Appendix B: SAR System Check Plots

Date: 2021/7/6

Issue Date: 8/4/2021

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

System Validation_Head_2450MHz

DUT: D2450V2-SN:988; Type: D2450V2; Serial: D2450V2-SN:988

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz);

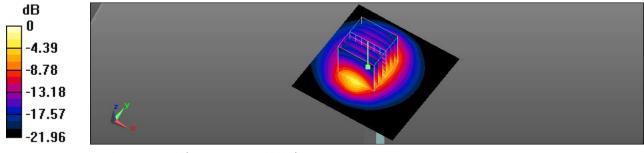
Frequency: 2450 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2450 MHz; σ = 1.86 S/m; ε_r = 38.988; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:


- Probe: EX3DV4 SN3901; ConvF(7.52, 7.52, 7.52) @ 2450 MHz; Calibrated: 2020/9/23
 Modulation Compensation:
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1360; Calibrated: 2020/9/2
- Phantom: ELI v5.0_1213; Type: QDOVA001BB; Serial: 1213
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/2450MHz/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 22.3 W/kg

Configuration/2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.8 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.24 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 49.7% Maximum value of SAR (measured) = 22.0 W/kg

0 dB = 22.0 W/kg = 13.42 dBW/kg

Date/Time: 2021/7/7

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

System Validation_Head_5250MHz

DUT: D5GHzV2 - SN1244; Type: D5GHzV2; Serial: SN1244

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5250 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5250 MHz; σ = 4.779 S/m; ε_r = 36.433; ρ = 1000 kg/m³

Phantom section: Flat Section

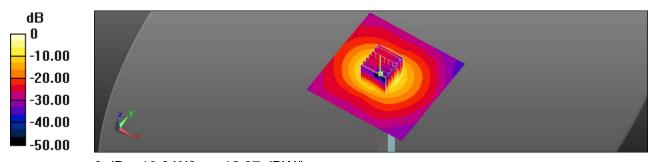
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3901; ConvF(5.11, 5.11, 5.11) @ 5250 MHz; Calibrated: 2020/9/23
 - Modulation Compensation:
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 22.0
- Electronics: DAE4 Sn1360; Calibrated: 2020/9/2
- Phantom: ELI v5.0 1213; Type: QDOVA001BB; Serial: 1213
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/5250MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.0 W/kg

Configuration/5250MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=1.4mm

Reference Value = 59.27 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.15 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 64.8% Maximum value of SAR (measured) = 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

Issue Date: 8/4/2021

Date: 2021/7/8

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

System Validation_Head_5600MHz

DUT: D5GHzV2 - SN1244; Type: D5GHzV2; Serial: SN1244

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5600 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5600 MHz; σ = 5.123 S/m; ε_r = 34.863; ρ = 1000 kg/m³

Phantom section: Flat Section

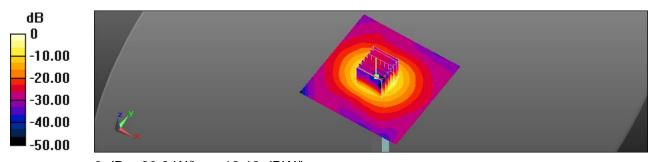
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3901; ConvF(4.5, 4.5, 4.5) @ 5600 MHz; Calibrated: 2020/9/23
 - Modulation Compensation:
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 22.0
- Electronics: DAE4 Sn1360; Calibrated: 2020/9/2
- Phantom: ELI v5.0 1213; Type: QDOVA001BB; Serial: 1213
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/5600MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.0 W/kg

Configuration/5600MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=1.4mm

Reference Value = 59.39 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 33.7 W/kg

SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.22 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 63.8% Maximum value of SAR (measured) = 20.8 W/kg

0 dB = 20.8 W/kg = 13.18 dBW/kg

Date: 2021/7/8

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

System Validation_Head_5800MHz

DUT: D5GHzV2 - SN1244; Type: D5GHzV2; Serial: SN1244

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5800 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5800 MHz; σ = 5.34 S/m; ε_r = 34.515; ρ = 1000 kg/m³

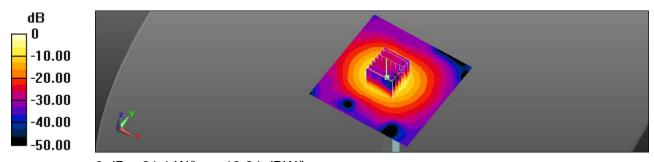
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3901; ConvF(4.52, 4.52, 4.52) @ 5800 MHz; Calibrated: 2020/9/23
 - Modulation Compensation:
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 22.0
- Electronics: DAE4 Sn1360; Calibrated: 2020/9/2
- Phantom: ELI v5.0 1213; Type: QDOVA001BB; Serial: 1213
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/5800MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.1 W/kg


