		BUREAU VERITAS
	FCC Test Report	
	Foo lest Report	
Report No.:	RF180209E06	
FCC ID:	MQT-T305	
Test Model:	xCL_T305	
Received Date:	Feb. 09, 2018	
Test Date:	Feb. 14 to 22, 2018	
Issued Date:	Mar. 12, 2018	
Applicant:	XAC AUTOMATION CORP.	
Address:	4F, No. 30, INDUSTRY E. RD. IX, SCIENCE PARK,HSINCHU,TAIWAN	-BASED INDUSTRIAL
Issued By:	Bureau Veritas Consumer Products Service Hsin Chu Laboratory	s (H.K.) Ltd., Taoyuan Branch
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Scienc Taiwan R.O.C.	ce Park, Hsinchu City 300,
Test Location :	E-2, No.1, Li Hsin 1st Road, Hsinchu Sciend Taiwan R.O.C.	ce Park, Hsinchu City 300,
FCC Registration / Designation Number:	723255 / TW2022	
		Testing Laboratory 2022
only with our prior written permission. The report are not indicative or representative unless specifically and expressly noted, provided to us. You have 60 days from however, that such notice shall be in writt shall constitute your unqualified acceptare mention, the uncertainty of measurement	copying or replication of this report to or for any other person or his report sets forth our findings solely with respect to the test sa e of the quality or characteristics of the lot from which a test sa Our report includes all of the tests requested by you and the r date of issuance of this report to notify us of any material erro ting and shall specifically address the issue you wish to raise. A f nee of the completeness of this report, the tests conducted and th t has been explicitly taken into account to declare the compliance roduct certification, approval, or endorsement by TAF or any gov	amples identified herein. The results set forth in this ample was taken or any similar or identical product esults thereof based upon the information that you r or omission caused by our negligence, provided, ailure to raise such issue within the prescribed time e correctness of the report contents. Unless specific e or non-compliance to the specification. The report
Report No.: RF180209E06	Page No. 1 / 31	Report Format Version: 6.1.1

Table of Contents

Releas	Release Control Record				
1	Certificate of Conformity				
2	Summary of Test Results				
2.1 2.2	Measurement Uncertainty Modification Record				
	General Information				
3.1	General Description of EUT				
3.2	Description of Test Modes Test Mode Applicability and Tested Channel Detail				
3.2.′ 3.3	Description of Support Units				
3.3. ⁴					
3.4	General Description of Applied Standards				
4	Test Types and Results				
4.1	Radiated Emission Measurement				
4.1.					
	2 Test Instruments				
	Deviation from Test Standard				
	5 Test Setup				
	EUT Operating Conditions				
	/ Test Results				
4.2	Conducted Emission Measurement				
	Limits of Conducted Emission Measurement				
	2 Test Instruments				
4.2.3	3 Test Procedures	23			
4.2.4	Deviation from Test Standard	23			
	5 TEST SETUP				
	EUT Operating Conditions				
	' Test Results				
4.3	Frequency Stability				
4.3.1					
	? Test Setup				
	3 Test Instruments				
	5 Deviation fromTest Standard				
	EUT Operating Conditions				
	/ Test Result				
4.4	20dB bandwidth				
4.4.1					
4.4.2	2 Test Setup				
	3 Test Instruments				
4.4.4	Test Procedures	28			
	5 Deviation from Test Standard				
	EUT Operating Conditions				
4.4.7	' Test Results	29			
5	Pictures of Test Arrangements	30			
Apper	dix – Information on the Testing Laboratories	31			

Release Control Record					
Issue No.	Description				Date Issued
RF180209E06	Original release.				Mar. 12, 2018

1 Certificate of Conformity

Product:	Unattended Payment Terminal	
Brand:	XAC	
Test Model:	xCL_T305	
Sample Status:	ENGINEERING SAMPLE	
Applicant:	XAC AUTOMATION CORP.	
Test Date:	Feb. 14 to 22, 2018	
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.225)	
	47 CFR FCC Part 15, Subpart C (Section 15.215)	
	ANSI C63.10:2013	

