

FCC TEST REPORT (PART 24)

REPORT NO .: RF120306E02-2

MODEL NO .: FD-400GT-CDMA

FCC ID: MQT-FD400GTCDMA

RECEIVED: Mar. 06, 2012

TESTED: Mar. 30 to Apr. 05, 2012

ISSUED: Apr. 13, 2012

PREPARED BY: XAC AUTOMATION CORP.

ADDRESS: 4F, No. 30, INDUSTRY E. RD. IX, SCIENCE-BASED INDUSTRIAL PARK, HSINCHU, TAIWAN

 ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
 LAB ADDRESS : No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan, R.O.C.
 TEST LOCATION (1): No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan, R.O.C.
 TEST LOCATION (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan, R.O.C.

This test report consists of 63 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

RELEA	SE CONTROL RECORD	4
1	CERTIFICATION	
2	SUMMARY OF TEST RESULTS	6
2.1	MEASUREMENT UNCERTAINTY	7
3	GENERAL INFORMATION	8
3.1	GENERAL DESCRIPTION OF EUT	8
3.2	DESCRIPTION OF TEST MODES	10
3.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	11
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	14
3.4	DESCRIPTION OF SUPPORT UNITS	15
3.5	CONFIGURATION OF SYSTEM UNDER TEST	16
4	TEST TYPES AND RESULTS	18
4.1	OUTPUT POWER MEASUREMENT	18
4.1.1	LIMITS OF OUTPUT POWER MEASUREMENT	18
4.1.2	TEST INSTRUMENTS	19
4.1.3	TEST PROCEDURES	21
4.1.4	TEST SETUP	22
4.1.5	EUT OPERATING CONDITIONS	23
4.1.6	TEST RESULTS	24
4.2	FREQUENCY STABILITY MEASUREMENT	26
4.2.1	LIMITS OF FREQUENCY STABILIITY MEASUREMENT	26
4.2.2	TEST INSTRUMENTS	26
4.2.3	TEST PROCEDURE	27
4.2.4	TEST SETUP	27
4.2.5	TEST RESULTS	28
4.3	OCCUPIED BANDWIDTH MEASUREMENT	29
4.3.1	LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT	29
4.3.2	TEST INSTRUMENTS	29
4.3.3	TEST SETUP	29
4.3.4	TEST PROCEDURES	30
4.3.5	EUT OPERATING CONDITION	30
4.3.6	TEST RESULTS	
4.4	BAND EDGE MEASUREMENT	34
4.4.1	LIMITS OF BAND EDGE MEASUREMENT	34
4.4.2	TEST INSTRUMENTS	34
4.4.3	TEST SETUP	
4.4.4	TEST PROCEDURES	35
4.4.5	EUT OPERATING CONDITION	35
4.4.6	TEST RESULTS	36
4.5	CONDUCTED SPURIOUS EMISSIONS	
4.5.1	LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	39
4.5.2	TEST INSTRUMENTS	39
4.5.3	TEST PROCEDURE	40

4.5.4	TEST SETUP	40
4.5.5	EUT OPERATING CONDITIONS	40
4.5.6	TEST RESULTS	41
4.6	RADIATED EMISSION MEASUREMENT (BELOW 1GHZ)	47
4.6.1	LIMITS OF RADIATED EMISSION MEASUREMENT	47
4.6.2	TEST INSTRUMENTS	48
4.6.3	TEST PROCEDURES	49
4.6.4	DEVIATION FROM TEST STANDARD	50
4.6.5	TEST SETUP	50
4.6.6	EUT OPERATING CONDITIONS	50
4.6.7	TEST RESULTS	51
4.7	RADIATED EMISSION MEASUREMENT (ABOVE 1GHZ)	54
4.7.1	LIMITS OF RADIATED EMISSION MEASUREMENT	54
4.7.2	TEST INSTRUMENTS	55
4.7.3	TEST PROCEDURES	56
4.7.4	DEVIATION FROM TEST STANDARD	56
4.7.5	TEST SETUP	57
4.7.6	EUT OPERATING CONDITIONS	57
4.7.7	TEST RESULTS	58
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	
6	INFORMATION ON THE TESTING LABORATORIES	62
7	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANG	
	TO THE EUT BY THE LAB	

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF120306E02-2	Original release	Apr. 13, 2012

1 CERTIFICATION

PRODUCT : Portable Terminal
BRAND NAME : First Data
MODEL NO.: FD-400GT-CDMA
TEST SAMPLE : R&D SAMPLE
PREPARED BY : XAC AUTOMATION CORP.
TESTED : Mar. 30 to Apr. 05, 2012
STANDARDS : FCC Part 24, Subpart E

The above equipment (Model: FD-400GT-CDMA) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY , DATE: Apr. 13, 2012 (Claire Kuan, Specialist) APPROVED BY , DATE: Apr. 13, 2012 (May Chen, Deputy Manager)

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 24 & Part 2						
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK			
2.1046 24.232	Maximum Output Power Limit: max. 2 watts e.i.r.p power	PASS	Meet the requirement of limit.			
2.1055 24.235	Frequency Stability AFC Freq. Error vs. Voltage AFC Freq. Error vs. Temperature Limit: max. ±2.5ppm	PASS	Meet the requirement of limit.			
2.1049 24.238(b)	Occupied Bandwidth	PASS	Meet the requirement of limit.			
24.238(b)	Band Edge Measurements	PASS	Meet the requirement of limit.			
2.1051 24.238	Conducted Spurious Emissions	PASS	Meet the requirement of limit.			
2.1053 24.238	Radiated Spurious Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -26.5dB at 3817.50MHz.			

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Radiated emissions (30MHz-1GHz)	3.81 dB
Radiated emissions (1GHz -18GHz)	2.19 dB
Radiated emissions (18GHz -40GHz)	2.56 dB

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Portable Terminal
MODEL NO.	FD-400GT-CDMA
POWER SUPPLY	DC 12V from adapter or DC7.4V from battery
MODULATION TYPE	EVDO, CDMA2000 (for CDMA)
OPERATING FREQUENCY	1851.25MHz ~ 1908.75MHz
NUMBER OF CHANNEL	1151
MAX. EIRP POWER	EVDO Mode: 23.2dBm (0.21Watts)
	CDMA2000 Mode: 23.5dBm (0.22Watts)
ANTENNA TYPE	Please see note
MAX. ANTENNA GAIN	Please see note
DATA CABLE	NA
I/O PORTS	Refer to user's manual
ACCESSORY DEVICES	Adapter x 1

NOTE:

1. There are RFID, EVDO and CDMA2000 technology used for the EUT. and the functions of EUT listed as below table:

Function	Report No.	
RFID	RF120306E02	
3G (Part 22)	RF120306E02-1	
3G (Part 24)	RF120306E02-2	