Configuration/5800MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 62.50 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 36.9 W/kg

SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.18 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 60.6% Maximum value of SAR (measured) = 21.1 W/kg

0 dB = 21.1 W/kg = 13.24 dBW/kg

Issue Date: 8/4/2021

Date: 2021/7/27

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

System Validation_Head_2450MHz

DUT: D2450V2-SN:988; Type: D2450V2; Serial: D2450V2-SN:988

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz);

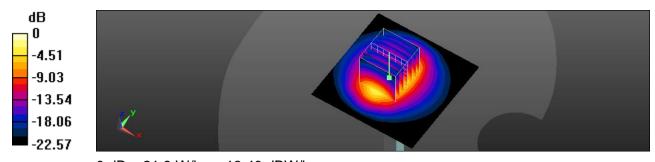
Frequency: 2450 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2450 MHz; σ = 1.857 S/m; ε_r = 38.782; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:


- Probe: EX3DV4 SN3901; ConvF(7.52, 7.52, 7.52) @ 2450 MHz; Calibrated: 2020/9/23
 - Modulation Compensation:
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1360; Calibrated: 2020/9/2
- Phantom: SAM V5.0; Type: QD 000 P40 CD; Serial: 1768
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/2450MHz/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 22.4 W/kg

Configuration/2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.6 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.03 W/kg

Smallest distance from peaks to all points 3 dB below = 9.1 mm Ratio of SAR at M2 to SAR at M1 = 48.2% Maximum value of SAR (measured) = 21.9 W/kg

0 dB = 21.9 W/kg = 13.40 dBW/kg

Date: 2021/7/27

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

System Validation_Head_5250MHz

DUT: D5GHzV2 - SN1244; Type: D5GHzV2; Serial: SN1244

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5250 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5250 MHz; σ = 4.808 S/m; ϵ_r = 35.412; ρ = 1000 kg/m³

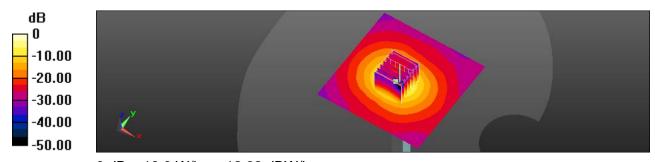
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3901; ConvF(5.11, 5.11, 5.11) @ 5250 MHz; Calibrated: 2020/9/23
 Modulation Compensation:
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 22.0
- Electronics: DAE4 Sn1360; Calibrated: 2020/9/2
- Phantom: SAM V5.0; Type: QD 000 P40 CD; Serial: 1768
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/5250MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.0 W/kg


Configuration/5250MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.97 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.18 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.7% Maximum value of SAR (measured) = 19.6 W/kg

0 dB = 19.6 W/kg = 12.92 dBW/kg

Issue Date: 8/4/2021

Date: 2021/7/27

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

System Validation_Head_5600MHz

DUT: D5GHzV2 - SN1244; Type: D5GHzV2; Serial: SN1244

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5600 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5600 MHz; σ = 5.155 S/m; ε_r = 34.716; ρ = 1000 kg/m³

Phantom section: Flat Section

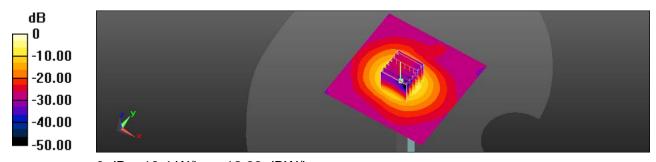
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3901; ConvF(4.5, 4.5, 4.5) @ 5600 MHz; Calibrated: 2020/9/23
 - Modulation Compensation:
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 22.0
- Electronics: DAE4 Sn1360; Calibrated: 2020/9/2
- Phantom: SAM V5.0; Type: QD 000 P40 CD; Serial: 1768
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/5600MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.7 W/kg

Configuration/5600MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=1.4mm

Reference Value = 65.51 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 32.0 W/kg

SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.04 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.1% Maximum value of SAR (measured) = 19.4 W/kg

0 dB = 19.4 W/kg = 12.88 dBW/kg

Date: 2021/7/27

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

System Validation_Head_5800MHz

DUT: D5GHzV2 - SN1244; Type: D5GHzV2; Serial: SN1244

Communication System: UID 0, CW (0); Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5800 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5800 MHz; σ = 5.375 S/m; ϵ_r = 34.404; ρ = 1000 kg/m³