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Wendy	Mu	Date:	Mar. 12, 2018	
	Wendy Wu / Spe	cialist			
Approved by :	May Chen / Man	,	Date:	Mar. 12, 2018	

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (SECTION 15.225, 15.215)				
FCC Clause	Test Item	Result	Remarks		
15.207	Conducted emission test	PASS	Meet the requirement of limit. Minimum passing margin is -14.21dB at 0.15000MHz.		
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz	PASS	Meet the requirement of limit.		
15.225 (b)	The field strength of any emissions within the bands 13.410-13.553 MHz and 13.567-13.710 MHz	PASS	Meet the requirement of limit.		
15.225 (c)	The field strength of any emissions within the bands 13.110-13.410 MHz and 13.710-14.010 MHz	PASS	Meet the requirement of limit.		
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	PASS	Meet the requirement of limit. Minimum passing margin is -6.70dB at 40.72MHz.		
15.225 (e)	The frequency tolerance	PASS	Meet the requirement of limit.		
15.215 (c)	20dB Bandwidth	PASS	Meet the requirement of limit.		
15.203	Antenna Requirement	PASS	No antenna connector is used.		

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.84 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.33 dB
	1GHz ~ 6GHz	5.10 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.85 dB
	18GHz ~ 40GHz	5.24 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Unattended Payment Terminal
Brand	XAC
Test Model	xCL_T305
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	DC 12V from power adapter
Modulation Type	ASK
Operating Frequency	13.56MHz
Number of Channel	1
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. The EUT has four samples, please refer to the following table:

Sample	Main board	I/O board	Function key board	QR code	Heater x 2
Sample 1	V	V	V	V	V
Sample 2	V	V	V	V	Х
Sample 3	V	V	V	Х	V
Sample 4	V	V	V	Х	Х

From the above samples, **Sample 1** was selected as representative model for the test and its data was recorded in this report.

2. The antenna provided to the EUT, please refer to the following table:

Brand	Ant. Gain (dBi)	Frequency range (MHz)	Antenna Type	Antenna Connector
XAC	13	13.56	Wire	none

3. The EUT could be supplied with a power adapter(only for test) as the following table:

Brand	Model Name	Specification
DELTA	ADP-36PH B	Input: AC 100-240V, 1A, 50-60Hz Output: DC 12V, 3A DC output cable (Unshielded, 1.8m with one core)

4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

One channel was provided to this EUT:

Channel	FREQ. (MHz)
1	13.56

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure			Applical	ble To		Description
Mode	RE	PLC		FS	EB	_ coonputer
-	\checkmark	\checkmark		\checkmark	\checkmark	-
e	RE: Radiated I FS: Frequency			PLC: Power Line Cor EB: 20dB Bandwidth		
Pre-So betwee	en available r					sible combinations enna diversity
archite Follow	,	s) was (were) sele	cted fo	or the final test as	s listed below.	
Availa	able Channel	Tested Channel	Ν	Modulation Type		
	1	1		ASK		
Pre-Sc betwee	an has been en available r	CTED EMISSION conducted to dete nodulations, data	ermine	the worst-case r		sible combinations enna diversity
Pre-Sc betwee archite	can has been en available r cture).	conducted to dete	ermine rates a	the worst-case r and antenna ports	s (if EUT with ante	
Pre-Sc betwee archite Follow	can has been en available r cture).	conducted to detended to de	ermine rates a cted fo	the worst-case r and antenna ports	s (if EUT with ante	
Pre-Sc betwee archite Follow	an has been en available r cture). ing channel(s	conducted to dete nodulations, data s) was (were) sele	ermine rates a cted fo	the worst-case r and antenna ports or the final test as	s (if EUT with ante	
Pre-Sc betwee archite Follow Availa EEQUEN Pre-Sc betwee archite	can has been en available r icture). ing channel(s able Channel 1 ICY STABILI can has been en available r icture).	conducted to detended nodulations, data s) was (were) sele Tested Channel 1 1	ermine rates a cted for n ermine rates a	the worst-case r and antenna ports or the final test as Modulation Type ASK ASK	s (if EUT with ante s listed below. node from all poss s (if EUT with ante	enna diversity sible combinations
Pre-Sc betwee archite Follow Availa Pre-Sc betwee archite Follow	can has been en available r icture). ing channel(s able Channel 1 ICY STABILI can has been en available r icture).	conducted to detended to deten	ermine rates a cted for ermine rates a cted for	the worst-case r and antenna ports or the final test as Modulation Type ASK ASK	s (if EUT with ante s listed below. node from all poss s (if EUT with ante	enna diversity sible combinations
Pre-Sc betwee archite Follow Availa Pre-Sc betwee archite Follow	can has been en available r icture). ing channel(s able Channel 1 NCY STABILI can has been en available r icture). ing channel(s	conducted to detended to deten	ermine rates a cted for ermine rates a cted for	the worst-case r and antenna ports or the final test as Modulation Type ASK the worst-case r and antenna ports	s (if EUT with ante s listed below. node from all poss s (if EUT with ante	enna diversity sible combinations
Pre-Sc betwee archite Follow Availa Pre-Sc betwee archite Follow Availa Dre-Sc betwee archite	an has been en available r ing channel(s able Channel 1 ICY STABILI an has been en available r ing channel(s able Channel 1 IDWIDTH: can has been en available r cture).	conducted to detended to deten	ermine rates a cted for ermine rates a cted for ermine rates a	the worst-case r and antenna ports or the final test as Modulation Type ASK the worst-case r and antenna ports or the final test as Modulation Type ASK	s (if EUT with ante s listed below. node from all post s (if EUT with ante s listed below.	enna diversity sible combinations enna diversity sible combinations
Pre-Sc betwee archite Follow Availa Pre-Sc betwee archite Follow Availa Dre-Sc betwee archite	an has been en available r ing channel(s able Channel 1 ICY STABILI an has been en available r ing channel(s able Channel 1 IDWIDTH: can has been en available r cture).	conducted to detended to deten	ermine rates a cted for ermine rates a cted for ermine rates a	the worst-case r and antenna ports or the final test as Modulation Type ASK the worst-case r and antenna ports or the final test as Modulation Type ASK	s (if EUT with ante s listed below. node from all post s (if EUT with ante s listed below.	enna diversity sible combinations enna diversity sible combinations

Available Channel	Tested Channel	Modulation Type
1	1	ASK

TEST CONDITION:

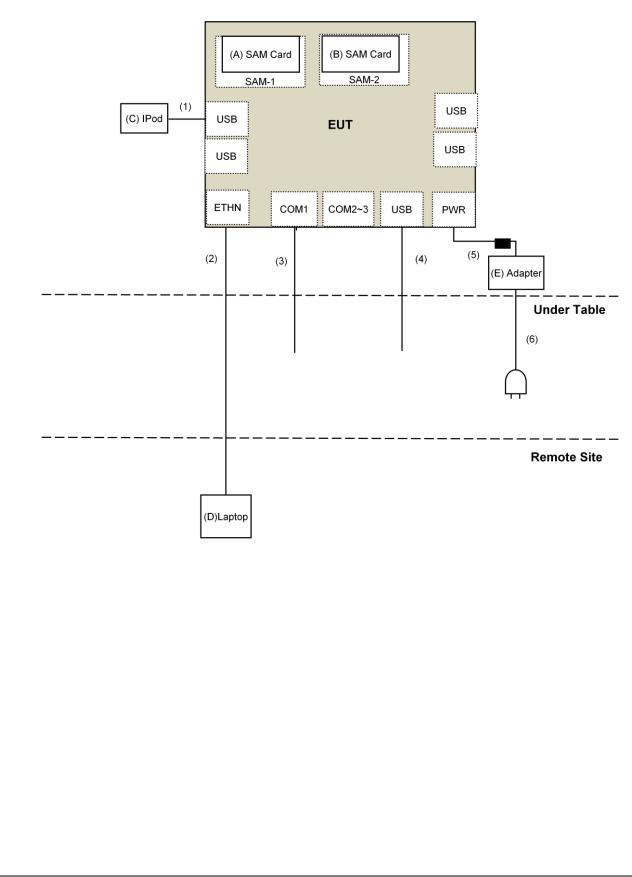
Applicable To	able To Environmental Conditions Input Power (System)		Tested By
RE	24deg. C, 67%RH	120Vac, 60Hz	Weiwei Lo
PLC	22deg. C, 75%RH	120Vac, 60Hz	Andy Ho
FS	25deg. C, 60%RH	120Vac, 60Hz	Jyunchun Lin
EB	25deg. C, 60%RH	120Vac, 60Hz	Jyunchun Lin