2. The EUT could be supplied with 7.4V battery or power adapter as the following table:

Item	Brand	Model No.	Spec.
Battery	CHENG UEI PRECISION INDUSTRY CO.,LTD	FD400	DC7.4V, 2300mAh(17.02Wh)
Adapter	DELTA		AC I/P: 100-240V, 50-60Hz, 1.0A AC input cable: Unshielded, 0.95m DC O/P: 12V, 3A DC output cable: Unshielded, 1.8m with one core

3. There are two antennas provided to this EUT, please refer to the following table:

RFID Antenna Spec.							
Brand	d Model No.		Antenna Type	Antenna Connector	Gain(dBi)	Frequency range (MHz)	
XAC	XAC ANTENNA BOARD FD400 (ROHS)		PCB (2 Layers)	NA	13	13.56	
EVDO /	EVDO / CDMA2000 Antenna Spec.						
Antenna Antenna Type Connector			Gain(dBi)			Frequency range (MHz to MHz)	
РСВ		NA	•	lain) ; -7.1dE 1ain) ; -1.7dE	· · ·	824~894 1850~1990	

4. The EUT was pre-tested in chamber under the following modes:

Pre-test Mode	Description	
Mode A	Battery mode	
Mode B	Adapter mode	

From the above modes, the worst case was found in **Mode B**. Therefore only the test data of the modes were recorded in this report.

- 5. The emission of the simultaneous operation (RFID, EVDO and CDMA2000) has been evaluated and no non-compliance found.
- 6. The communicated functions of EUT listed as below:

		CDMA (850&1900MHz)
3G	CDMA	\checkmark
	1*EVDO	\checkmark

7. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 DESCRIPTION OF TEST MODES

FOR CDMA:

788 channels are provided to this EUT in the CDMA1900 band. Therefore, the low, middle and high channels are chosen for testing.

	CHANNEL	FREQUENCY	TX MODE
LOW	25	1851.25 MHz	1x EV-DO, CDMA2000(SO2)
MIDDLE	600	1880.00 MHz	1x EV-DO, CDMA2000(SO2)
HIGH	1175	1908.75 MHz	1x EV-DO, CDMA2000(SO2)

NOTE:

1. Below 1 GHz, the channel 25, 600 and 1175 were pre-tested in chamber. The channel 25 was the worst case and chosen for final test.

- 2. Above 1 GHz, the channel 25, 600 and 1175 were tested individually.
- 3. The channel space is 0.05MHz.
- The EUT has 1x EV-DO, CDMA2000(SO32), CDMA2000(SO2), CDMA2000(SO33) & CDMA2000(SO55) functions. After pre-testing, CDMA2000(SO2) function is the worst case for all the emission tests.

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

FOR CDMA:								
EUT CONFIGURE	APPLICABLE TO					DESCRIPTION		
MODE	OP	FS	ОВ	BE	CE	RE<1G	RE ³ 1G	DESCRIPTION
-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
- V V V V Where OP: Output power OB: Occupied bandwidth CE: Conducted spurious emissions RE ³ 1G: Radiated emission above 1GHz			BE: Ba	quency sta nd edge : Radiated		pelow 1GHz		

OUTPUT POWER MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
25 to 1175	25, 600, 1175	1x EV-DO, CDMA

FREQUENCY STABILITY MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
25 to 1175	600	CDMA

OCCUPIED BANDWIDTH MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	
25 to 1175	25, 600, 1175	1x EV-DO,CDMA	

BAND EDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
25 to 1175	25, 1175	1x EV-DO,CDMA

CONDUCTED SPURIOUS EMISSIONS MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
25 to 1175	25, 600, 1175	CDMA

RADIATED EMISSION MEASUREMENT (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	TED CHANNEL MODULATION TECHNOLOGY	
25 to 1175	25, 600, 1175	CDMA	

RADIATED EMISSION MEASUREMENT (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	
25 to 1175	25, 600, 1175	CDMA	

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
OP	25deg. C, 63%RH	120Vac, 60Hz from adapter	Wen Yu
FS	25deg. C, 63%RH	7.4Vdc from battery	Wen Yu
OB	25deg. C, 63%RH	120Vac, 60Hz from adapter	Wen Yu
EM	25deg. C, 63%RH	120Vac, 60Hz from adapter	Wen Yu
BE	25deg. C, 63%RH	120Vac, 60Hz from adapter	Wen Yu
CE	25deg. C, 63%RH	120Vac, 60Hz from adapter	Wen Yu
RE < 1G	23deg. C, 65%RH	120Vac, 60Hz from adapter	Robert Cheng
RE ³ 1G	20deg. C, 65%RH	120Vac, 60Hz from adapter	Kent Liu

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 24 ANSI/TIA/EIA-603-C 2004

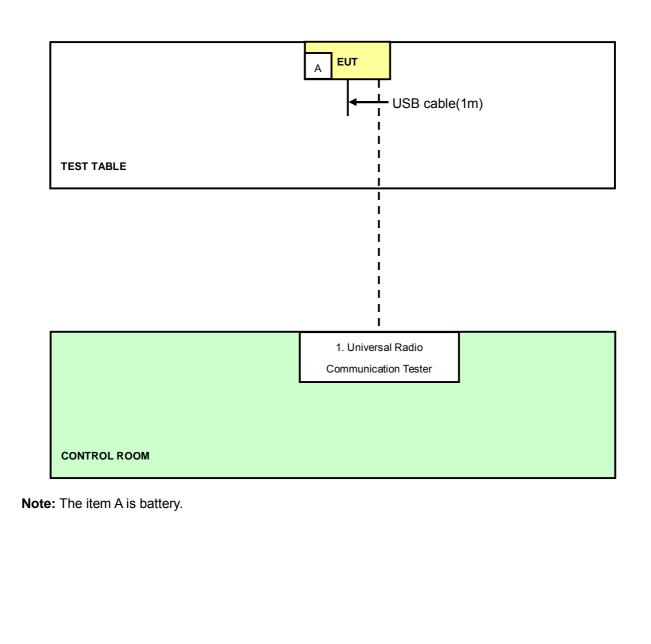
All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.4 DESCRIPTION OF SUPPORT UNITS

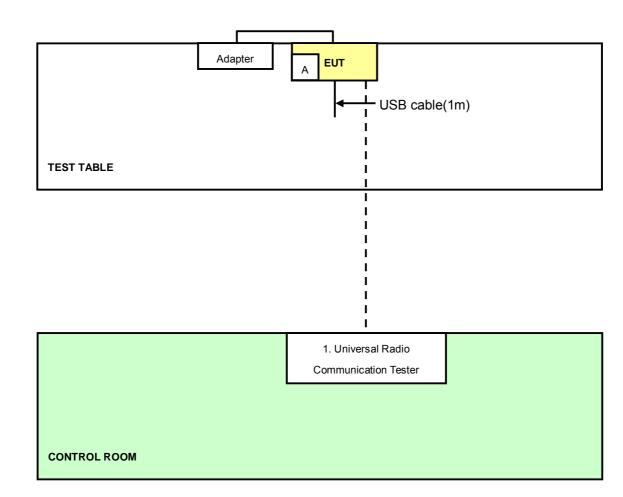
The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
	Universal Radio Communication Tester	R&S	CMU200	121040	NA


NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE: All power cords of the above support units are non shielded (1.8m).