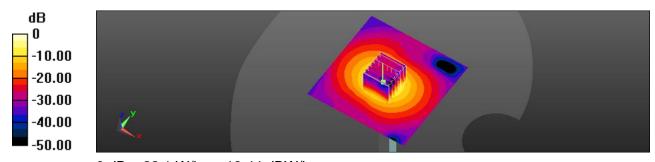
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3901; ConvF(4.52, 4.52, 4.52) @ 5800 MHz; Calibrated: 2020/9/23
 Modulation Compensation:
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 22.0
- Electronics: DAE4 Sn1360; Calibrated: 2020/9/2
- Phantom: SAM V5.0; Type: QD 000 P40 CD; Serial: 1768
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Configuration/5800MHz/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.8 W/kg


Configuration/5800MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.41 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 39.4 W/kg

SAR(1 g) = 8.3 W/kg; SAR(10 g) = 2.25 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 59.7% Maximum value of SAR (measured) = 22.1 W/kg

0 dB = 22.1 W/kg = 13.44 dBW/kg

Appendix C: Highest SAR Test Plots

Date: 2021/7/6

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

WLAN2.4GHz_802.11b_Edge 2_ch11

Communication System: UID 0, 802.11b/g/n (0); Communication System Band: 802.11b/g/n; Frequency:

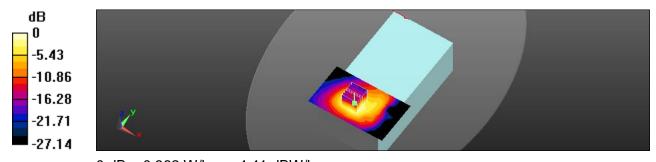
2462 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2462 MHz; $\sigma = 1.871 \text{ S/m}$; $\epsilon_r = 38.969$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:


- Probe: EX3DV4 SN3901; ConvF(7.52, 7.52, 7.52) @ 2462 MHz; Calibrated: 2020/9/23
 - Modulation Compensation:
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = -99.0, 31.0
- Electronics: DAE4 Sn1360; Calibrated: 2020/9/2
- Phantom: ELI v5.0 1213; Type: QDOVA001BB; Serial: 1213
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Bottom/ch11/Area Scan (121x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.366 W/kg

Bottom/ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.629 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 0.438 W/kg

SAR(1 g) = 0.234 W/kg; SAR(10 g) = 0.123 W/kg

Smallest distance from peaks to all points 3 dB below = 13.9 mm Ratio of SAR at M2 to SAR at M1 = 52.2% Maximum value of SAR (measured) = 0.362 W/kg

0 dB = 0.362 W/kg = -4.41 dBW/kg

Issue Date: 8/4/2021

Date: 2021/7/6

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

Bluetooth_Back_ch39

Communication System: UID 0, 802.11b/g/n (0); Communication System Band: 802.11b/g/n; Frequency:

2441 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2441 MHz; $\sigma = 1.851$ S/m; $\epsilon_r = 39.018$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

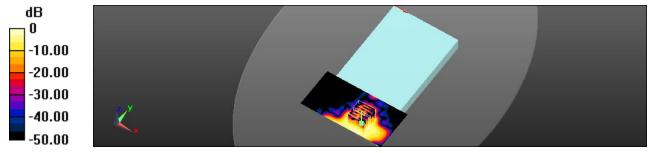
Probe: EX3DV4 - SN3901; ConvF(7.52, 7.52, 7.52) @ 2441 MHz; Calibrated: 2020/9/23

Modulation Compensation:

• Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = -49.0, 31.0

Electronics: DAE4 Sn1360; Calibrated: 2020/9/2

Phantom: ELI v5.0_1213; Type: QDOVA001BB; Serial: 1213


DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Bottom/ch39/Area Scan (121x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0272 W/kg

Bottom/ch39/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.0340 W/kg

SAR(1 g) = 0.017 W/kg; SAR(10 g) = 0.00792 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 51.2% Maximum value of SAR (measured) = 0.0276 W/kg

0 dB = 0.0276 W/kg = -15.59 dBW/kg

Issue Date: 8/4/2021

Date: 2021/7/7

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

WLAN5GHz_802.11n (HT 40)_Edge 2_ch54

Communication System: UID 0, 802.11a/ac 5GHz (0) (0); Communication System Band: 802.11a/ac;

Frequency: 5270 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5270 MHz; $\sigma = 4.792 \text{ S/m}$; $\epsilon_r = 36.412$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3901; ConvF(5.11, 5.11, 5.11) @ 5270 MHz; Calibrated: 2020/9/23
 Modulation Compensation:
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = -99.0, 22.0
- Electronics: DAE4 Sn1360; Calibrated: 2020/9/2
- Phantom: ELI v5.0_1213; Type: QDOVA001BB; Serial: 1213
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Bottom/ch54/Area Scan (101x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.370 W/kg