3.3 Description of Support Units

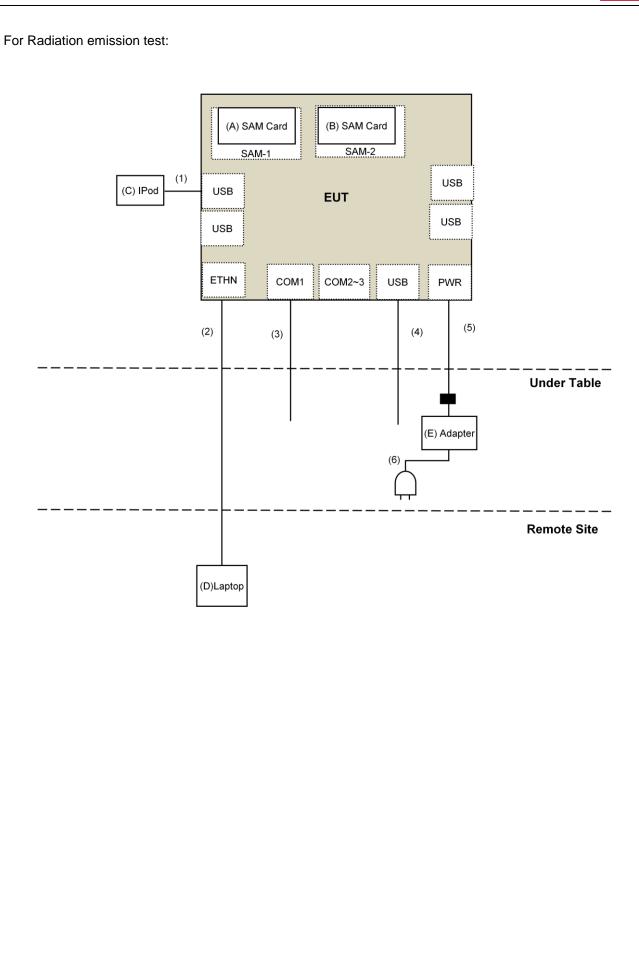
The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	SAM Card	NA	NA	NA	NA	Provided by Lab
В.	SAM Card	NA	NA	NA	NA	Provided by Lab
C.	iPod	Apple	MD778TA/A	CC4JMFL0F4T1	NA	Provided by Lab
D.	Laptop	DELL	E6420	B92T3R1	NA	Provided by Lab
E.	Adapter	DELTA	ADP-36PH B	NA	NA	Supplied by client

Note:


1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	0.1	Yes	0	Provided by Lab
2.	RJ-45 Cable	1	10	No	0	Provided by Lab
3.	RS-232 to RJ-12	1	1.5	No	0	Supplied by client
4.	Mini USB Cable	1	1	Yes	0	Provided by Lab
5.	DC Cable	1	1.8	No	1	Supplied by client
6.	AC Cable	1	1.8	No	0	Supplied by client



3.3.1 Configuration of System under Test

For Conduction emission test:

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.225) FCC Part 15, Subpart C (15.215) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

(b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

(c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209 as below table:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- 4. Follow FCC part 15.33, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40GHz, whichever is lower.