3.5 CONFIGURATION OF SYSTEM UNDER TEST


For Frequency stability test:

Report No.:RF120306E02-2

For other test items:

Note: The item A is battery.

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

The radiated output power shall be according to the specific rule Part 24.232(c) that "Mobile / Portable station are limited to 2 watts e.i.r.p" and 24.232(e) specific that "Peak transmit power must be measure over any interval of continuous transmission using instrumentation calibration in terms of rms-equivalent voltage."

4.1.2 TEST INSTRUMENTS

EIRP POWER MEASUREMENT:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4446A	MY48250254	July 12, 2011	July 11, 2012
Agilent Pre-Selector	N9039A	MY46520311	July 12, 2011	July 11, 2012
Agilent Signal Generator	N5181A	MY49060517	July 12, 2011	July 11, 2012
Mini-Circuits Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-03	Nov. 15, 2011	Nov. 14, 2012
Agilent Pre-Amplifier	8449B	3008A02578	July 04, 2011	July 03, 2012
SPACEK LABS	SLKKa-48-6	9K16	Nov. 15, 2011	Nov. 14, 2012
SCHWARZBECK Trilog Broadband Antenna	VULB 9168	9168-360	Apr. 14, 2011	Apr. 13, 2012
AISI Horn_Antenna	AIH.8018	0000320091110	Nov. 14, 2011	Nov. 13, 2012
SCHWARZBECK Horn_Antenna	BBHA 9170	9170-424	Oct. 07, 2011	Oct. 06, 2012
RF CABLE	NA	RF104-201 RF104-203 RF104-204	Dec. 26, 2011	Dec. 25, 2012
RF Cable	NA	CHGCAB_001	Oct. 07, 2011	Oct. 06, 2012
Software	ADT_Radiated_ V8.7.05	NA	NA	NA
CT Antenna Tower & Turn Table	NA	NA	NA	NA

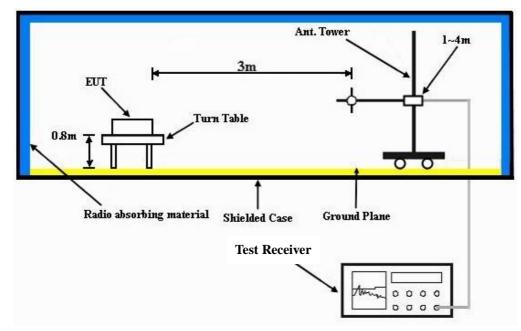
Iurn lable
Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
3. The test was performed in 966 Chamber No. G.
4. The FCC Site Registration No. is 966073.
5. The VCCI Site Registration No. is G-137.
6. The CANADA Site Registration No. is IC 7450H-2.
7. Tested Date: Mar. 30, 2012

CONDUCTED POWER MEASUREMENT:

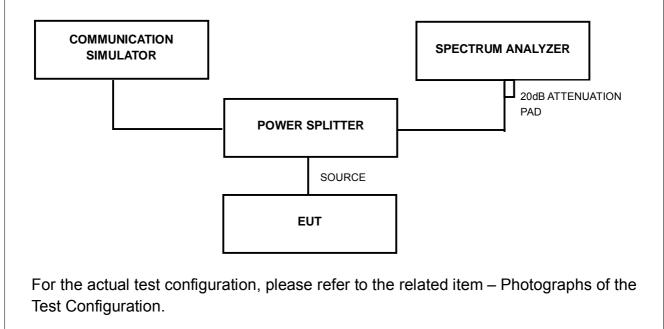
-							
	DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL		
	R&S SPECTRUM ANALYZER	FSP40	100037	Nov. 12, 2011	Nov. 11, 2012		
	OVEN	MHU-225AU	911033	Dec. 12, 2011	Dec. 11, 2012		
	AC POWER SOURCE	6205	1140503	NA	NA		

NOTE:

- 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.
- 2. Test date: Mar. 30, 2012.


4.1.3 TEST PROCEDURES

- a. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 25, 600 and 1175 (CDMA) (low, middle and high operational frequency range.)
- b. The conducted output power used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. The path loss included the splitter loss, cable loss and 20dB pad loss. The spectrum set RB/VB 3MHz (CDMA), then read peak power value and record to the test. (All transmitted path loss shall be considered in the test report data.)
- c. Substitution method is used for EIRP measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- d. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable . Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step c. Record the power level of S.G
- e. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.


4.1.4 TEST SETUP

EIRP POWER MEASUREMENT:

For the actual test configuration, please refer to the attached file (Test Setup Photo).

CONDUCTED POWER MEASUREMENT:

4.1.5 EUT OPERATING CONDITIONS

- b. The EUT makes a call to the communication simulator.
- c. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.

4.1.6 TEST RESULTS

FOR CDMA:

1x EV-DO MODE

	WORST CASE CONDUCTED POWER									
	FREQ. Rev. A Rev. 0 CORR.		CORR.	Rev	v. A	Re	v. 0			
CHANNEL	(MHz)		FACTOR		FACTOR	OUTPUT	POWER			
	()	RAW VAL	UE (dBm)	(dB)	dBm	mW	dBm	mW		
25	1851.25	21.3	21.3	2.7	24.0	251.189	24.0	251.189		
600	1880	21.8	21.9	2.7	24.5	281.838	24.6	288.403		
1175	1908.75	21.5	21.5	2.7	24.2	263.027	24.2	263.027		

CDMA 2000 MODE

	CDMA 2000 CONDUCTED POWER												
		CDMA 2000		RAW VALUE (dBm)			0000	OUTPUT POWER (dBm)					
CHAN.	FREQ. (MHz)	RC	SO2	SO55	TDSO SO32 (FCH)	TDSO SO32 (FCH+ SCH)	SO33	CORR. FACTOR (dB)	SO2	SO55	TDSO SO32 (FCH)	TDSO SO32 (FCH+ SCH)	SO33
25	1851.25	RC1	21.2	21.2	-	-	21.1	2.7	23.9	23.9	-	-	23.8
25		RC3	21.1	21.0	21.0	21.1	20.9	2.7	23.8	23.7	23.7	23.8	23.6
600	1880	RC1	21.8	21.7	-	-	21.7	2.7	24.5	24.4	-	-	24.4
000	1880	RC3	21.7	21.7	21.6	21.5	21.6	2.7	24.4	24.4	24.3	24.2	24.3
1175	1908.75	RC1	21.6	21.6	_	-	21.5	2.7	24.3	24.3	-	-	24.2
1175	1900.70	RC3	21.6	21.5	21.5	21.6	21.4	2.7	24.3	24.2	24.2	24.3	24.1

REMARKS: 1. Peak Output Power (dBm) = Raw Value (dBm) + Correction Factor (dB).

