

FCC TEST REPORT (RFID)

REPORT NO.: RF130902E05F

- MODEL NO.: xAPT-103PUW, FD410, xCE_T103PUW
 - FCC ID: MQT-XAPT103PUWT
- **RECEIVED:** Sep. 02, 2013
 - **TESTED:** Sep. 09 to 18, 2013 ; Aug. 03 to 25, 2016
 - **ISSUED:** Sep. 09, 2016

APPLICANT: XAC AUTOMATION CORP.

ADDRESS: 4F, No. 30, INDUSTRY E. RD. IX, SCIENCE-BASED INDUSTRIAL PARK, HSINCHU, TAIWAN

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

- **LAB ADDRESS :** E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
- **TEST LOCATION (1):** E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
- **TEST LOCATION (2):** No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification. This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

RELE	RELEASE CONTROL RECORD4				
1	CERTIFICATION	5			
2	SUMMARY OF TEST RESULTS	6			
2.1	MEASUREMENT UNCERTAINTY	7			
3	GENERAL INFORMATION	8			
3.1	GENERAL DESCRIPTION OF EUT				
3.2	DESCRIPTION OF TEST MODES				
3.2.1 3.3	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL GENERAL DESCRIPTION OF APPLIED STANDARDS				
3.3 3.4	DESCRIPTION OF SUPPORT UNITS				
3.5	CONFIGURATION OF SYSTEM UNDER TEST				
4	TEST PROCEDURES AND RESULTS	15			
4.1	CONDUCTED EMISSION MEASUREMENT	17			
4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT				
4.1.2 4.1.3	TEST INSTRUMENTS TEST PROCEDURES				
4.1.4	DEVIATION FROM TEST STANDARD	18			
4.1.5	TEST SETUP	18			
4.1.6	EUT OPERATING CONDITIONS	19			
4.1.7					
4.2	RADIATED EMISSION & OCCUPIED BANDWIDTH EASUREMENT				
4.2.1 4.2.2	LIMITS OF RADIATED EMISSION MEASUREMENT TEST INSTRUMENTS				
4.2.2	TEST PROCEDURES				
4.2.4	DEVIATION FROM TEST STANDARD				
4.2.5	TEST SETUP EUT OPERATING CONDITIONS	26			
4.2.6					
4.2.7	TEST RESULTS				
4.3	20DB BANDWIDTH				
4.3.1	LIMITS OF 20DB BANDWIDTH MEASUREMENT				
4.3.2 4.3.3	TEST INSTRUMENTS				
4.3.4	TEST RESULTS				
4.4	FREQUENCY STABILITY				
4.4.1	LIMITS OF FREQUENCY STABILITY MEASUREMENT				
4.4.2	TEST INSTRUMENTS	33			
4.4.3	TEST PROCEDURE				
4.4.4	DEVIATION FROM TEST STANDARD	35			

4.4.6	TEST SETUP EUT OPERATING CONDITION TEST RESULTS	.35
	INFORMATION ON THE TESTING LABORATORIES	
6	APPENDIX-A- MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	.38

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF130902E05F	Original release	Sep. 09, 2016

1 CERTIFICATION

PRODUCT :	Terminal
BRAND NAME :	XAC, First Data
MODEL NO. :	xAPT-103PUW, FD410, xCE_T103PUW
TEST SAMPLE :	ENGINEERING SAMPLE
APPLICANT :	XAC AUTOMATION CORP.
TESTED :	Sep. 09 to 18, 2013 ; Aug. 03, 2016
STANDARDS:	FCC Part 15, Subpart C (Section 15.225)
	FCC Part 15, Subpart C (Section 15.215)
	ANSI C63.10: 2013

The above equipment (Model: xAPT-103PUW) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Midoli Peng / Specialist	,	Date:	Sep. 09, 2016
Approved by :	May Chen / Manager	,	Date:_	Sep. 09, 2016

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

47 CFR FCC Part 15, Subpart C (SECTION 15.225, 15.215)						
FCC Clause	Test Item	Result	Remarks			
15.207	Conducted emission test	PASS	Meet the requirement of limit. Minimum passing margin is -14.89dB at 0.17390MHz.			
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz	PASS	Meet the requirement of limit. Minimum passing margin is -54.1dB at 13.56MHz			
15.225 (b)	The field strength of any emissions within the bands 13.410-13.553 MHz and 13.567-13.710 MHz	PASS	Meet the requirement of limit.			
15.225 (c)	The field strength of any emissions within the bands 13.110-13.410 MHz and 13.710-14.010 MHz	PASS	Meet the requirement of limit.			
The field strength of any emissions appearing outside of the 13.110-14.010 MHz band		PASS	Meet the requirement of limit. Minimum passing margin is -1.7dB at 40.67MHz			
15.225 (e)	The frequency tolerance	PASS	Meet the requirement of limit.			
15.215 (c)	20dB Bandwidth	PASS	Meet the requirement of limit.			