4.1.2 Test Instruments

4.1.2 Test Instruments				
DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER	WODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver Keysight	N9038A	MY54450088	July 08, 2017	July 07, 2018
Pre-Amplifier ^(*) EMCI	EMC001340	980142	Feb. 09, 2018	Feb. 08, 2019
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 16, 2016	Dec. 15, 2018
RF Cable	5D-FB	LOOPCAB-001 LOOPCAB-002	Jan. 15, 2018	Jan. 14, 2019
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-01	Nov. 09, 2017	Nov. 08, 2018
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Nov. 29, 2017	Nov. 28, 2018
RF Cable	8D	966-4-1 966-4-2 966-4-3	Apr. 01, 2017	Mar. 31, 2018
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-4-01	Oct. 03, 2017	Oct. 02, 2018
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208410	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 4.
- 4. The CANADA Site Registration No. is 20331-2
- 5. Loop antenna was used for all emissions below 30 MHz.
- 6. Tested Date: Feb. 14, 2018

4.1.3 Test Procedures

For Radiated emission below 30MHz

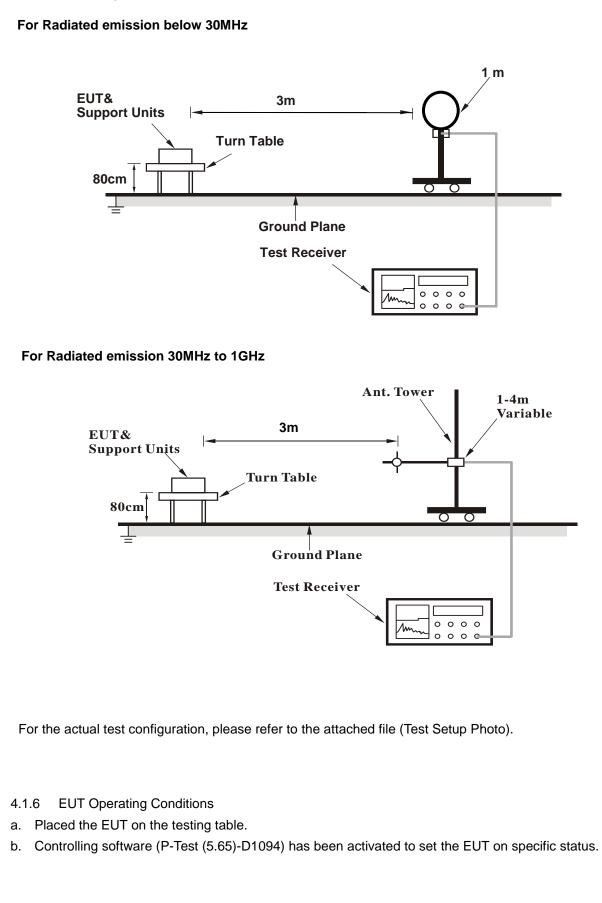
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.


Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency above 30MHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.
- 4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Setup

4.1.7 Test Results

Frequency Range	13.110 ~ 14.010MHz	Detector Function	Quasi-Peak
-----------------	--------------------	-------------------	------------

Antenna Polarity & Test Distance: Loop Antenna Open At 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	13.36	43.9 QP	80.5	-36.6	1.00	360	47.3	-3.4
2	13.49	52.3 QP	90.5	-38.2	1.00	360	55.7	-3.4
3	*13.56	73.8 QP	124.0	-50.2	1.00	360	77.2	-3.4
4	13.64	52.5 QP	90.5	-38.0	1.00	360	55.9	-3.4
5	13.77	50.6 QP	80.5	-29.9	1.00	360	54.1	-3.5

REMARKS:

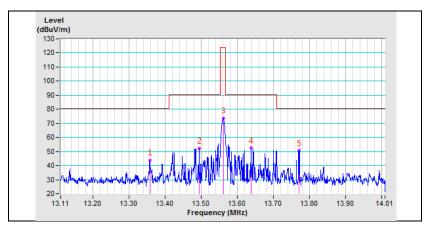
1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) - Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. Above limits have been translated by the formula


6. " * ": Fundamental frequency.