2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB) + 20dB Pad.

1x EV-DO MODE

	EIRP POWER								
	FREQ. S.G.		S.G. VALUE (dBm)		CORR. OUTPUT POWER				
CHANNEL	(MHz)		FACTOR (dB)			Rev	v. A	Re	v. 0
		Rev. A	Rev. 0	(ub)	dBm	Watt	dBm	Watt	
25	1851.25	15.8	15.7	6.6	22.4	0.17	22.3	0.17	
600	1880	16.1	15.9	6.7	22.8	0.19	22.6	0.18	
1175	1908.75	16.5	16.2	6.7	23.2	0.21	22.9	0.19	

CDMA 2000 MODE

	EIRP POWER (SO2)								
CHANNEL NO.	FREQUENCY (MHz)	S.G. VALUE (dBm)	CORRECTION	OUTPUT POWER					
			FACTOR (dB)	dBm	Watt				
25	1851.25	15.9	6.6	22.5	0.18				
600	1880	16.3	6.7	23.0	0.20				
1175	1908.75	16.8	6.7	23.5	0.22				

REMARKS: 1. Peak Output Power (dBm) = S.G Value (dBm) + Correction Factor (dB).

2. Correction Factor (dB) = substitution Antenna Gain (dBi) + Cable Loss (dB) + Free Space Loss (dB).

4.2 FREQUENCY STABILITY MEASUREMENT

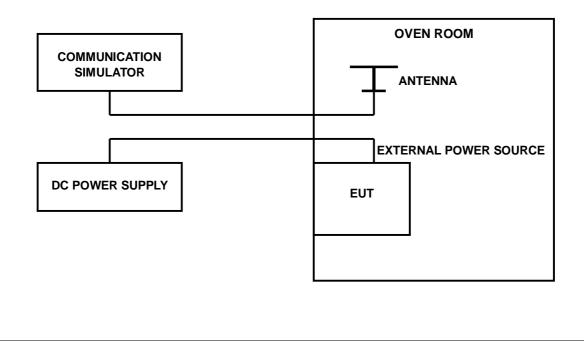
4.2.1 LIMITS OF FREQUENCY STABILIITY MEASUREMENT

According to the FCC part 24.235 shall be tested the frequency stability. The rule is defined that" The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block." The frequency error rate is according to the JTC standard that the frequency error rate shall be accurate to within 2.5ppm of the received frequency from the base station. The test extreme voltage is according to the 2.1055(d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the extreme temperature rule is comply with the 2.1055(a)(1) –30°C ~50°C.

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP40	100037	Nov. 12, 2011	Nov. 11, 2012
OVEN	MHU-225AU	911033	Dec. 12, 2011	Dec. 11, 2012
AC POWER SOURCE	6205	1140503	NA	NA

4.2.2 TEST INSTRUMENTS

NOTE:


1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. Test date: Mar. 30, 2012.

4.2.3 TEST PROCEDURE

- a. Because of the measure the carrier frequency under the condition of the AFC lock, it shall be used the mobile station in the CDMA link mode. This is accomplished with the use of the R&S CMU200 / JRC NJZ-2000 simulator station. The oven room could control the temperatures and humidity. The CDMA link channel is the 384.
- b. Power must be removed when changing from one temperature to another or one voltage to another voltage. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- c. EUT is connected the external power supply to control the DC output power. The various Volts from the minimum 6.29 Volts to 8.51 Volts. Each step shall be record the frequency error rate.
- d. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}$ C during the measurement testing.
- e. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

4.2.4 TEST SETUP

4.2.5 TEST RESULTS

FOR CDMA:

AFC FREQUENCY ERROR vs. VOLTAGE						
VOLTAGE (Volts) FREQUENCY ERROR (Hz) FREQUENCY ERROR (ppm) LIMIT (ppm)						
6.29	-17	-0.009	2.5			
8.51 -20 -0.011 2.5						

	AFC FREQUENCY ERROR vs. TEMP.							
ТЕМР. (°С)	FREQUENCY ERROR (Hz)	FREQUENCY ERROR (ppm)	LIMIT (ppm)					
50	-26	-0.014	2.5					
40	-24	-0.013	2.5					
30	-23	-0.012	2.5					
20	-18	-0.010	2.5					
10	-16	-0.009	2.5					
0	-17	-0.009	2.5					
-10	-21	-0.011	2.5					
-20	-24	-0.013	2.5					
-30	-27	-0.014	2.5					

4.3 OCCUPIED BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF OCCUPIED BANDWIDTH MEASUREMENT

The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP40	100037	Nov. 12, 2011	Nov. 11, 2012
OVEN	MHU-225AU	911033	Dec. 12, 2011	Dec. 11, 2012
AC POWER SOURCE	6205	1140503	NA	NA

NOTE:

1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. Test date: Mar. 30, 2012.

4.3.3 TEST SETUP

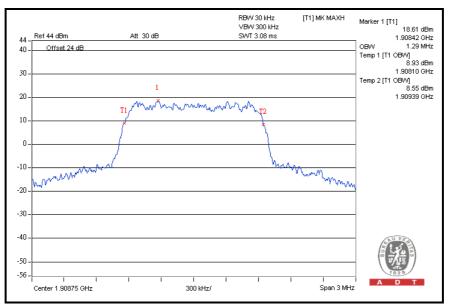
Same as Item 4.2.4 (Conducted Power Setup)

4.3.4 TEST PROCEDURES

- a. The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 25, 600 and 1175 (CDMA) (low, middle and high operational frequency range.)
- b. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- c. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

4.3.5 EUT OPERATING CONDITION

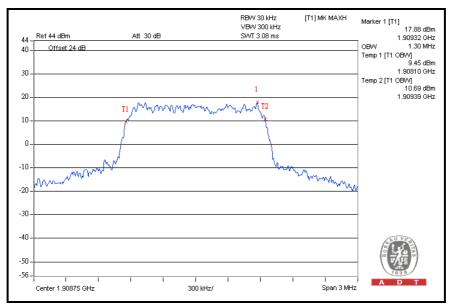
Same as Item 4.1.5


4.3.6 TEST RESULTS

FOR CDMA

CDMA 2000:

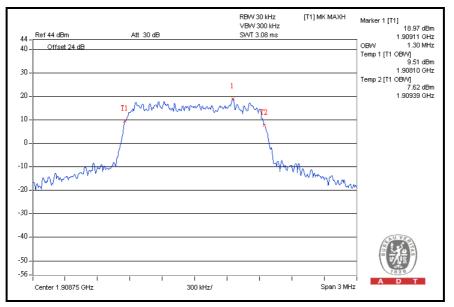
CHANNEL FREQUENCY (MHz)		99% OCCUPIED BANDWIDTH (MHz)		
25	1851.25	1.29		
600	1880	1.28		
1175	1908.75	1.29		