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted Emission	2.98 dB
Radiated Emission (966 Chamber No. H)	5.46 dB
Radiated Emission (966 Chamber No. G)	5.37 dB

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Terminal			
MODEL NO.	xAPT-103PUW, FD410, xCE_T103PUW			
POWER SUPPLY	DC 7.4V from Battery DC 12V from power adapter			
MODULATION TYPE	ASK			
OPERATING FREQUENCY	13.56MHz			
NUMBER OF CHANNEL	1			
ANTENNA TYPE	Please see NOTE			
DATA CABLE	NA			
I/O PORTS	Refer to user's manual			
ASSOCIATED DEVICES	Adapter (Optional) x 1			

NOTE:

1. The EUT could be supplied with DC 7.4V battery or power adapter as the following table:

Battery				
Brand	Model No.	Spec.		
Foxlink	FD400	D400 DC 7.4V, 2300mAh (17.02Wh)		
Adapter (only for	test, not for sale)			
Brand	Model No.	Spec.		
DELTA ADP-36JH B AC I/P: DC O/F		AC I/P: 100-240V, 50-60Hz, 1.0A AC input cable: Unshielded, 1.85m DC O/P: 12V, 3A DC output cable: Unshielded, 1.8m with one core		

2. All models are listed as below table:

Brand	Model	Difference
XAC	xAPT-103PUW	
XAC	xCE_T103PUW	For marketing requirement
First Data	FD410	

From the above models, model: xAPT-103PUW was selected as representative model for the test and its data was recorded in this report.

3. The EUT is a WLAN, RFID, GSM and WCDMA device.

4. The antennas provided to the EUT, please refer to the following table:

GPRS, EDGE, WCDMA, HSDPA and HSUPA Antenna Spec.						
Brand Model No.			Antenna Type	Antenna Connector	Gain(dBi)	Frequency range (MHz)
Ethertronics Ir	۱C	T-000084-01	FPCB	IPEX	0.14	850
		1 000004 01	11.05		2.57	1900
WLAN Antenna	Spe	с.				
Brand		Model No.	Antenna Type	Antenna Connector	Gain(dBi)	Frequency range (MHz)
ACX	AT3216-T2R4PAA		Chip	NA	1.5	2400-2500
RFID Antenna S	RFID Antenna Spec.					
Brand	Brand Model No. Antenna Type Antenna Gain(dBi) Frequency range (MHz)					
XAC PCB ENIG ANT BOARD (W/KEY) 8006(ROHS) Loop NA 13 13.56						
5. WLAN, RFID, GSM and WCDMA technology cannot transmit at same time.						

6. The EUT is pre-tested under following test modes :

Mode B	Adapter mode
Mode A	Battery mode
Pre-test Mode	Description

For the above modes, the worse radiated emissions test was found in **Mode B**. Therefore only the test data of the modes were recorded in this report.

7. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

3.2 DESCRIPTION OF TEST MODES

The EUT only has 1 channel.

CHANNEL	FREQUENCY (MHz)			
1	13.56			

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

	EUT		AP	PLICABLE TO			
'	CONFIGURE MODE	PLC	RE (Below 30MHz)	RE (Above 30MHz)	BW	FS	DESCRIPTION
	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
	BW	: 20dB Band		FS: Fre	diated Emiss equency Stab	-	
			D EMISSION				
b	etween ava	ilable mo	dulations and	antenna ports	(if EUT wi	th antenna	all possible comb diversity architec
] F Г	-ollowing ch AVAILABLE		vas (were) sel				ow.
				CHANNEL		TION TYPE .SK	-
			ST(BELOW 30		orst-case r	node from	all possible comb
							ersity architecture)
				1 (• •
	ollowing ch	annel(s)	vas (were) sel	1 (• •
	Following ch AVAILABLE	annel(s)	was (were) sel	ected for the f	inal test as MODULA	iisted be	• •
	ollowing ch	annel(s)	was (were) sel	ected for the f	inal test as MODULA	listed be	• •
] F	Following ch AVAILABLE 1	annel(s) v CHANNEL	was (were) sel	ected for the f	inal test as MODULA	iisted be	• •
] F ADIA	Following ch AVAILABLE 1 ATED EMIS Pre-Scan ha	CHANNEL CHANNEL SION TES	TESTED	ected for the f CHANNEL 1 MHz): termine the w	inal test as MODULA A orst-case r	ilisted be FION TYPE SK node from	• •
] F ADIA] F	Following ch AVAILABLE 1 ATED EMIS Pre-Scan ha petween ava	SION TES s been cc	TESTED	ected for the f CHANNEL 1 MHz): termine the w nna ports (if E	inal test as <u>MODULA</u> A orst-case r UT with ar	ilisted be <u>FION TYPE</u> SK node from itenna div	ow.
] F ADI/] F b	Following ch AVAILABLE 1 ATED EMIS Pre-Scan ha petween ava	SION TES SION Sion Sion Sion Sion Sion Sion Sion	TESTED TESTED ST(ABOVE 30 anducted to de dulations anter vas (were) sel	ected for the f CHANNEL 1 MHz): termine the w nna ports (if E	inal test as MODULA A orst-case r UT with ar inal test as	ilisted be <u>FION TYPE</u> SK node from itenna div	ow.
] F ADI/] F b	Following ch AVAILABLE 1 ATED EMIS Pre-Scan ha between ava Following ch	SION TES SION TES s been cc uilable mo annel(s) v CHANNEL	TESTED TESTED ST(ABOVE 30 onducted to de dulations anter was (were) sel TESTED	ected for the f CHANNEL 1 MHz): termine the w nna ports (if E ected for the f	inal test as MODULA A orst-case r UT with ar inal test as MODULA	s listed be FION TYPE SK mode from atenna div s listed be	ow.
ADI/ ADI/ 5 5 6 6 6 6 6	AVAILABLE ATED EMIS Pre-Scan ha between ava Following ch	SION TES s been co ilable mo cannel(s) v	TESTED TESTED ST(ABOVE 30 onducted to de dulations anter was (were) sel TESTED	ected for the f CHANNEL 1 CMHz): termine the w nna ports (if E ected for the f CHANNEL	inal test as MODULA A orst-case r UT with ar inal test as MODULA	ilisted be <u>FION TYPE</u> SK node from itenna div ilisted be FION TYPE	ow.
ADI/ ADI/ A F OdB	Following ch AVAILABLE 1 ATED EMIS Pre-Scan ha between ava Following ch AVAILABLE 1 BANDWIDT Pre-Scan ha	CHANNEL SION TES S been co ilable mo annel(s) v CHANNEL FH: s been co	AND	ected for the f CHANNEL 1 CMHz): termine the w nna ports (if E ected for the f CHANNEL 1 termine the w	inal test as <u>MODULA</u> orst-case r UT with ar inal test as <u>MODULA</u> A orst-case r	s listed be <u>FION TYPE</u> SK node from itenna div s listed be <u>FION TYPE</u> SK node from	ow.
ADIA ADIA ADIA B B B B B B B B B B B B B B B B B B B	Following ch AVAILABLE 1 ATED EMIS Pre-Scan ha between ava Following ch AVAILABLE 1 BANDWIDT Pre-Scan ha between ava	CHANNEL SION TES S been cc ilable mo annel(s) v CHANNEL TH: s been cc ilable mo	AND	ected for the f CHANNEL 1 MHz): termine the w nna ports (if E ected for the f CHANNEL 1 termine the w enna ports (if E	inal test as MODULA A orst-case r UT with ar inal test as MODULA A orst-case r EUT with a	s listed be TION TYPE SK node from atenna div s listed be TION TYPE SK node from ntenna div	a all possible comb ersity architecture) ow.
ADIA ADIA ADIA ADIA A B B B B B B B B B B B B B B B B B B	Following ch AVAILABLE 1 ATED EMIS Pre-Scan ha between ava Following ch AVAILABLE 1 BANDWIDT Pre-Scan ha between ava	CHANNEL SION TES S been cc ilable mo iannel(s) v CHANNEL	vas (were) sel TESTED ST(ABOVE 30 enducted to de dulations ante vas (were) sel enducted to de dulations, ante vas (were) sel	ected for the f CHANNEL 1 MHz): termine the w nna ports (if E ected for the f CHANNEL 1 termine the w enna ports (if E	inal test as MODULA A orst-case r UT with ar inal test as MODULA A orst-case r EUT with a inal test as	s listed be TION TYPE SK node from atenna div s listed be TION TYPE SK node from ntenna div	a all possible comb ersity architecture) ow.