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

 $13.56 \text{MHz} = 15848 \text{uV/m} \qquad 30 \text{m}$ $= 84 \text{dBuV/m} \qquad 30 \text{m}$

 $= 84+20\log(30/3)^2$ 3m

= 124dBuV/m

_	_							
Fred	quency Rang	je í	13.110 ~ 14.01	OMHz	Detector Func	tion	Quasi-Peak	
		Anten	na Polarity & T	est Distan	ce: Loop Anter	nna Close A	At 3m	
	Frog	Emissior	۱ Limit	Morgin	Antenna	Table	Raw	Correction
No.	Freq. (MHz)	Level	(dBuV/m)	Margin	Height	Angle	Value	Factor
		(dBuV/m) (0607/11)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)
1	13.34	36.0 QP	80.5	-44.5	1.00	271	39.4	-3.4
2	13.50	42.0 QP	90.5	-48.5	1.00	271	45.4	-3.4
3	*13.56	64.1 QP	124.0	-59.9	1.00	271	67.5	-3.4
4	13.63	43.7 QP	90.5	-46.8	1.00	271	47.1	-3.4
5	13.72	33.8 QP	80.5	-46.7	1.00	271	37.3	-3.5

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

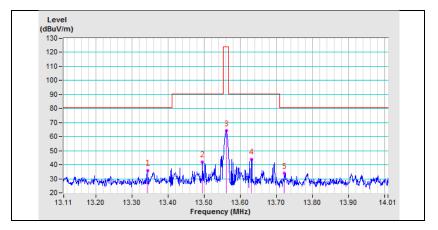
2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) - Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

5. Above limits have been translated by the formula

30m


6. " * ": Fundamental frequency.

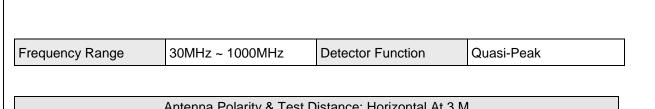
The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

Example:			
13.56MHz	=	15848uV/m	

=	84dBuV/m	30m
=	84+20log(30/3) ²	3m

= 124dBuV/m

Frequency Range	Below 30MHz	Detector Function	Quasi-Peak


	Antenna Polarity & Test Distance: Loop Antenna Open At 3m									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	0.53	29.8 PK	73.2	-43.4	1.00	12	25.3	4.5		
2	2.42	32.0 PK	69.5	-37.5	1.00	23	34.0	-2.0		
3	4.11	31.1 PK	69.5	-38.4	1.00	45	34.1	-3.0		
4	12.20	32.8 PK	69.5	-36.7	1.00	233	36.1	-3.3		
5	16.84	39.4 PK	69.5	-30.1	1.00	236	43.3	-3.9		
6	23.04	48.3 PK	69.5	-21.2	1.00	266	52.1	-3.8		
		Antenna	Polarity & T	est Distance	: Loop Anter	nna Close At	3m			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	0.38	34.3 PK	96.0	-61.7	1.00	222	27.5	6.8		
2	3.13	30.8 PK	69.5	-38.7	1.00	145	33.9	-3.1		
3	7.34	26.7 PK	69.5	-42.8	1.00	65	29.8	-3.1		
4	13.41	38.9 PK	69.5	-30.6	1.00	48	42.3	-3.4		
5	16.23	37.6 PK	69.5	-31.9	1.00	144	41.4	-3.8		
6	23.52	48.5 PK	69.5	-21.0	1.00	36	52.2	-3.7		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)

– Pre-Amplifier Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

	Antenna Polarity & Test Distance: Horizontal At 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	201.54	25.80 QP	43.50	-17.70	1.50 H	73	37.00	-11.20
2	250.02	32.10 QP	46.00	-13.90	1.50 H	360	41.10	-9.00
3	279.34	32.30 QP	46.00	-13.70	1.00 H	108	40.10	-7.80
4	625.85	33.80 QP	46.00	-12.20	1.50 H	65	33.20	0.60
5	690.64	32.40 QP	46.00	-13.60	1.50 H	246	31.10	1.30
6	759.42	32.60 QP	46.00	-13.40	1.00 H	223	30.00	2.60
		An	tenna Polari	ty & Test Dis	stance: Verti	cal At 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	40.72	33.30 QP	40.00	-6.70	1.00 V	196	41.40	-8.10
2	95.45	25.20 QP	43.50	-18.30	2.00 V	208	38.20	-13.00
3	208.63	27.50 QP	43.50	-16.00	1.00 V	52	38.70	-11.20
4	293.48	27.70 QP	46.00	-18.30	2.00 V	206	35.10	-7.40
5	456.15	28.60 QP	46.00	-17.40	1.00 V	248	31.50	-2.90
6	650.61	31.80 QP	46.00	-14.20	1.00 V	341	30.90	0.90