1x EV-DO Rev. A:

CHANNEL	FREQUENCY (MHz)	99% OCCUPIED BANDWIDTH (MHz)			
25	1851.25	1.29			
600	1880	1.28			
1175	1908.75	1.30			

CH 1175



1x EV-DO Rev. 0

CHANNEL	FREQUENCY (MHz)	99% OCCUPIED BANDWIDTH (MHz)
25	1851.25	1.29
600	1880	1.29
1175	1908.75	1.30

4.4 BAND EDGE MEASUREMENT

4.4.1 LIMITS OF BAND EDGE MEASUREMENT

According to FCC 24.238(a) specified that power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP40	100037	Nov. 12, 2011	Nov. 11, 2012
OVEN	MHU-225AU	911033	Dec. 12, 2011	Dec. 11, 2012
AC POWER SOURCE	6205	1140503	NA	NA

NOTE:

1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. Test date: Mar. 30, 2012.

4.4.3 TEST SETUP

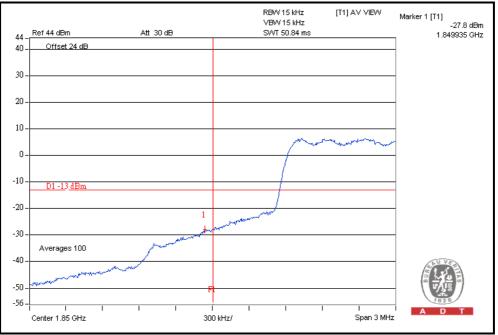
Same as Item 4.2.4 (Conducted Power Setup)

4.4.4 TEST PROCEDURES

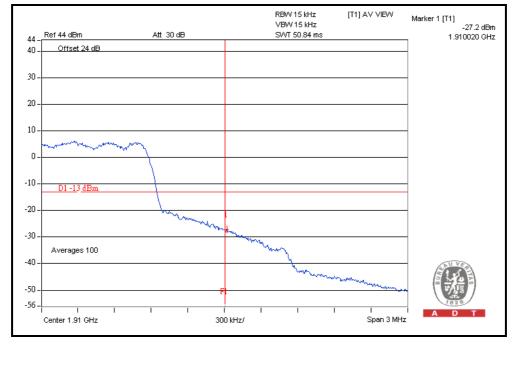
- a. The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 2 channels, 25 and 1175 (CDMA) (low and high operational frequency range.)
- b. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- c. The center frequency of spectrum is the band edge frequency and span is 1.5 MHz. RB of the spectrum is 3kHz and VB of the spectrum is 10kHz.
- d. Record the max trace plot into the test report.

4.4.5 EUT OPERATING CONDITION

Same as Item 4.1.5

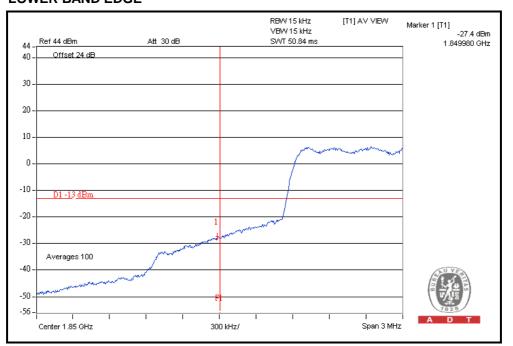


4.4.6 TEST RESULTS

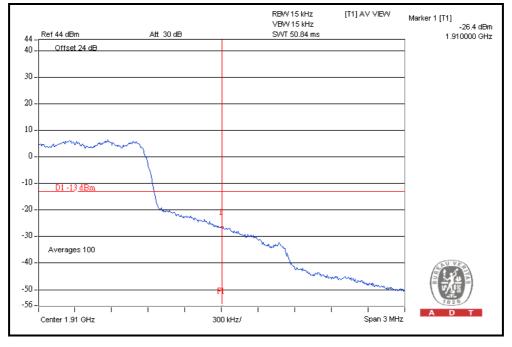

FOR CDMA:

CDMA 2000:

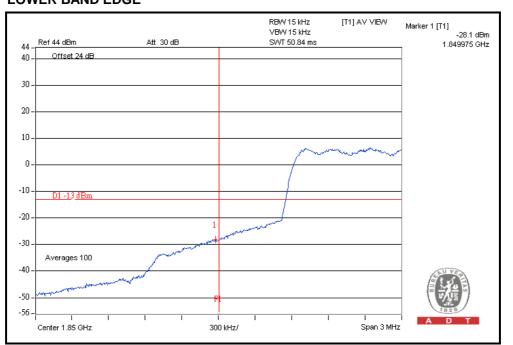
LOWER BAND EDGE



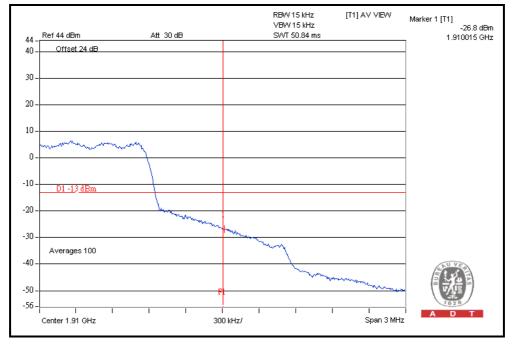
HIGHER BAND EDGE



1x EV-DO Rev. A: LOWER BAND EDGE



HIGHER BAND EDGE



1x EV-DO Rev. 0: LOWER BAND EDGE

HIGHER BAND EDGE

4.5 CONDUCTED SPURIOUS EMISSIONS

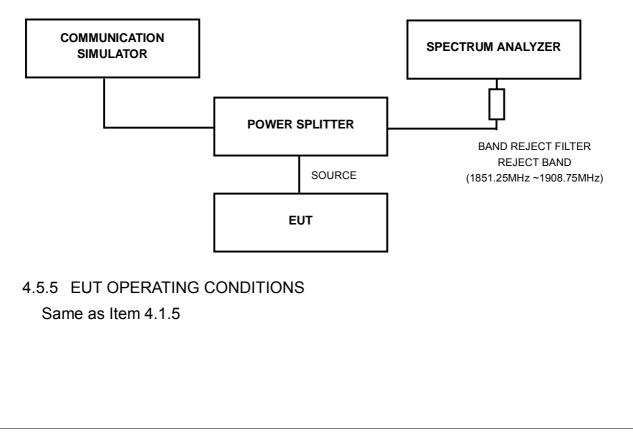
4.5.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13 dBm.