FREQUENCY STABILITY:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- \boxtimes Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	
1	1	ASK	

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY	
PLC	26deg. C, 66%RH	120Vac, 60Hz	Jyunchun Lin	
55	25deg. C, 14%RH	120Vac, 60Hz	Nelson Teng	
RE	35deg. C, 67%RH	120Vac, 60Hz	Weiwei Lo	
BW	25deg. C, 60%RH	120Vac, 60Hz	James Chan	
FS	25deg. C, 60%RH	7.4Vdc	James Chan	

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

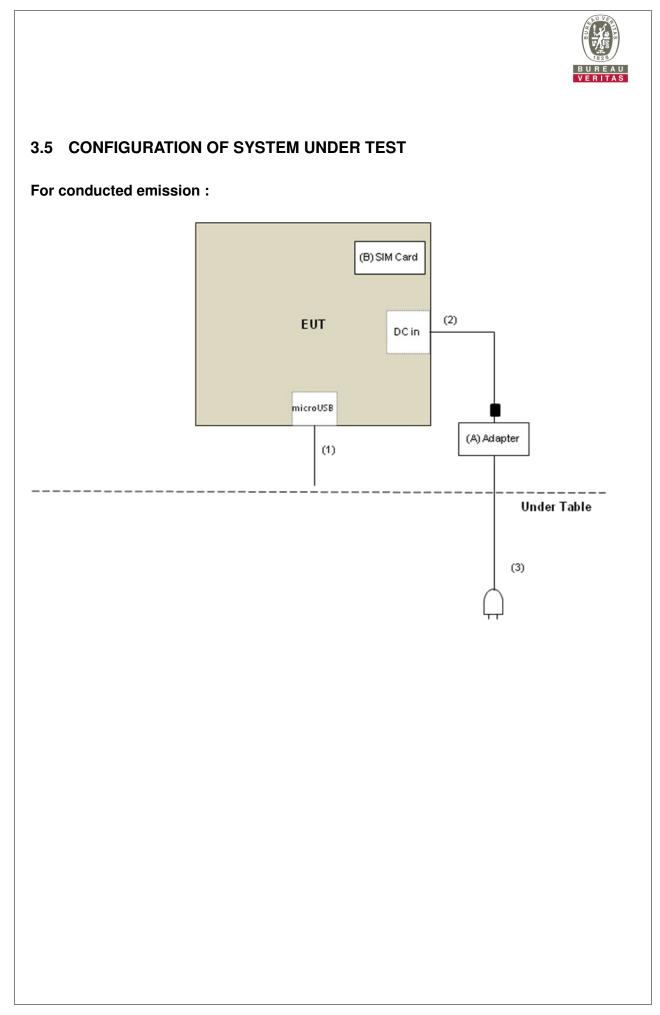
The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