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

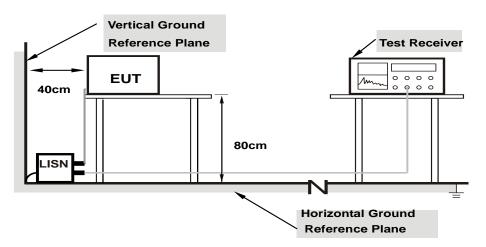
The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Nov. 01, 2017	Oct. 31, 2018
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Nov. 15, 2017	Nov. 14, 2018
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 03, 2017	June 02, 2018
50 ohms Terminator	N/A	EMC-02	Sep. 22, 2017	Sep. 21, 2018
RF Cable	5D-FB	COCCAB-001	Sep. 29, 2017	Sep. 28, 2018
10 dB PAD Mini-Circuits	HAT-10+	CONATT-004	June 18, 2017	June 17, 2018
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3 Tested Date: Feb. 22, 2018



4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.
- 4.2.4 Deviation from Test Standard

No deviation.

4.2.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

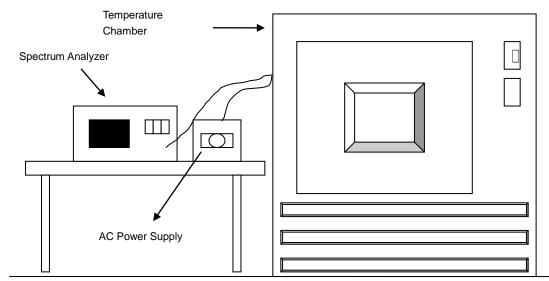
Phase Line (L)					[Detector Fu	nction	Quasi-l Averag	Peak (QP) e (AV)	/
	Free	Corr.	Readin	g Value	Emiss	ion Level	Lir	nit	Margin	
No	Freq.	Factor	[dB	(uV)]	[dE	3 (uV)]	[dB (uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.13	41.66	24.78	51.79	34.91	66.00	56.00	-14.21	-21.09
2	0.16953	10.13	36.52	19.22	46.65	29.35	64.98	54.98	-18.33	-25.63
3	0.39219	10.19	20.09	10.61	30.28	20.80	58.02	48.02	-27.74	-27.22
4	0.80625	10.22	7.57	-4.85	17.79	5.37	56.00	46.00	-38.21	-40.63
5	4.08984	10.37	20.59	13.21	30.96	23.58	56.00	46.00	-25.04	-22.42
6	8.14453	10.56	17.80	11.23	28.36	21.79	60.00	50.00	-31.64	-28.21

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase	9	٦	Neutral (N)		I	Detector Function Quasi-Peak (QP) / Average (AV)				/
		Corr	Deedin		Emior	sion Level	1.2	wit .	Mor	rain
No	Freq.	Corr. Factor		g Value (uV)]		B (uV)]		Limit Marg [dB (uV)] (dE		-
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.04	40.57	23.99	50.61	34.03	66.00	56.00	-15.39	-21.97
2	0.18125	10.04	35.25	18.54	45.29	28.58	64.43	54.43	-19.14	-25.85
3	0.39609	10.08	19.63	9.45	29.71	19.53	57.93	47.93	-28.22	-28.40
4	0.73984	10.10	10.18	2.25	20.28	12.35	56.00	46.00	-35.72	-33.65
5	3.96094	10.24	20.77	13.95	31.01	24.19	56.00	46.00	-24.99	-21.81
6	10.33594	10.51	18.16	11.61	28.67	22.12	60.00	50.00	-31.33	-27.88

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



4.3 Frequency Stability

4.3.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within $\pm - 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal AC voltage.
- b. Turned the EUT on and coupled its output to a spectrum analyzer.
- c. Turned the EUT off and set the chamber to the highest temperature specified.
- d. Allowed sufficient time (approximately 30 min) for the temperature of the chamber to stabilize then turned the EUT on and measured the operating frequency after 2, 5, and 10 minutes.
- e. Repeated step 2 and 3 with the temperature chamber set to the lowest temperature.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
- 4.3.5 Deviation fromTest Standard

No deviation.