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP40	100037	Nov. 12, 2011	Nov. 11, 2012
OVEN	MHU-225AU	911033	Dec. 12, 2011	Dec. 11, 2012
AC POWER SOURCE	6205	1140503	NA	NA
Wainwright Instruments Band Reject Filter	WRCG1850/191 0-1830/1930-60/ 10SS	SN1	NA	NA
* Wainwright Instruments High Pass Filter	WHK3.1/18G-10 SS	SN1	NA	NA

4.5.2 TEST INSTRUMENTS

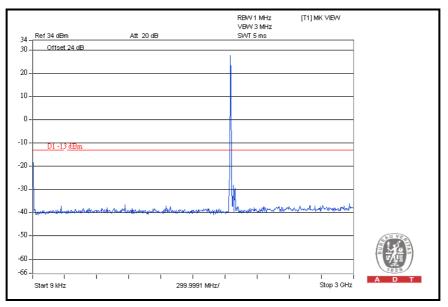
NOTE:

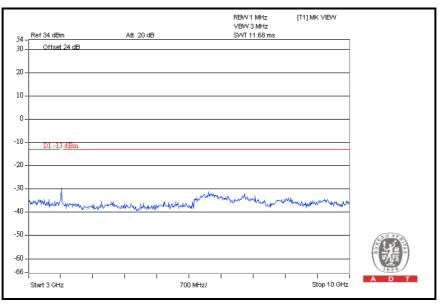

1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. Test date: Mar. 30, 2012.

4.5.3 TEST PROCEDURE

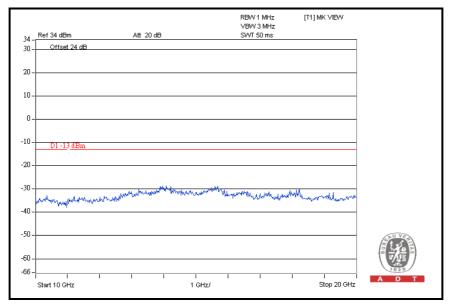
- a. The EUT makes a phone call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 25 and 1175 (CDMA) (low, middle and high operational frequency range.)
- b. The conducted spurious emission used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- c. When the spectrum scanned from 9kHz to 3GHz, it shall be connected to the band reject filter attenuated the carried frequency. The spectrum set RB=1MHz, VB=3MHz.
- d. When the spectrum scanned from 3GHz to 20GHz, it shall be connected to the high pass filter attenuated the carried frequency. The spectrum set RB=1MHz, VB=3MHz.


4.5.4 TEST SETUP


4.5.6 TEST RESULTS

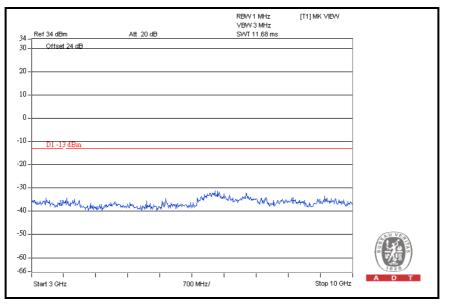
FOR CDMA:

CH 25: 9kHz ~ 3GHz

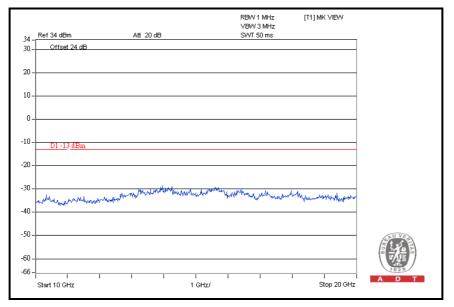


3GHz ~ 10GHz

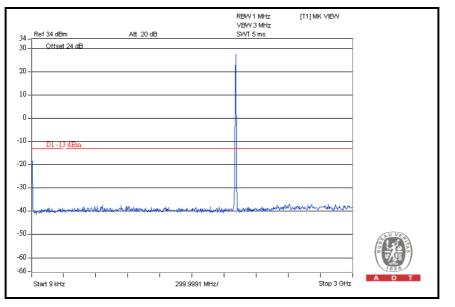
10GHz ~ 20GHz



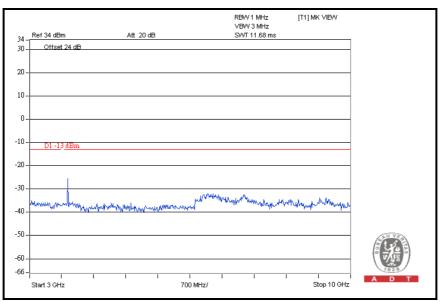
RBW 1 MHz VBW 3 MHz SWT 5 ms [T1] MK VIEW 34 - Ref 34 dBm 30 - Offer Att 20 dB Offset 24 dB 20 10 -0 -10 D1 -1. -20 -30and the second states of the second states and the -40 --50 -60 --66 -299.9991 MHz/ Stop 3 GHz . Start 9 kHz


CH 600: 9kHz ~ 3GHz

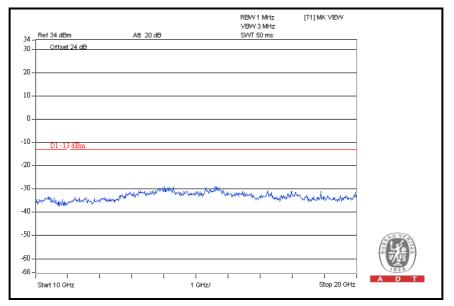
3GHz ~ 10GHz



10GHz ~ 20GHz



CH 1175: 9kHz ~ 3GHz



$3GHz \sim 10GHz$

10GHz ~ 20GHz

4.6 RADIATED EMISSION MEASUREMENT (BELOW 1GHz)

4.6.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13dBm.

LIMIT (dBm)	EQUIVALENT FIELD STRENGTH AT 3m (dBuV/m) (NOTE)
-13	82.22

NOTE: The following formula is used to convert the equipment radiated power to field strength.

E = $[100000\sqrt{(30P)}] / 3 \text{ uV/m}$, where P is Watts.

4.6.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4446A	MY48250254	July 12, 2011	July 11, 2012
Agilent Pre-Selector	N9039A	MY46520311	July 12, 2011	July 11, 2012
Agilent Signal Generator	N5181A	MY49060517	July 12, 2011	July 11, 2012
Mini-Circuits Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-03	Nov. 15, 2011	Nov. 14, 2012
Agilent Pre-Amplifier	8449B	3008A02578	July 04, 2011	July 03, 2012
SPACEK LABS	SLKKa-48-6	9K16	Nov. 15, 2011	Nov. 14, 2012
SCHWARZBECK Trilog Broadband Antenna	VULB 9168	9168-360	Apr. 14, 2011	Apr. 13, 2012
AISI Horn_Antenna	AIH.8018	0000320091110	Nov. 14, 2011	Nov. 13, 2012
SCHWARZBECK Horn_Antenna	BBHA 9170	9170-424	Oct. 07, 2011	Oct. 06, 2012
RF CABLE	NA	RF104-201 RF104-203 RF104-204	Dec. 26, 2011	Dec. 25, 2012
RF Cable	NA	CHGCAB_001	Oct. 07, 2011	Oct. 06, 2012
Software	ADT_Radiated_ V8.7.05	NA	NA	NA
CT Antenna Tower & Turn Table	NA	NA	NA	NA

 Turn Table
 Turn Table

 Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

 2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

 3. The test was performed in 966 Chamber No. G.

 4. The FCC Site Registration No. is 966073.

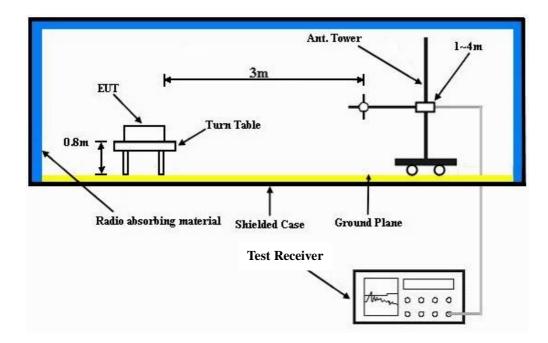
 5. The VCCI Site Registration No. is G-137.

 6. The CANADA Site Registration No. is IC 7450H-2.

 7. Tested Date: Apr. 04 to 05, 2012

4.6.3 TEST PROCEDURES

- a. Substitution method is used for EIRP measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value " of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.


NOTE: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.6.6 EUT OPERATING CONDITIONS

Same as Item 4.1.5

4.6.7 TEST RESULTS

FOR CDMA:

CHANNEL TX Channel 25 FREQUENCY RANGE Below 1000 MH							00 MHz						
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)					
1	109.46	37.5 QP	82.3	-44.8	2.00 H	250	26.57	10.94					
2	157.30	43.1 QP	82.3	-39.2	2.00 H	77	28.44	14.65					
3	205.15	46.1 QP	82.3	-36.2	1.50 H	60	34.55	11.59					
4	223.98	42.9 QP	82.3	-39.4	1.50 H	91	30.61	12.33					
5	327.36	33.3 QP	82.3	-49.0	1.00 H	115	17.30	16.04					
6	533.77	30.7 QP	82.3	-51.6	2.00 H	329	9.62	21.10					
		ANTENN		/ & TEST D	ISTANCE: V	ERTICAL A	Г 3 М						
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)					
1	31.07	36.7 QP	82.3	-45.6	1.00 V	131	23.69	13.00					
2	71.09	36.8 QP	82.3	-45.5	1.00 V	329	24.58	12.24					
3	108.99	43.7 QP	82.3	-38.7	1.00 V	70	32.78	10.87					
4	118.70	40.8 QP	82.3	-41.5	1.50 V	63	28.40	12.38					
5	214.03	40.9 QP	82.3	-41.4	1.00 V	44	28.99	11.94					
6	233.21	38.3 QP	82.3	-44.0	1.50 V	360	25.57	12.69					

CHANNEL			TX Channel 600			FREQUENC	Y RANGE	Below 1000 MHz					
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
NO.	D. FREQ. (MHz) EMISSION LIMIT (dBuV/m) (dB) ANTENNA HEIGHT (m) TABLE (dBuV/m) (dB) (dB) (dB) (dB) (Degree)						RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)					
1	109.46	37.7 0	QΡ	82.3	-44.6	2.00 H	252	26.73	10.94				
2	157.30	43.1 0	QΡ	82.3	-39.2	2.00 H	76	28.46	14.65				
3	205.15	46.2 0	QΡ	82.3	-36.1	1.50 H	62	34.64	11.59				
4	223.98	42.9 0	QΡ	82.3	-39.4	1.50 H	94	30.54	12.33				
5	327.36	33.4 0	QΡ	82.3	-48.9	1.00 H	116	17.38	16.04				
6	533.77	30.8 0	QΡ	82.3	-51.5	2.00 H	324	9.73	21.10				
		ANTE	NNA	POLARITY	(& TEST D	ISTANCE: V	ERTICAL A	Т 3 М					
NO.	FREQ. (MHz)	EMISSI LEVE (dBuV/	L	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	31.07	36.7 0	QΡ	82.3	-45.6	1.00 V	135	23.71	13.00				
2	71.09	36.7 0	QΡ	82.3	-45.6	1.00 V	325	24.49	12.24				
3	108.99	43.8 0	QΡ	82.3	-38.5	1.00 V	76	32.90	10.87				
4	118.70	40.7 0	QΡ	82.3	-41.6	1.50 V	67	28.30	12.38				
5	214.03	40.9 0	QΡ	82.3	-41.5	1.00 V	45	28.91	11.94				
6	233.21	38.3 0	QΡ	82.3	-44.0	1.50 V	358	25.62	12.69				

CHANNEL			Channel 117	5	FREQUENC	Y RANGE	Below 1000 MHz						
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)					
1	109.46	37.5 QP	82.3	-44.8	2.00 H	252	26.53	10.94					
2	157.30	43.1 QP	82.3	-39.2	2.00 H	74	28.47	14.65					
3	205.15	46.2 QP	82.3	-36.1	1.50 H	62	34.62	11.59					
4	223.98	42.9 QP	82.3	-39.4	1.50 H	92	30.54	12.33					
5	327.36	33.4 QP	82.3	-48.9	1.00 H	116	17.38	16.04					
6	533.77	30.8 QP	82.3	-51.5	2.00 H	326	9.66	21.10					
		ANTEN		/ & TEST D	ISTANCE: V	ERTICAL A	Т 3 М						
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)					
1	31.07	36.7 QP	82.3	-45.6	1.00 V	138	23.67	13.00					
2	71.09	36.8 QP	82.3	-45.6	1.00 V	324	24.51	12.24					
3	108.99	43.7 QP	82.3	-38.6	1.00 V	75	32.81	10.87					
4	118.70	40.6 QP	82.3	-41.7	1.50 V	68	28.21	12.38					
5	214.03	40.8 QP	82.3	-41.5	1.00 V	44	28.84	11.94					
6	233.21	38.3 QP	82.3	-44.0	1.50 V	354	25.57	12.69					

4.7 RADIATED EMISSION MEASUREMENT (ABOVE 1GHz)

4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13 dBm.

