	max all	1.50	30.9	-4.0	50.0	33.1	74.0	54.0	20.9	max all
8	1889.4	HQR1TO18S01	H/V	max all	1.50	30.1	-4.4	44.9	28.0	74.0	54.0	26.0	max all, noise
9	2204.3	HQR1TO18S01	H/V	max all	1.50	29.8	-4.8	46.9	30.0	74.0	54.0	24.0	max all
10	2519.2	HQR1TO18S01	H/V	max all	1.50	30.0	-5.2	50.1	33.2	74.0	54.0	20.8	max all
11	2834.1	HQR1TO18S01	H/V	max all	1.50	30.4	-5.5	54.2	37.3	74.0	54.0	16.7	max all
12	3149.0	HQR1TO18S01	H/V	max all	1.50	30.8	-5.8	54.5	37.6	74.0	54.0	16.4	max all
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
· · · ·								•					• • • • • • • • • • • • • • • • • • • •

Table 7: Transmit Chain Spurious Emissions.

*Avg data computed from Peak Measured Data and EUT Duty Cycle. EUT in CW mode.

5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of k = 2.

Table 8: Measurement Uncertainty.

Measured Parameter	${\bf Measurement} ~ {\bf Uncertainty}^{\dagger}$
Radio Frequency	$\pm (f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \text{ Hz})$
Conducted Emm. Amplitude	$\pm 1.9\mathrm{dB}$
Radiated Emm. Amplitude $(30 - 200 \text{ MHz})$	$\pm 4.0\mathrm{dB}$
Radiated Emm. Amplitude $(200 - 1000 \text{ MHz})$	$\pm 5.2\mathrm{dB}$
Radiated Emm. Amplitude $(f > 1000 \text{ MHz})$	$\pm 3.7\mathrm{dB}$

[†]Ref: CISPR 16-4-2:2011+A1:2014

United States Department of Commerce National Institute of Standards and Technology	FEDERAL COMMUNICATIONS COMMISSION Laboratory Division 7455 Oakkand Milks Read Columbia, MD 21846 July 06, 2018 National Voluntary Laboratory Accreditation Program 100 Barcas Drive, Gaitborburg, MD 20899-2140
NVLAP LAB CODE: 200129-0 AHD (Amber Helm Development, L.C.) Sister Lakes, MI	Attention: Timothy Rasinski Re: Accreditation of AHD (Amber Helm Development, L.C.) Designation Number US3348 Test Firm Registration #: 639064
is accredited by the National Voluntary Laboratory Accreditation Program for specific services, Island on the Scope 3 Accreditation, for. Electromagnetic Compatibility & Telecommunications This isboratory is accredited in accredited in accredited in the recognized international Standard (SOUEC 1025.2005, The accredited in accreditation behavior is applied to be recognized international Standard (SOUEC 1025.2005, The accredited in accreditation behavior is applied to CLAC VAP Communicate stated January 2008). 20.6407402 (conselp 2019-05-00 Interna Latus	Dear Sir or Madami: We have been notified by National Voluntary Laboratory Accreditation Program that AHD (Amber Helm Development, L.C.) has been accredited as a testing laboratory. At this time, AHD (Amber Helm, Development, L.C.) is hereby recognized to perform compliance testing on equipment subject to Declaration Of Conformity (DOC) and Certification of the Commission's Rules. This recognition will expire upon expiration of the accreditation or notification of withdrawal of recognition Ary questions about this recognition should be submitted as an inquiry to the FCC Knowledge Database at www.lcc.cov/kub. Sincerely,
	George Tannabill Electronics Engineer

Figure 7: Accreditation Documents