Bottom/ch54/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 12.10 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.518 W/kg

SAR(1 g) = 0.183 W/kg; SAR(10 g) = 0.075 W/kg

Smallest distance from peaks to all points 3 dB below = 12.4 mm Ratio of SAR at M2 to SAR at M1 = 71.2% Maximum value of SAR (measured) = 0.360 W/kg

0 dB = 0.360 W/kg = -4.44 dBW/kg

Date: 2021/7/8

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

WLAN5GHz_802.11n (HT 40)_Edge 2_ch110

Communication System: UID 0, 802.11a/ac 5GHz (0) (0); Communication System Band: 802.11a/ac;

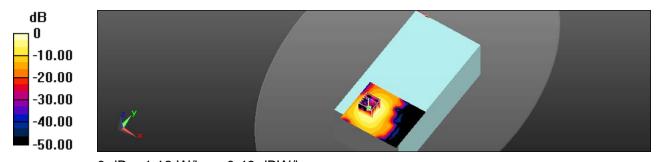
Frequency: 5550 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5550 MHz; $\sigma = 5.066 \text{ S/m}$; $\epsilon_r = 34.976$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:


- Probe: EX3DV4 SN3901; ConvF(4.5, 4.5, 4.5) @ 5550 MHz; Calibrated: 2020/9/23
 - Modulation Compensation:
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = -99.0, 22.0
- Electronics: DAE4 Sn1360; Calibrated: 2020/9/2
- Phantom: ELI v5.0_1213; Type: QDOVA001BB; Serial: 1213
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Bottom/ch110/Area Scan (101x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.16 W/kg

Bottom/ch110/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 16.23 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 0.494 W/kg; SAR(10 g) = 0.181 W/kg

Smallest distance from peaks to all points 3 dB below = 10.1 mm Ratio of SAR at M2 to SAR at M1 = 64% Maximum value of SAR (measured) = 1.12 W/kg

0 dB = 1.12 W/kg = 0.49 dBW/kg

Issue Date: 8/4/2021

Date: 2021/7/8

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

WLAN5GHz_802.11n (HT 40)_Edge 2_ch159

Communication System: UID 0, 802.11a/ac 5GHz (0) (0); Communication System Band: 802.11a/ac;

Frequency: 5795 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 5795 MHz; σ = 5.334 S/m; ε_r = 34.531; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

• Probe: EX3DV4 - SN3901; ConvF(4.52, 4.52, 4.52) @ 5795 MHz; Calibrated: 2020/9/23

Modulation Compensation:

Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = -99.0, 22.0

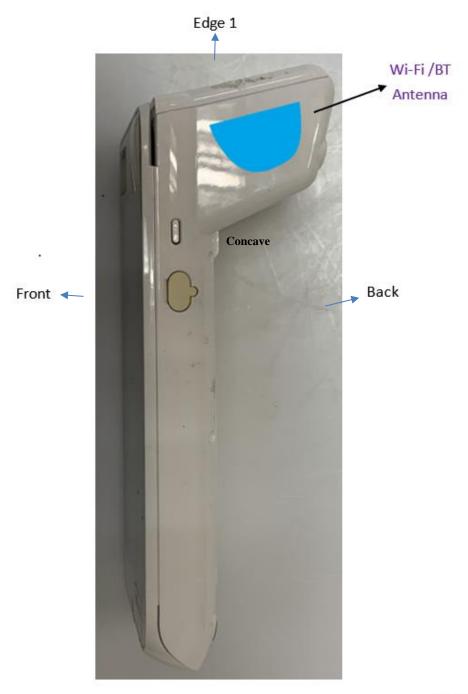
Electronics: DAE4 Sn1360; Calibrated: 2020/9/2

Phantom: ELI v5.0_1213; Type: QDOVA001BB; Serial: 1213

• DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Bottom/ch159/Area Scan (101x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.925 W/kg

Bottom/ch159/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 14.44 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.60 W/kg


SAR(1 g) = 0.376 W/kg; SAR(10 g) = 0.130 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 59.7% Maximum value of SAR (measured) = 0.906 W/kg

0 dB = 0.906 W/kg = -0.43 dBW/kg

Appendix D: Antenna Location

Right View

Separation Distances (mm)						
Front	Back	Concave	Edge 1	Edge 2	Edge 3	Edge 4
20	5	5	10	20	180	80

In Collaboration with

S D E A G CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

UL

Certificate No:

Z20-60448

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1244

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

November 10, 2020

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
106276	12-May-20 (CTTL, No.J20X02965)	May-21
101369	12-May-20 (CTTL, No.J20X02965)	May-21
SN 3617	30-Jan-20(SPEAG,No.EX3-3617_Jan20)	Jan-21
SN 771	10-Feb-20(CTTL-SPEAG,No.Z20-60017)	Feb-21
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	25-Feb-20 (CTTL, No.J20X00516)	Feb-21
MY46107873	10-Feb-20 (CTTL, No.J20X00515)	Feb-21
	106276 101369 SN 3617 SN 771 ID# MY49071430	106276 12-May-20 (CTTL, No.J20X02965) 101369 12-May-20 (CTTL, No.J20X02965) SN 3617 30-Jan-20(SPEAG,No.EX3-3617_Jan20) SN 771 10-Feb-20(CTTL-SPEAG,No.Z20-60017) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 25-Feb-20 (CTTL, No.J20X00516)

Calibrated by:

Name Function

Signature

Zhao Jing SAR Test Engineer

At the

Reviewed by:

Lin Hao SAR Test Engineer

SA

Approved by:

Qi Dianyuan SAR Project Leader

Issued: November 19, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z20-60448

Page 1 of 9

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60448 Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5300 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	4.76 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	STANCH	700-

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	193
SAR measured	100 mW input power	7.73 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.0 W/kg ± 24.4 % (<i>k</i> =2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.21 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.0 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	4.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	WARE 5	

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.85 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.1 W/kg ± 24.4 % (<i>k</i> =2)
SAR averaged over 10 $ cm^3 $ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.4 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 24.4 % (<i>k</i> =2)
SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	5.31 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.7 W/kg ± 24.4 % (<i>k</i> =2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.0 W/kg ± 24.2 % (<i>k</i> =2)

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	50.8Ω - 4.35jΩ
Return Loss	- 27.2dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	49.2Ω - 2.62jΩ	
Return Loss	- 31.1dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	51.9Ω - 0.76jΩ	
Return Loss	- 34.1dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.3Ω + 0.91jΩ	
Return Loss	- 36.2dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.062 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1244

Communication System: CW; Frequency: 5250 MHz, Frequency: 5300 MHz,

Date: 11.10.2020

Frequency: 5600 MHz, Frequency: 5800 MHz,

Medium parameters used: f = 5250 MHz; σ = 4.756 S/m; ϵ_r = 35.12; ρ = 1000 kg/m³, Medium parameters used: f = 5300 MHz; σ = 4.813 S/m; ϵ_r = 35.03; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.14 S/m; ϵ_r = 34.53; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.306 S/m; ϵ_r = 34.3; ρ = 1000 kg/m³,

Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(5.39, 5.39, 5.39) @ 5250 MHz;
 ConvF(5.29, 5.29, 5.29) @ 5300 MHz; ConvF(4.99, 4.99, 4.99) @ 5600 MHz; ConvF(5, 5, 5) @ 5800 MHz; Calibrated: 2020-01-30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.66 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 31.0 W/kg

SAR(1 g) = 7.73 W/kg; SAR(10 g) = 2.21 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 65.4%

Maximum value of SAR (measured) = 18.1 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.56 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 31.8 W/kg

SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.25 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 64.9%

Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.49 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 36.0 W/kg

SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.31 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

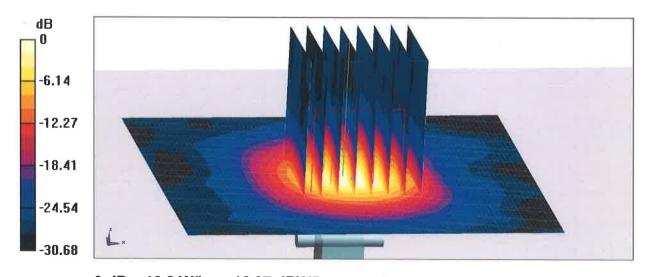
Ratio of SAR at M2 to SAR at M1 = 61.9%

Maximum value of SAR (measured) = 19.9 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