4.3.6 EUT Operating Conditions

Same as Item 4.1.6.

4.3.7 Test Result

	Frequemcy Stability Versus Temp.									
		0 Mi	nute	2 Mir	nutes	5 Mir	nutes	10 Minutes		
TEMP. (℃)	Power Supply (Vac)	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%	
50	120	13.55999	-0.00007	13.56001	0.00007	13.56001	0.00007	13.56	0.00000	
40	120	13.55994	-0.00044	13.55994	-0.00044	13.55995	-0.00037	13.55994	-0.00044	
30	120	13.56002	0.00015	13.56002	0.00015	13.56002	0.00015	13.56002	0.00015	
20	120	13.56005	0.00037	13.56005	0.00037	13.56005	0.00037	13.56004	0.00029	
10	120	13.55997	-0.00022	13.55998	-0.00015	13.55999	-0.00007	13.55998	-0.00015	
0	120	13.56006	0.00044	13.56004	0.00029	13.56005	0.00037	13.56006	0.00044	
-10	120	13.55999	-0.00007	13.55998	-0.00015	13.55997	-0.00022	13.55997	-0.00022	
-20	120	13.55999	-0.00007	13.55997	-0.00022	13.55999	-0.00007	13.55997	-0.00022	
-30	120	13.55994	-0.00044	13.55993	-0.00052	13.55995	-0.00037	13.55994	-0.00044	

	Frequemcy Stability Versus Voltage									
		0 Mi	nute	2 Mir	2 Minutes		5 Minutes		10 Minutes	
TEMP. (℃)	Power Supply (Vac)	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%	
	138	13.56005	0.00037	13.56005	0.00037	13.56005	0.00037	13.56004	0.00029	
20	120	13.56005	0.00037	13.56005	0.00037	13.56005	0.00037	13.56004	0.00029	
	102	13.56005	0.00037	13.56005	0.00037	13.56005	0.00037	13.56004	0.00029	

4.4 20dB bandwidth

4.4.1 Limits of 20dB Bandwidth Measurement

The 20dB bandwidth shall be specified in operating frequency band.

4.4.2 Test Setup

Same as Item 4.1.5.

4.4.3 Test Instruments

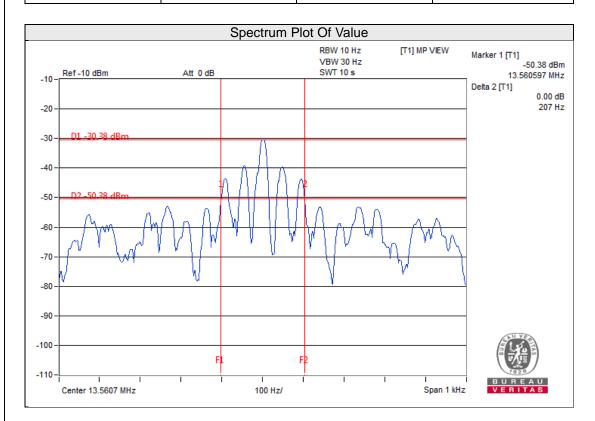
Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 10Hz RBW and 30Hz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.4.5 Deviation from Test Standard

No deviation.


4.4.6 EUT Operating Conditions

Same as Item 4.1.6.

4.4.7 Test Results

20dBc point (Low)	20dBc point (High)	Operating frequency band (MHz)	Pass/Fail
13.560597 MHz	13.560804 MHz	13.11 – 14.01	PASS

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---