4.7.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4446A	MY48250254	July 12, 2011	July 11, 2012
Agilent Pre-Selector	N9039A	MY46520311	July 12, 2011	July 11, 2012
Agilent Signal Generator	N5181A	MY49060517	July 12, 2011	July 11, 2012
Mini-Circuits Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-03	Nov. 15, 2011	Nov. 14, 2012
Agilent Pre-Amplifier	8449B	3008A02578	July 04, 2011	July 03, 2012
SPACEK LABS	SLKKa-48-6	9K16	Nov. 15, 2011	Nov. 14, 2012
SCHWARZBECK Trilog Broadband Antenna	VULB 9168	9168-360	Apr. 14, 2011	Apr. 13, 2012
AISI Horn_Antenna	AIH.8018	0000320091110	Nov. 14, 2011	Nov. 13, 2012
SCHWARZBECK Horn_Antenna	BBHA 9170	9170-424	Oct. 07, 2011	Oct. 06, 2012
RF CABLE	NA	RF104-201 RF104-203 RF104-204	Dec. 26, 2011	Dec. 25, 2012
RF Cable	NA	CHGCAB_001	Oct. 07, 2011	Oct. 06, 2012
Software	ADT_Radiated_ V8.7.05	NA	NA	NA
CT Antenna Tower & Turn Table	NA	NA	NA	NA

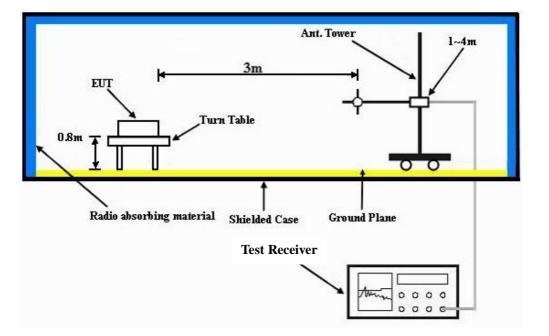
 Turn Table
 Turn Table

 Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are

The calibration interval of the above test instruments is 12 months and the calibration traceable to NML/ROC and NIST/USA.
 The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
 The test was performed in 966 Chamber No. G.
 The FCC Site Registration No. is 966073.
 The VCCI Site Registration No. is G-137.
 The CANADA Site Registration No. is IC 7450H-2.
 Tested Date: Apr. 04 to 05, 2012

4.7.3 TEST PROCEDURES

- a. Substitution method is used for EIRP measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.


NOTE: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

4.7.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.7.6 EUT OPERATING CONDITIONS

Same as Item 4.1.5

4.7.7 TEST RESULTS

FOR CDMA BAND:

СНА	NNEL	ТХ (Channel 25		FREQUENC RANGE	Y	Above 1000 MHz						
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M												
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGL (Degre	E VALUE	CORRECTION FACTOR (dB/m)					
1	3702.50	55.1 PK	82.3	-27.2	1.43 H	175	19.76	35.34					
2	5553.75	47.4 PK	82.3	-34.9	1.42 H	171	5.56	41.84					
3	7405.00	52.6 PK	82.3	-29.7	1.41 H	175	5.10	47.50					
4	9256.25	53.0 PK	82.3	-29.3	1.40 H	171	5.91	47.09					
5	11107.50	53.6 PK	82.3	-28.7	1.39 H	177	4.80	48.80					
6	12958.80	53.6 PK	82.3	-28.7	1.40 H	171	3.23	50.37					
		ANTENNA		/ & TEST D	ISTANCE: V	ERTICA	L AT 3 M						
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGL (Degree	E VALUE	CORRECTION FACTOR (dB/m)					
1	3702.50	53.3 PK	82.3	-29.0	1.30 V	177	17.96	35.34					
2	5553.75	46.9 PK	82.3	-35.4	1.30 V	181	5.06	41.84					
3	7405.00	52.5 PK	82.3	-29.8	1.28 V	171	5.00	47.50					
4	9256.25	52.7 PK	82.3	-29.6	1.29 V	183	5.61	47.09					
5	11107.50	54.4 PK	82.3	-27.9	1.30 V	169	5.60	48.80					
6	12958.80	53.0 PK	82.3	-29.3	1.30 V	172	2.63	50.37					

CHANNEL TX Channel 600 FREQUENCY RANGE Above 1000						/e 1000 Mł	Ηz					
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO. FREQ. EMISS (MHz) (dBu)			LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABL ANGL (Degre	E	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	3760.00	55.3 Pł	82.3	-27.0	1.30 H	158		19.65	35.65			
2	5640.00	47.4 Pł	82.3	-34.9	1.40 H	176		5.30	42.10			
3	7520.00	52.5 Pł	82.3	-29.8	1.42 H	172		5.26	47.24			
4	9400.00	52.0 Pł	82.3	-30.3	1.37 H	170		5.12	46.88			
5	11280.00	53.2 Pł	82.3	-29.1	1.33 H	168		4.17	49.03			
6	13160.00	53.7 Pł	82.3	-28.6	1.35 H	157		3.03	50.67			
		ANTEN	INA POLARIT'	Y & TEST D	ISTANCE: V	ERTICA	L AI	Г З М				
NO.	FREQ. (MHz)	EMISSIC LEVEL (dBuV/n	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABL ANGL (Degre	E	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	3760.00	52.9 Pł	82.3	-29.4	1.25 V	169		17.25	35.65			
2	5640.00	46.7 Pł	82.3	-35.6	1.33 V	176		4.60	42.10			
3	7520.00	51.8 Ph	82.3	-30.5	1.26 V	149		4.56	47.24			
4	9400.00	53.0 Pł	82.3	-29.3	1.25 V	177		6.12	46.88			
5	11280.00	54.0 Ph	82.3	-28.3	1.21 V	173		4.97	49.03			
6	13160.00	52.8 Ph	82.3	-29.5	1.23 V	169		2.13	50.67			

СНА	NNEL	ТХ	Channel 117	5	FREQUENC RANGE	Above 1000 MHz								
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M													
NO. FREQ. EMISS (MHz) (dBu)			LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABL ANGL (Degre	.E	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)					
1	3817.50	55.8 PK	82.3	-26.5	1.40 H	172		19.90	35.90					
2	5726.25	46.4 PK	82.3	-35.9	1.36 H	135		4.06	42.34					
3	7635.00	52.3 PK	82.3	-30.0	1.38 H	157		5.05	47.25					
4	9543.75	52.7 PK	82.3	-29.6	1.39 H	167		5.65	47.05					
5	11452.50	52.8 PK	82.3	-29.5	1.43 H	171		3.99	48.81					
6	13361.30	53.1 PK	82.3	-29.2	1.34 H	187		2.14	50.96					
		ANTENN		/ & TEST D	ISTANCE: V	ERTICA	AL AT 3	B M						
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABL ANGL (Degre	.E	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)					
1	3817.50	53.2 PK	82.3	-29.1	1.33 V	141		17.30	35.90					
2	5726.25	46.9 PK	82.3	-35.4	1.24 V	169		4.56	42.34					
3	7635.00	51.6 PK	82.3	-30.7	1.20 V	164		4.35	47.25					
4	9543.75	52.4 PK	82.3	-29.9	1.25 V	176		5.35	47.05					
5	11452.50	54.4 PK	82.3	-27.9	1.25 V	176		5.59	48.81					
6	13661.30	52.9 PK	82.3	-29.4	1.30 V	161		1.40	51.50					

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation and authorization certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5.phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26052943 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

7 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No modifications were made to the EUT by the lab during the test.

---END----