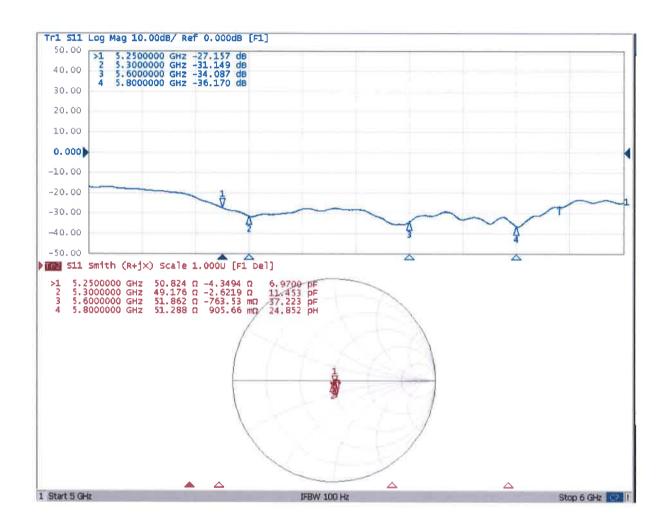
Reference Value = 67.57 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 35.7 W/kg

SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.22 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 60.7%


Maximum value of SAR (measured) = 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

Impedance Measurement Plot for Head TSL

In Collaboration with

e CAUBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

E-mail: cttl@chinattl.com UL

Tel: +86-10-62304633-2079

Certificate No:

Z20-60445

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 988

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

November 10, 2020

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

12-May-20 (CTTL, No.J20X02965) 12-May-20 (CTTL, No.J20X02965)	May-21 May-21
	May-21
20 Jan 20/CDEAC No EV2 2047 Jan 200	
30-Jan-20(SPEAG,No.EX3-3617_Jan20)	Jan-21
10-Feb-20(CTTL-SPEAG,No.Z20-60017)	Feb-21
Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
25-Feb-20 (CTTL, No.J20X00516)	Feb-21
10-Feb-20 (CTTL, No.J20X00515)	Feb-21
	25-Feb-20 (CTTL, No.J20X00516)

Name

Function

Signature

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: November 19, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z20-60445

Page 1 of 6

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.78 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	10000	

SAR result with Head TSL

Trodat With Fload To E		
SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.2 W/kg ± 18.8 % (<i>k</i> =2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.96 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 18.7 % (<i>k</i> =2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.4Ω+ 3.51jΩ
Return Loss	- 25.4dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.022 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 988

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.784$ S/m; $\varepsilon_r = 39.22$; $\rho = 1000$ kg/m³

Phantom section: Center Section

DASY5 Configuration:

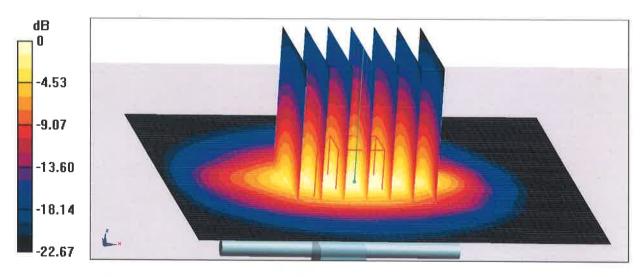
 Probe: EX3DV4 - SN3617; ConvF(7.65, 7.65, 7.65) @ 2450 MHz; Calibrated: 2020-01-30

Date: 11.10.2020

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

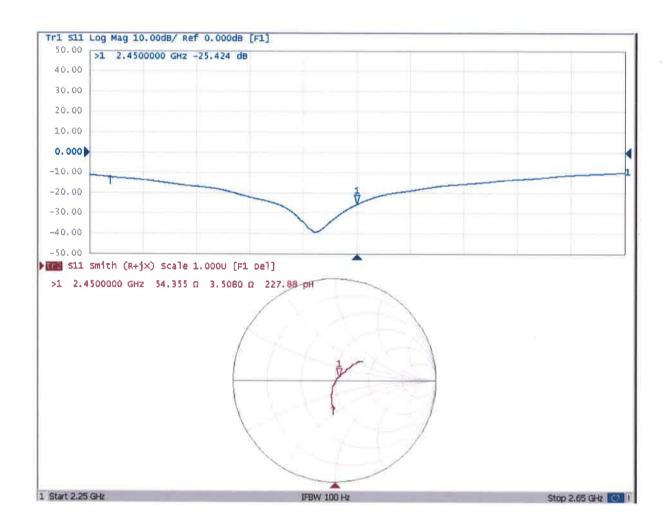
Reference Value = 106.2 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 5.96 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 47.1%


Maximum value of SAR (measured) = 22.2 W/kg

0 dB = 22.2 W/kg = 13.46 dBW/kg

Impedance Measurement Plot for Head TSL

Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client:

UL

Certificate No: Z20-60352

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 1360

Calibration Procedure(s)

FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

September 02, 2020

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	16-Jun-20 (CTTL, No.J20X04342)	Jun-21

Calibrated by:

Name Function

SAR Test Engineer

Reviewed by:

Lin Hao

Yu Zongying

SAR Test Engineer

Approved by:

Qi Dianyuan SAR Project Leader

Issued: September 04, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504

E-mail: cttl@chinattl.com

Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:

1LSB =

full range =

-100...+300 mV

Low Range:

1LSB =

61nV, full

full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

 $6.1 \mu V$,

Calibration Factors	X	Υ	Z
High Range	403.660 ± 0.15% (k=2)	404.103 ± 0.15% (k=2)	404.222 ± 0.15% (k=2)
Low Range	3.98021 ± 0.7% (k=2)	3.99727 ± 0.7% (k=2)	3.97937 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	18° ± 1 °
---	-----------

Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client

UL

Certificate No: Z20-60351

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN: 3901

Calibration Procedure(s)

FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

September 23, 2020

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
Power Meter NRP2	101919	16-Jun-20(CTTL, No.J20X04344)	Jun-21	
Power sensor NRP-Z91	101547	16-Jun-20(CTTL, No.J20X04344)	Jun-21	
Power sensor NRP-Z91	101548	16-Jun-20(CTTL, No.J20X04344)	Jun-21	
Reference 10dBAttenuat	or 18N50W-10dB	10-Feb-20(CTTL, No.J20X00525)	Feb-22	
Reference 20dBAttenuat	or 18N50W-20dB	10-Feb-20(CTTL, No.J20X00526)	Feb-22	
Reference Probe EX3DV	'4 SN 7307	29-May-20(SPEAG, No.EX3-7307_May	20) May-21	
DAE4	SN 1556	4-Feb-20(SPEAG, No.DAE4-1556_Feb2	20) Feb-21	
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.) Scheduled Calibrater Sc		
SignalGenerator MG3700	DA 6201052605	23-Jun-20(CTTL, No.J20X04343)	Jun-21	
Network Analyzer E5071	C MY46110673	10-Feb-20(CTTL, No.J20X00515)	Feb-21	
	Name	Function	Sjgnature	
Calibrated by:	Yu Zongying	SAR Test Engineer	Some	
Reviewed by: Lin Hao		SAR Test Engineer	林坞	
Approved by:	Qi Dianyuan	SAR Project Leader	300	
Approved by:	Qi Dianyuan	SAR Project Leader	300	

Issued: September 25, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3901

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.42	0.46	0.40	±10.0%
DCP(mV) ^B	103.1	103.2	106.1	

Modulation Calibration Parameters

UID	Communication		Α	В	С	D	VR	Unc ^E
	System Name		dB	dBõV		dB	mV	(<i>k</i> =2)
0	CW	X	0.0	0.0	1.0	0.00	149.4	±2.4%
		Υ	0.0	0.0	1.0		159.8	
		Z	0.0	0.0	1.0		153.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

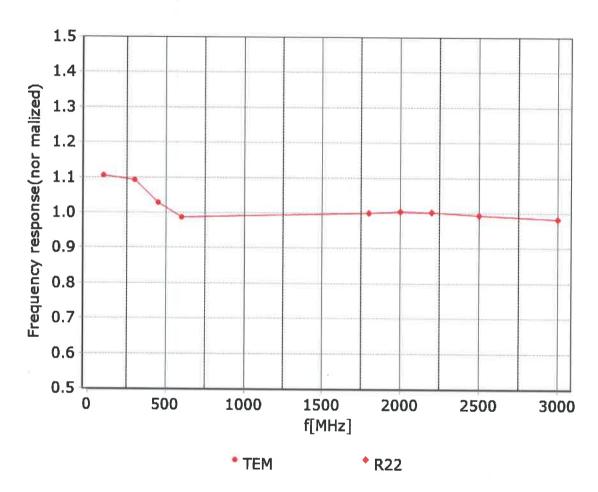
A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3901

Calibration Parameter Determined in Head Tissue Simulating Media


f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	10.09	10.09	10.09	0.40	0.75	±12.1%
835	41.5	0.90	9.70	9.70	9.70	0.19	1.14	±12.1%
900	41.5	0.97	9.60	9.60	9.60	0.18	1.21	±12.1%
1450	40.5	1.20	8.67	8.67	8.67	0.27	0.86	±12.1%
1640	40.3	1.29	8.53	8.53	8.53	0.23	1.04	±12.1%
1750	40.1	1.37	8.40	8.40	8.40	0.22	1.11	±12.1%
1900	40.0	1.40	8.14	8.14	8.14	0.27	1.01	±12.1%
2000	40.0	1.40	8.09	8.09	8.09	0.22	1.17	±12.1%
2300	39.5	1.67	7.79	7.79	7.79	0.50	0.72	±12.1%
2450	39.2	1.80	7.52	7.52	7.52	0.53	0.71	±12.1%
2600	39.0	1.96	7.30	7.30	7.30	0.63	0.67	±12.1%
3500	37.9	2.91	6.76	6.76	6.76	0.40	1.07	±13.3%
5250	35.9	4.71	5.11	5.11	5.11	0.45	1.55	±13.3%
5300	35.9	4.76	5.04	5.04	5.04	0.45	1.55	±13.3%
5600	35.5	5.07	4.50	4.50	4.50	0.55	1.45	±13.3%
5800	35.3	5.27	4.52	4.52	4.52	0.45	1.60	±13.3%