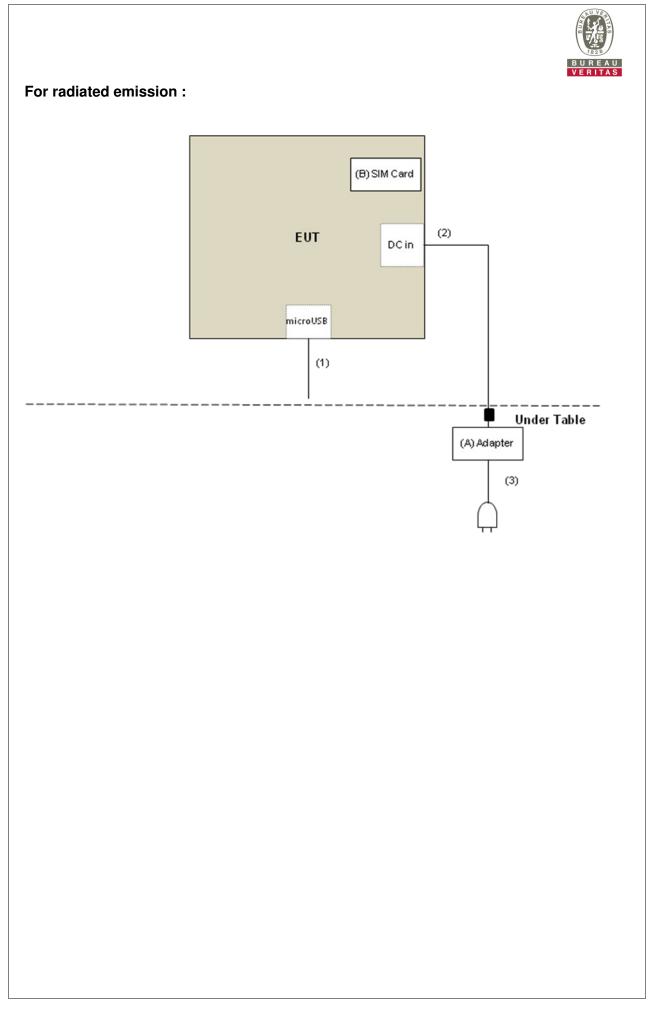
FCC Part 15, Subpart C (15.225) FCC Part 15, Subpart C (15.215) ANSI C63.10: 2013

All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Adapter	DELTA	ADP-36JH B	NA	NA	Supplied by Client
В.	SIM Card	R&S	CRT-Z3	NA	NA	Provided by Lab


Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	microUSB Cable	1	1	No	0	Provided by Lab
2.	DC Cable	1	1.8	No	1	Supplied by client
3.	AC Cable	1	1.85	No	0	Supplied by client

Note: The core(s) is(are) originally attached to the cable(s)

4 TEST PROCEDURES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)			
0.15-0.5	Quasi-peak	Average		
0.13-0.3 0.5-5 5-30	66 to 56 56 60	56 to 46 46 50		

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	100375	May 09, 2016	May 08, 2017
Line-Impedance Stabilization Network (for EUT) R&S	ENV216	100072	June 13, 2016	June 12, 2017
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	848773/004	Oct. 28, 2015	Oct. 27, 2016
RF Cable	5D-FB	COCCAB-001	Mar. 08, 2016	Mar. 07, 2017
10 dB PAD Mini-Circuits	HAT-10+	CONATT-003	Sep. 14, 2015	Sep. 13, 2016
50 ohms Terminator	N/A	EMC-03	Sep. 23, 2015	Sep. 22, 2016
50 ohms Terminator	N/A	EMC-02	Oct. 01, 2015	Sep. 30, 2016
Software BVADT	BVADT_Cond_ V7.3.7.3	NA	NA	NA

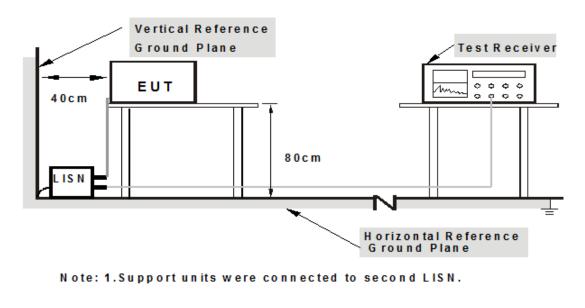
Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Shielded Room No. C.
- 3 The VCCI Con C Registration No. is C-3611.
- 4 Tested Date: Aug. 25, 2016

4.1.3 TEST PROCEDURES

- a. The EUT/HOST was placed 0.4 meters from the conducting wall of the shielded room with EUT/HOST being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN.
- b. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- c. Both lines of the power mains connected to the EUT/HOST were checked for maximum conducted interference.
- d. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.


NOTE:

1. The resolution bandwidth of test receiver is 9kHz for Quasi-peak detection (QP) & Average detection (AV).

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

- 1. Turn on the power of all equipment.
- 2. The EUT runs a test program "PTest.exe" to under transmission condition (RFID) continuously.

4.1.7 TEST RESULTS

PHA	SE	Line (L)		6dB BA	ANDWID ⁻	ГН	Quasi-P Average	eak (QP) (AV)	/
			PI	nase Of F	Power : Li	ine (L)				
	Frequency	Correction		g Value		n Level	Lir	nit	Ма	rgin
No		Factor		uV)		uV)		uV)		B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.17390	10.30	39.58	23.30	49.88	33.60	64.77	54.77	-14.89	-21.17
2	0.26638	10.29	24.55	8.84	34.84	19.13	61.23	51.23	-26.39	-32.10
3	0.39827	10.30	21.72	11.34	32.02	21.64	57.89	47.89	-25.87	-26.25
4	0.88650	10.24	7.77	2.73	18.01	12.97	56.00	46.00	-37.99	-33.03
5	5.66355	10.46	15.10	8.41	25.56	18.87	60.00	50.00	-34.44	-31.13
6	25.69842	11.12	6.67	1.41	17.79	12.53	60.00	50.00	-42.21	-37.47
		5. EMIS			ection Fac		Ading Va			
		60 - 1 50 - 2 40 - 30 - 2 20 - 10 - 0.15		1.00		5	x: QP Yal	8- міцу х зо.00 МНz		

PHA	PHASE Neutral (N)			6dB BA	6dB BANDWIDTH		Quasi-Peak (QP) / Average (AV)		/	
	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor		g Value uV)		on Level aV)		mit suV)	Ma (d	rgin B)
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16780	10.29	37.55	20.71	47.84	31.00	65.07	55.07	-17.23	-24.07
2	0.39410	10.28	20.42	12.63	30.70	22.91	57.98	47.98	-27.28	-25.07
3	0.93508	10.23	11.59	10.20	21.82	20.43	56.00	46.00	-34.18	-25.57
4	5.31252	10.46	10.62	2.87	21.08	13.33	60.00	50.00	-38.92	-36.67
5	7.71185	10.51	7.64	1.60	18.15	12.11	60.00	50.00	-41.85	-37.89
6	23.48762	11.07	2.65	-2.70	13.72	8.37	60.00	50.00	-46.28	-41.63

Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

4.2 RADIATED EMISSION & OCCUPIED BANDWIDTH EASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The field strength of any emission shall not exceed the following limits:

(a) 15.848 millivolts/m (84 dBµ V/m) at 30 m, within the band 13.553-13.567 MHz.

(b) 334 microvolts/m (50.5 dB $\mu\,$ V/m) at 30 m, within the bands 13.410-13.553 MHz and 13.567-13.710 MHz.

(c) 106 microvolts/m (40.5 dB μ V/m) at 30 m, within the bands 13.110-13.410 MHz and 13.710-14.010 MHz.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in \S 15.209.

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB.

4.2.2 TEST INSTRUMENTS

For below 30MHz:					
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL	
MXE EMI Receiver Agilent	N9038A	MY50010156	Jan. 16, 2013	Jan. 15, 2014	
Pre-Amplifier EMCI	EMC001340	980142	Jan. 09, 2013	Jan. 08, 2014	
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 10, 2012	Dec. 09, 2014	
RF Cable	NA	LOOPCAB-001 LOOPCAB-002	Jan. 21, 2013	Jan. 20, 2014	
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-04	Nov. 14, 2012	Nov. 13, 2013	
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Mar. 25, 2013	Mar. 24, 2014	
RF Cable	NA	CHHCAB_001	Oct. 07, 2012	Oct. 06, 2013	
Horn_Antenna AISI	AIH.8018	0000220091110	Nov. 27, 2012	Nov. 26, 2013	
Pre-Amplifier Agilent	8449B	3008A01923	Oct. 30, 2012	Oct. 29, 2013	
RF Cable	NA	RF104-205 RF104-207 RF104-202	Dec. 26, 2012	Dec. 25, 2013	
Spectrum Analyzer Agilent	E4446A	MY48250253	Aug. 28, 2013	Aug. 27, 2014	
Pre-Amplifier SPACEK LABS	SLKKa-48-6	9K16	Nov. 14, 2012	Nov. 13, 2013	
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Oct. 12, 2012	Oct. 11, 2013	
Software	ADT_Radiated _V8.7.07	NA	NA	NA	
Antenna Tower & Turn Table CT	NA	NA	NA	NA	

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

* The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in 966 Chamber No. H.

3. The FCC Site Registration No. is 797305.

4. The CANADA Site Registration No. is IC 7450H-3.

5. Tested Date: Sep. 09 to 10, 2013

For above 30MHz:					
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL	
Test Receiver Agilent	N9038A	MY51210105	July 06, 2016	July 05, 2017	
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-03	Nov. 11, 2015	Nov. 10, 2016	
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-360	Jan. 04, 2016	Jan. 03, 2017	
RF Cable	8D-FB	CHGCAB-001 -1 CHGCAB-001 -2	Oct. 03, 2015	Oct. 02, 2016	
	RF-141	CHGCAB-004	Oct. 03, 2015	Oct. 02, 2016	
Software	ADT_Radiated _V8.7.07	NA	NA	NA	
Antenna Tower & Turn Table CT	CM100	NA	NA	NA	
Boresight Antenna Fixture	FBA-01	FBA-WD01	NA	NA	

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

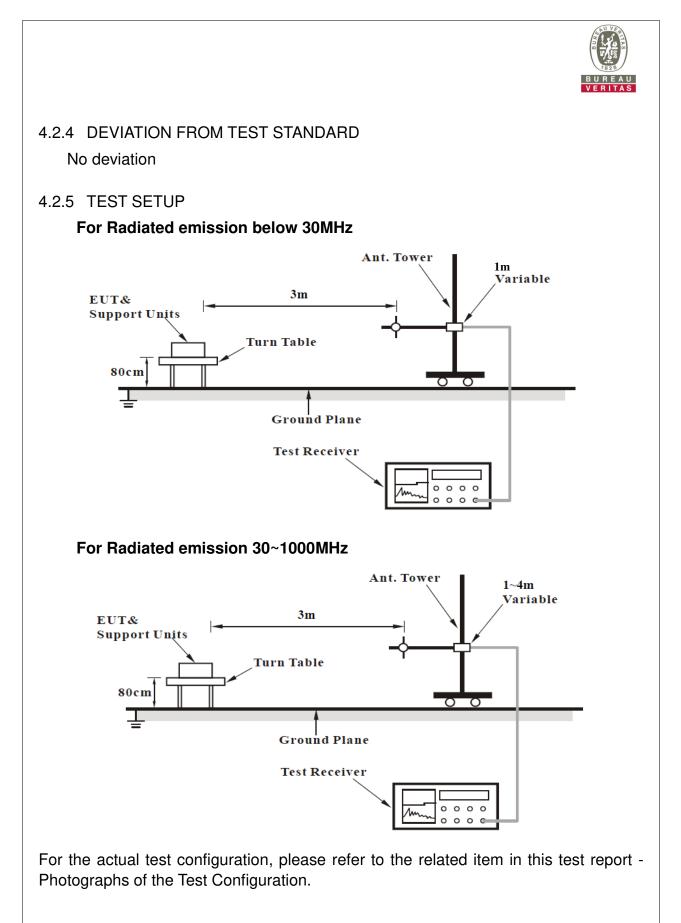
- 2. The test was performed in 966 Chamber No. G.
- 3. The FCC Site Registration No. is 966073.
- 4. The CANADA Site Registration No. is IC 7450H-2.
- 5. Tested Date: Aug. 03, 2016

4.2.3 TEST PROCEDURES

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:


1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission 30~1000MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency 30MHz ~ 1GHz.

4.2.6 EUT OPERATING CONDITIONS

Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.

4.2.7 TEST RESULTS

	NDITION	1							IEN				_							
INPUT POWER		120\	/ac, 60	0Hz		FF	REQL	JENC	YR	AN	IGE		13	5.55	i3 ~	· 1:	3.5	67	'M⊢	İz
ENVIRONMEN CONDITIONS	TAL	25de	eg. C,	64%	RH		ETEC JNCT						Qı	Jas	i-P	eal	k ((QP	')	
TESTED BY		Nels	on Tei	ng																
	L	.00P	ANTE	ENN	A TEST	DIST	ANC	E: A	۲3I	M ()	XA	XI	S)							
No. Freq. (MHz)	Emissie Level (dBuV/	I	Lim (dBuV		Marg (dB		He	enna eight m)		A	abl ngl egre	е		١	Rav /alu dBu	ıe			Fac	ectio ctor 8/m)
1 *13.56	69.6 Q	P	124.	.0	-54.	4	1	.00			77			-	73.3	0			-3.	70
	J F		nenta	ITron	LIANCY															
ield strength van Example: 3.56MHz = = 3 = 3		gth wa e inve /m n (30/3)	as exti erse di	rapol stanc 3 3											nula	a tł	nat	th	e lir	nit
ield strength van Example: I3.56MHz = = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 =	ries as th 15848uV/ 84dBuV/r 84+20log	gth wa e inve /m n (30/3)	as exti erse di	rapol stanc 3 3	ated to ce squa 0m 0m										nuli	a tł	nat	th	e lir	mit (
ield strength var Example: I3.56MHz = = 4 = 4 = 4 = 4 = 4	ries as th 15848uV/ 84dBuV/r 84+20log	gth wa e inve /m n (30/3)	as exti erse di	rapol stanc 3 3	ated to ce squa 0m 0m										nuli	a th	nat	th	e lir	mit
ield strength van Example: 13.56MHz = = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 =	ries as th 15848uV/ 84dBuV/r 84+20log	gth wa e inve /m n (30/3)	as exti erse di	rapol stanc 3 3	ated to ce squa 0m 0m											a tł		th	e lir	mit (
ield strength var Example: 13.56MHz = = = = = (dBuV) 130 - 120 -	ries as th 15848uV/ 84dBuV/r 84+20log	gth wa e inve /m n (30/3)	as exti erse di	rapol stanc 3 3	ated to ce squa 0m 0m											a tł		th	e lii	mit (
ield strength var Example: 13.56MHz = = = = = (dBuV) 130 - 120 -	ries as th 15848uV/ 84dBuV/r 84+20log	gth wa e inve /m n (30/3)	as exti erse di	rapol stanc 3 3	ated to ce squa 0m 0m											a th		th		mit ·
ield strength van Example: 13.56MHz = = = (dBuV) 130 - 120 - 100 - 80 -	ries as th 15848uV/ 84dBuV/r 84+20log	gth wa e inve /m n (30/3)	as exti erse di	rapol stanc 3 3	ated to ce squa 0m 0m										nula	a th		th		mit (
ield strength var Example: I3.56MHz = = = Level (dBuV) 130 - 120 - 100 -	ries as th 15848uV/ 84dBuV/r 84+20log	gth wa e inve /m n (30/3)	as exti erse di	rapol stanc 3 3	ated to ce squa 0m 0m										nuli	a tł		th		mit
ield strength var Example: I3.56MHz = = = (dBuV) 130 - 120 - 100 - 80 -	ries as th 15848uV/ 84dBuV/r 84+20log	gth wa e inve /m n (30/3)	as exti erse di	rapol stanc 3 3	ated to ce squa 0m 0m											a tł		th		mit
ield strength var Example: 13.56MHz = = = (dBuV) 130 - 120 - 100 - 80 - 60 - 40 -	ries as th 15848uV/ 84dBuV/r 84+20log	gth wa e inve /m n (30/3)	as exti erse di	rapol stanc 3 3	ated to ce squa 0m 0m											a tł		th		mit
ield strength var Example: I3.56MHz = = = (dBuV) 130 - 120 - 100 - 80 - 60 -	ries as th 15848uV/ 84dBuV/r 84+20log	gth wa e inve /m n (30/3)	as exti erse di	rapol stanc 3 3	ated to ce squa 0m 0m											a tł		th		mit
= = (dBuV) 130 - 120 - 100 - 80 - 60 - 40 -	ries as th 15848uV/ 84dBuV/r 84+20log	gth wa e inve /m n (30/3)	as exti erse di	rapol stanc 3 3	ated to ce squa 0m 0m											a tł		th		mit

EUT	TEST COM	DITION			Ν	IEASUF	REMEN	T DETAI	L		
INPL	JT POWER		120Vac, 6	60Hz	F	REQUE		ANGE	13.553 ~	13.567MHz	
	IRONMENT	ΓAL	25deg. C	, 64%RH					Quasi-Pe	ak (QP)	
TES	TED BY		Nelson Te	eng							
		L	OOP ANT		ST DIS	TANCE:	AT 3 M		5)		
NO.	FREQ. (MHz)	EMISSIC LEVEI (dBuV/r	DN LIN	ит м	ARGIN (dB)	ANTEN HEIG	NNA HT	TABLE ANGLE Degree)	RAW VALUE (dBuV)		R
1	*13.56	69.9 Q	P 124	l.0 ·	-54.1	1.00)	358	73.60	-3.70	
ield s Exam	neasured fi strength var pple: SMHz = 5 = 8 = 8	5. " * ": Fi eld streng	é inverse c /m n (30/3) ²	al frequend trapolated	cy. I to dista	ance 30	meters,			that the lim	it o
	Level (dBuV) 130 - 120 - 80 - 80 - 60 - 40 - 20 - 13.553 13.	554	13.556	13.558	13.5	560	13.562	13.	564 1	3.566 13.567	
				Fr	equency	/ (MHz)					
				Fr	equency	/ (IVIHZ)					

EUT TEST CONDITION		MEASUREMENT DETAIL			
INPUT POWER	120Vac, 60Hz	FREQUENCY RANGE	Below 30MHz		
ENVIRONMENTAL CONDITIONS	25deg. C, 64%RH	DETECTOR FUNCTION	Quasi-Peak (QP)		
TESTED BY	Nelson Teng				

	LOOP ANTENNA TEST DISTANCE: AT 3 M (X AXIS)												
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)					
1	0.03	68.70 QP	118.30	-49.60	1.00	0	40.00	28.70					
2	0.10	54.10 QP	108.00	-53.90	1.00	150	-4.60	58.70					
3	1.23	41.00 QP	65.80	-24.80	1.00	39	41.00	0.00					
4	4.19	47.10 QP	69.50	-22.40	1.00	31	50.10	-3.00					
5	17.08	37.50 QP	69.50	-32.00	1.00	151	41.80	-4.30					
6	28.63	26.80 QP	69.50	-42.70	1.00	142	30.70	-3.90					
		LOO	P ANTENNA	A TEST DIST	TANCE: AT 3	B M (Y AXIS)							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)					
1	0.03	67.30 QP	117.00	-49.70	1.00	121	-1.30	68.60					
2	0.12	50.80 QP	106.00	-55.20	1.00	155	-6.10	56.90					
3	4.16	43.20 QP	69.50	-26.30	1.00	293	46.20	-3.00					
4	5.98	37.90 QP	69.50	-31.60	1.00	44	41.10	-3.20					
5	17.15	35.30 QP	69.50	-34.20	1.00	16	39.60	-4.30					
6	27.12	28.30 QP	69.50	-41.20	1.00	53	33.80	-5.50					

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

– Pre-Amplifier Factor (dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

EUT TEST CONDITION		MEASUREMENT DETAIL			
INPUT POWER	120Vac, 60Hz	FREQUENCY RANGE	30~1000MHz		
ENVIRONMENTAL CONDITIONS	125dea (; 67%8H	DETECTOR FUNCTION	Quasi-Peak (QP)		
TESTED BY Weiwei Lo					

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)					
1	94.92	34.0 QP	43.5	-9.5	2.00 H	258	47.3	-13.3					
2	122.05	39.5 QP	43.5	-4.0	1.50 H	281	49.2	-9.7					
3	149.16	41.1 QP	43.5	-2.4	2.00 H	291	48.8	-7.7					
4	501.71	37.4 QP	46.0	-8.6	2.00 H	93	38.9	-1.5					
5	610.21	35.4 QP	46.0	-10.6	1.50 H	360	34.0	1.4					
6	813.59	37.2 QP	46.0	-8.8	1.00 H	130	32.5	4.7					
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М						
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)					
1	40.67	38.3 QP	40.0	-1.7	1.00 V	323	46.8	-8.5					
2	122.03	32.6 QP	43.5	-10.9	1.00 V	14	42.3	-9.7					
3	149.16	38.3 QP	43.5	-5.2	1.00 V	154	46.0	-7.7					
4	358.22	31.1 QP	46.0	-14.9	1.50 V	213	36.3	-5.2					
5	515.29	33.9 QP	46.0	-12.1	1.00 V	2	35.0	-1.1					

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

4.3 20dB BANDWIDTH

4.3.1 LIMITS OF 20dB BANDWIDTH MEASUREMENT

The 20dB bandwidth shall be specified in operating frequency band.

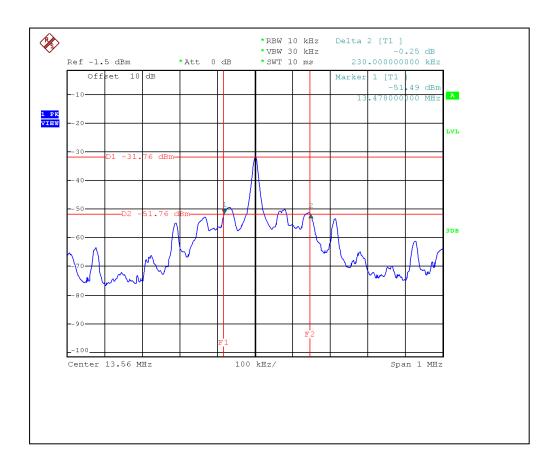
4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL	
Spectrum Analyzer R&S	FSP 40	100036	Jan. 21, 2013	Jan. 20, 2014	

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date : Sep. 18, 2013


4.3.3 EUT OPERATING CONDITION

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 10kHz RBW and 30kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.3.4 TEST RESULTS

20dBc point (Low)	20dBc point (Low) 20dBc point (High)		PASS/FAIL		
13.478 MHz	13.708 MHz	13.11 – 14.01	PASS		

4.4 FREQUENCY STABILITY

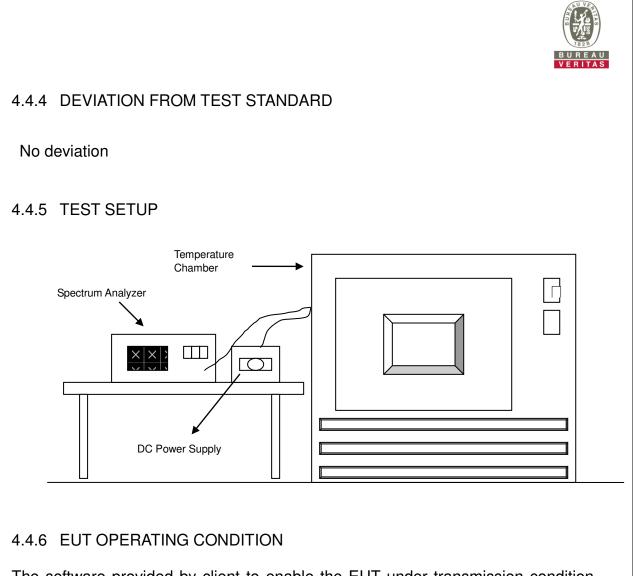
4.4.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%(\pm 100$ ppm) of the operating frequency over a temperature variation of -30 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSP 40	100036	Jan. 21, 2013	Jan. 20, 2014
Temperature & Humidity Chamber GIANTFORCE	GTH-150-40-S P-AR	MAA0812-008	Jan. 17, 2013	Jan. 16, 2014
DC Power Supply GOOD WILL INSTRUMENT CO., LTD.	GPC - 3030D	7700087	NA	NA
Digital Multimeter FLUKE	87111	73680266	Nov. 27, 2012	Nov. 06, 2013

Note:


1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date : Sep. 18, 2013

4.4.3 TEST PROCEDURE

- 1. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- 2. Turn the EUT on and couple its output to a spectrum analyzer.
- 3. Turn the EUT off and set the chamber to the highest temperature specified.
- 4. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 5. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- 6. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

4.4.7 TEST RESULTS

	FREQUEMCY STABILITY VERSUS TEMP.										
		0 MINUTE		2 MIN	NUTE	5 MIN	NUTE	10 MINUTE			
темр . (°С)	POWER SUPPLY (Vdc)	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift		
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%		
50	7.4	13.56003	0.00022	13.56003	0.00022	13.56002	0.00015	13.56003	0.00022		
40	7.4	13.56005	0.00037	13.56006	0.00044	13.56005	0.00037	13.56006	0.00044		
30	7.4	13.55995	-0.00037	13.55994	-0.00044	13.55995	-0.00037	13.55995	-0.00037		
20	7.4	13.55996	-0.00029	13.55996	-0.00029	13.55994	-0.00044	13.55994	-0.00044		
10	7.4	13.56004	0.00029	13.56004	0.00029	13.56005	0.00037	13.56005	0.00037		
0	7.4	13.56004	0.00029	13.56005	0.00037	13.56004	0.00029	13.56004	0.00029		
-10	7.4	13.56001	0.00007	13.56	0.00000	13.56001	0.00007	13.56002	0.00015		
-20	7.4	13.55999	-0.00007	13.55998	-0.00015	13.55998	-0.00015	13.55999	-0.00007		
-30	7.4	13.56003	0.00022	13.56004	0.00029	13.56004	0.00029	13.56005	0.00037		

	FREQUEMCY STABILITY VERSUS VOLTAGE												
		0 MIN	NUTE	2 MI	NUTE	5 MI	NUTE	10 MI	NUTE				
ТЕМР. (°С)	POWER SUPPLY (Vdc)	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift				
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%				
	6.29	13.55996	-0.00029	13.55996	-0.00029	13.55994	-0.00044	13.55994	-0.00044				
20	7.4	13.55996	-0.00029	13.55996	-0.00029	13.55994	-0.00044	13.55994	-0.00044				
	8.51	13.55996	-0.00029	13.55996	-0.00029	13.55994	-0.00044	13.55994	-0.00044				

5 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab: Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab: Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

6 APPENDIX-A- MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications were made to the EUT by the lab during the test.

--- END ----