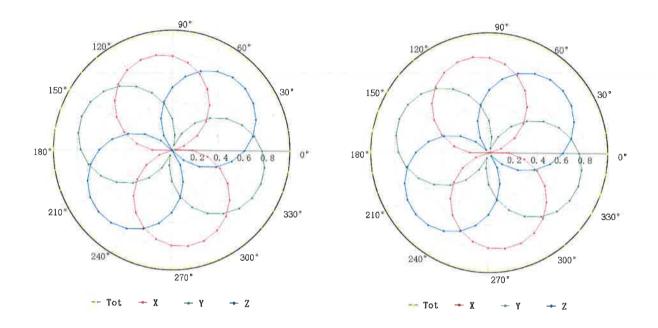
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

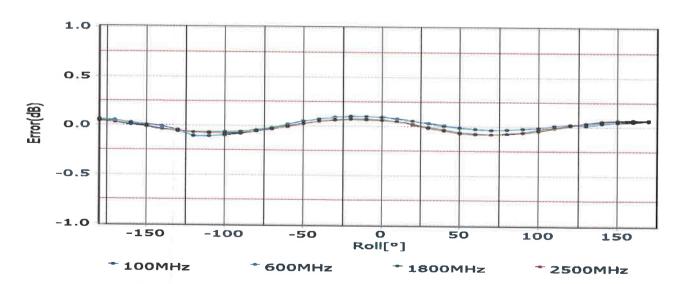
F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

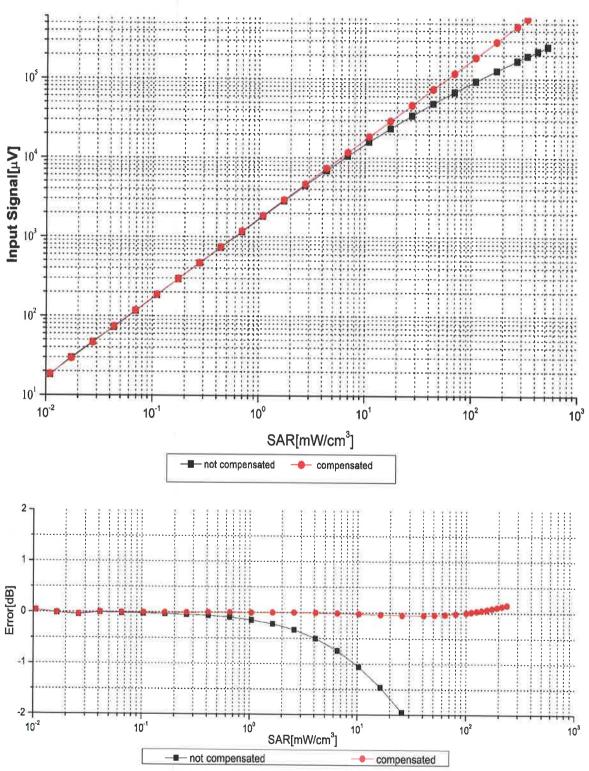

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504


E-mail: cttl@chinattl.com Http://www.chinattl.cn

Receiving Pattern (Φ), θ=0°

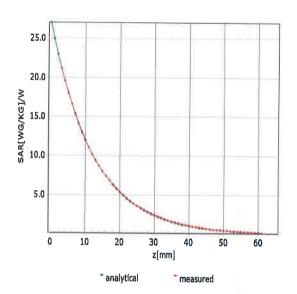
f=600 MHz, TEM

f=1800 MHz, R22

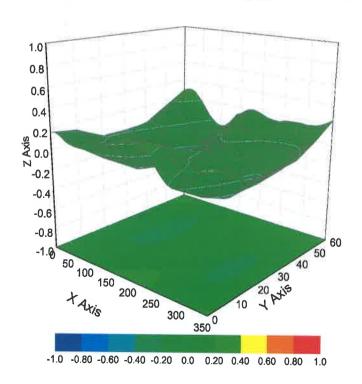


Uncertainty of Axial Isotropy Assessment: $\pm 1.2\%$ (k=2)

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)



Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3901

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	98.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm