

RADIO TEST REPORT

Product	:	Terminal
Model Name	:	xCL_AT-170-R-18W
Series Model	:	Utimaco C3
FCC ID	:	MQT-AT170R18W
Test Regulation	:	FCC 47 CFR Part 15 Subpart C (Section 15.247)
Received Date	:	2021/6/2
Test Date	:	2021/6/2 ~ 2021/7/29
Issued Date	:	2021/7/30
Applicant	:	XAC Automation Corporation 4F., No. 30 Industry E. Road IX,Science-Based Industrial Park Hsin-Chu, 300, Taiwan, ROC
Issued By	:	Underwriters Laboratories Taiwan Co., Ltd. Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report are responsible of the test sample(s) provided by the client only and are not to be used to indicate applicability to other similar products.

Underwriters Laboratories Taiwan Co., Ltd. Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948 Doc No: 17-EM-F0876 / 6.0

REVISION HISTORY

Original Test Report No.: 4789969990-US-R3-V0

Rev.	Test report No.	Date	Page revised	Contents
Original	4789969990-US-R3-V0	2021/7/30	-	Initial issue
		<u> </u>	<u> </u>	

Table of Contents

1.	Atte	station of Test Results	4
2.	2. Summary of Test Results5		
3.	Test	Methodology and Reference Procedures	6
4.	Faci	lities and Accreditation	6
5.	Mea	surement Uncertainty	7
6.	Equ	ipment under Test	8
6	5.1. 5.2. 5.3. 5.4. 5.5.	Description of EUT Channel List Test Condition Description of Available Antennas Test Mode Applicability and Tested Channel Detail	. 10 . 11 . 11
7.	Test	Equipment	13
8.	Desc	cription of Test Setup	15
9.	Test	Results	17
	9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. 9.8. pendi y	Channel Bandwidth Conducted Output Power Hopping Channel Separation Number of Hopping Frequency Used Dwell Time on Each Channel Conducted Out of Band Emission Radiated Spurious Emission AC Power Line Conducted Emission x I Radiated Band Edge Measurement	. 19 . 21 . 23 . 25 . 29 . 34 . 47
-	-		
Ар	penar	x II Radiated Spurious Emission Measurement	31

1. Attestation of Test Results		
APPLICANT:	XAC Automation Corporation 4F., No. 30 Industry E. Road IX,Science-Based Industrial Park Hsin-Chu, 300, Taiwan, ROC	
MANUFACTURER:	XAC Automation Corporation 4F., No. 30 Industry E. Road IX,Science-Based Industrial Park Hsin-Chu, 300, Taiwan, ROC	
EUT DESCRIPTION:	Terminal	
BRAND:	XAC, Utimaco	
MODEL:	xCL_AT-170-R-18W	
SERIES MODEL:	Utimaco C3	
SAMPLE STAGE:	Engineering Verification Test sample	
DATE of TESTED:	2021/6/2 ~ 2021/7/29	
APPLICABLE STANDARDS		

APPLICABLE STANDARDS	
STANDARD	Test Results
FCC 47 CFR PART 15 Subpart C (Section 15.247)	PASS

Underwriters Laboratories Taiwan Co., Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by Underwriters Laboratories Taiwan Co., Ltd. based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Underwriters Laboratories Taiwan Co., Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Underwriters Laboratories Taiwan Co., Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Prepared By:

Sally In

Date : 2021/7/30

Sally Lu Project Handler Approved and Authorized By:

Mike Cai

Mike Cai Date : 2021/7/30 Engineer Project Associate

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, TaiwanTelephone:+886-2-7737-3000Facsimile (FAX):+886-3-583-7948Doc No: 17-EM-F0876 / 6.0

2. Summary of Test Results

Summary of Test Results		
FCC Clause Test Items		Result
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	PASS
15.247(b)	Conducted Output Power	PASS
15.247(d)	Antenna Port Emission	PASS
15.205 / 15.209 / 15.247(d)	Radiated Emissions and Band Edge Measurement	PASS
15.207	AC Power Conducted Emission	PASS
15.203	Antenna Requirement	PASS

Note:

1. For the Radiated Band Edge test plots were recorded in Appendix I, the Radiated Emissions test plots were recorded in Appendix II.

3. Test Methodology and Reference Procedures

The tests documented in this report were performed in accordance with 47 CFR FCC Part 2, KDB558074 D01 Meas Guidance v05r02, KDB414788 D01 Radiated Test Site v01r01, ANSI C63.10-2013.

4. Facilities and Accreditation

Test Location	Underwriters Laboratories Taiwan Co., Ltd.	
Address	Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan	
Accreditation Certificate	Underwriters Laboratories Taiwan Co., Ltd. is accredited by TAF, Laboratory Code 3398. The full scope of accreditation can be viewed at http://accreditation.taftw.org.tw/taf/public/basic/viewApplyItems.action?unitNo=3398	

5. Measurement Uncertainty

For statement of conformity, accuracy method (Section 8.2.4 and 8.2.5 of ISO Guide 98-4) was applied as decision rule for measurement in this test report.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2.

Measurement	Frequency	Uncertainty
Conducted disturbance at mains terminals ports	150kHz ~ 30MHz	±3.1 dB
RF Conducted	9 kHz - 40GHz	±1.9 dB
Radiated disturbance below 30MHz	9 kHz - 30 MHz	±1.9 dB
Radiated disturbance below 1 GHz	30MHz ~ 1GHz	±5.4 dB
Radiated disturbance above 1 GHz	1GHz ~ 40GHz	±4.7 dB

6. Equipment under Test

6.1. Description of EUT

Product	Terminal	
Brand Name	XAC, Utimaco	
Model Name	xCL_AT-170-R-18W	
Series Model	Utimaco C3	
Operating Frequency	2402MHz ~ 2480MHz	
Modulation	GFSK, $\pi/4$ -DQPSK and 8DPSK	
Transfer Rate	Up to 3 Mbps	
Number of Channel	79	
Maximum Output Power	7.2 dBm	
Normal Voltage	ge 5Vdc from adapter or host 3.8Vdc from battery	
S/N	Conducted Test: 1740D2103 Radiated Test: 1740D2107	
Sample ID	Conducted Test: 3949576 Radiated Test: 3949578	
Software Version	Android Version: 8.1.0 Kernel Version: 3.18.71 (gcc version 4.8(GCC))	

Note:

1. The models difference table as below:

Main Model Name		
Brand	Model	Difference
XAC	xCL_AT-170-R-18W	-
Series Model Name		
Brand	Model	Difference
Utimaco	Utimaco C3	For market segmentation

2. <u>The EUT could be supplied with rechargeable battery as the following table:</u>

Brand Name	Model	Description
Shenzhen Rishengzhi Electronic Technology Co., Ltd.	s J601	3.8Vdc, 5200mAh

3. The above EUT information is declared by manufacturer and for more detailed features description, please refer the manufacturer's or user's manual.

Test report No.	: 4789969990-US-R3-V0
Page	: 10 of 58
Issued date	: 2021/7/30
FCC ID	: MQT-AT170R18W

6.2. Channel List

79 channels are provided for BT-EDR mode:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

6.3. Test Condition

Test Item	Test Site No.	Environmental Condition	Input Power	Test Date	Tested by
Antenna Port Conducted Measurement	SR4	22~26°C/ 62~68%RH	5Vdc from host	2021/06/11~ 2021/06/24	Patrick Kuan
Radiated Spurious Emission	966-2	22~26°C/ 62~68%RH	5Vdc from host	2021/06/02~ 2021/07/29	Patrick Kuan
AC power Line Conducted Emission	SR1	22~26°C/ 62~68%RH	5Vdc from host	2021/06/16~ 2021/06/29	Patrick Kuan

FCC Test Firm Registration Number: 498077

6.4. Description of Available Antennas

Ant. No.	Transmitter Circuit	Brand Name	Model Name	Ant. Type	Maximum Gain (dBi)
1	Chain (0)	AWAN	AYF6P-100000	PIFA	2.4GHz: 1.2 5GHz: 3.71

Note: The above antenna information was provided from customer and for more detailed features description, please refer the manufacturer's specification or user's manual.

6.5. Test Mode Applicability and Tested Channel Detail

- The EUT has three power source types: 3.8Vdc from battery, 5V from host and 5V from adapter. Three types were pre-tested, the worst case was found in the 5Vdc from host. Therefore, only the test data of the 5Vdc from host was recorded in this report.
- The fundamental of the EUT was investigated in three orthogonal axes X-Y/Y-Z/X-Z, it was determined that X-Z axis was worst-case. Therefore, all final radiated testing was performed with the EUT in X-Z axis.
- The modulation and bandwidth are similar for $\pi/4$ -DQPSK mode and 8DPSK mode, therefore investigated 8DPSK mode to representative mode in test report.
- For Antenna Port Conducted Measurement, this item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- For below 30MHz testing, investigation was done on three antenna orientations (parallel, perpendicular, and ground-parallel), parallel and perpendicular are the worst orientations, therefore testing was performed on these two orientations only.
- For below 1 GHz radiated emission and AC power line conducted emission have performed all modes of operation were investigated and the worst-case emissions are reported.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Since the DUT is a Bluetooth device, the AFH mode and non-AFH mode follow the Bluetooth timing protocol, and the same timing level has the same time interval, but the non-AFH mode has worse results, therefore only the test data of this type were recorded in this report.

Test item	Modulation Type	Available Channel	Test Channel	Packet Type
Radiated Emissions	GFSK	0 to 78	0,39,78	DH5
(Above 1GHz)	8DPSK	0 to 78	0,39,78	3DH5
Radiated Emissions (Below 1GHz)	GFSK	0 to 78	0	DH5
AC Power Line Conducted Emission	GFSK	0 to 78	0	DH5
Antenna Port Conducted	GFSK	0 to 78	0,39,78	DH1*,DH3*, DH5
Measurement	8DPSK	0 to 78	0,39,78	3DH1*,3DH3*, 3DH5

* Only for Dwell Time on Each Channel test

7. Test Equipment

Test Equipment List						
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Expired date	
	R	adiated Spurious	Emission			
Spectrum Analyzer	Keysight	N9010A	MY56070827	2020/11/11	2021/11/10	
EMI Test Receiver	Rohde & Schwarz	ESR7	101754	2020/12/11	2021/12/10	
Loop Antenna	ETS lindgren	6502	00213440	2020/12/25	2021/12/24	
Trilog- Broadband Antenna with 5dB Attenuator	Schwarzbeck & EMCI	VULB 9168 & N-6-05	774 & AT- N0538	2021/1/13	2022/1/12	
Horn Antenna (1-18 GHz)	Schwarzbeck	BBHA 9120 D	01690	2020/12/30	2021/12/29	
Horn Antenna (18-40 GHz)	Schwarzbeck	BBHA 9170	781	2020/12/30	2021/12/29	
Preamplifier	EMCI	EMC330E	980405	2020/6/9	2021/6/8	
(30-1000 MHz)	ENICI	LIVICSSOL	780405	2021/6/8	2022/6/7	
Preamplifier (1-18 GHz)	EMCI	EMC051835BE	980406	2021/2/3	2022/2/2	
Preamplifier	EMCI	EMC184040SEE	980426	2020/5/19	2021/5/18	
(18-40GHz)	ENVICI			2021/5/19	2022/5/18	
Cables	Hanyitek	K1K50-UP0264- K1K50-2500	170214-4 & 170425-2	2021/1/22	2022/1/21	
Cables	Hanyitek	K1K50-UP0264- K1K50-2500	170214-1 & 170214-2	2021/1/22	2022/1/21	

	Test Equipment List						
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Expired date		
	Antenna Port Conducted Measurement						
Spectrum Analyzer	Keysight	N9010A	MY56070834	2020/11/6	2021/11/5		
Pulse Power Sensor	Anritsu	MA2411B	1531202	2020/12/21	2021/12/20		
Power Meter	Anritsu	ML2495A	1645002	2020/12/21	2021/12/20		
	AC po	wer Line Con	ducted Emission				
EMI Test Receiver	Rohde & Schwarz	ESR7	101753	2020/11/17	2021/11/16		
Two-Line V- Network	Rohde & Schwarz	ENV216	102136	2020/8/19	2021/8/18		
Impuls-Begrenzer Pulse Limiter	Rohde & Schwarz	ESH3-Z2	102219-Qt	2020/8/12	2021/8/11		
Cables	TITAN	CFD200	T0732ACFD20 020A300-1	2021/3/2	2022/3/1		

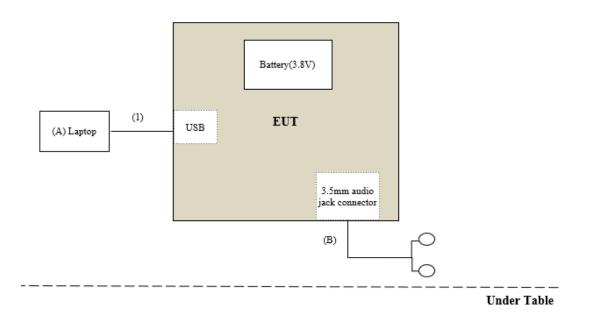
UL Software				
Description	Name	Version		
Radiated measurement	e3	6.191211 (V6)		
Conducted measurement	RF Conducted Test Tools	ver 2.4.0.620b		
AC power Line Conducted Emission	EZ_EMC	UL-3A1.2		

8. Description of Test Setup

Support Equipment

ID	Equipment	Brand Name	Model Name	S/N	Remark
А	Laptop	Lenovo	T430	PBE38AK	Mach/Model: 2349CW9
В	Headset	TECO	XYFSE005	-	Provide by Lab

I/O Cables


ID	Equipment	Brand Name	Model Name	Length (m)	Remark
1	USB to Type C Cable	N/A	N/A	1.2	Provide by Client

Test Setup

Controlled using a bespoke application (QRCT (Version: 3.0.124.0)) on a test Notebook. The application was used to enable a continuous transmission mode and to select the test channels, data rates, modulation schemes and power setting as required.

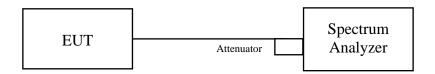
(UL)	Test report No. Page Issued date FCC ID	: 4789969990-US-R3-V0 : 16 of 58 : 2021/7/30 : MQT-AT170R18W
------	--	---

Setup Diagram for Test

Remote Site

9. Test Results

9.1. Channel Bandwidth

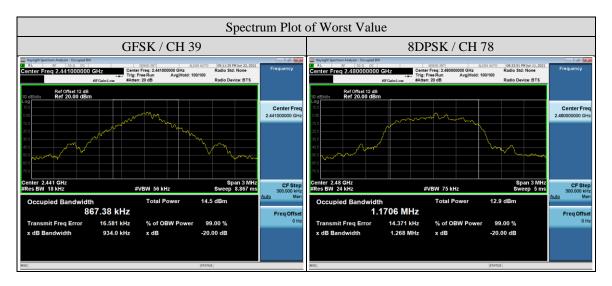

Requirements

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shall be a minimum limit for the hopping channel separation.

Test procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

Test Setup

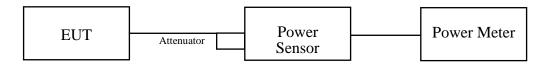

The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Test report No.	: 4789969990-US-R3-V0
Page	: 18 of 58
Issued date	: 2021/7/30
FCC ID	: MQT-AT170R18W

Test Data

Channel	Frequency (MHz)	20dB Bandy	vidth (MHz)
Chaimei	Frequency (MIIZ)	GFSK	8DPSK
0	2402	0.889	1.263
39	2441	0.934	1.262
78	2480	0.886	1.268

9.2. Conducted Output Power


Requirements

The Maximum Output Power Measurement is 125mW.

Test Procedure

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Test Setup

The loss between RF output port of the EUT and the input port of the Power Meter has been taken into consideration.

Test Data

Peak Power

GFSK

Channel	Frequency (MHz)	Output Power (mW)	Output Power (dBm)	Power Limit (mW)	Pass / Fail
0	2402	5.212	7.17	125	PASS
39	2441	5.188	7.15	125	PASS
78	2480	5.248	7.20	125	PASS

8DPSK

Channel	Frequency (MHz)	Output Power (mW)	Output Power (dBm)	Power Limit (mW)	Pass / Fail
0	2402	4.295	6.33	125	PASS
39	2441	4.375	6.41	125	PASS
78	2480	4.266	6.30	125	PASS

Average Power (Reference Only)

GFSK

Channel	Frequency (MHz)		
0	2402	4.943	6.94
39	2441	4.943	6.94
78	2480	4.966	6.96

8DPSK

Channel	Frequency (MHz)	Output Power (mW)	Output Power (dBm)
0	2402	4.036	6.06
39	2441	4.093	6.12
78	2480	3.999	6.02

9.3. Hopping Channel Separation


Requirements

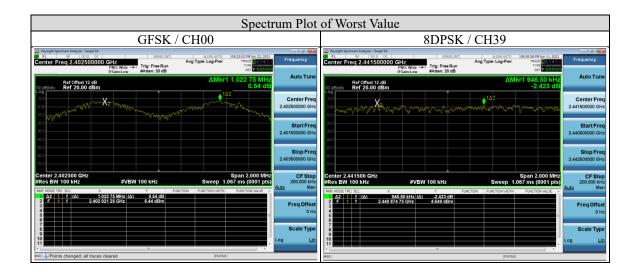
At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

Test procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.

Test Setup

The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.



Test report No.	: 4789969990-US-R3-V0
Page	: 22 of 58
Issued date	: 2021/7/30
FCC ID	: MQT-AT170R18W

Test Data

Mode	Channel	Frequency (MHz)	Adjacent Hopping Channel Separation (MHz)	Limit (MHz)	Result
	00	2402	1.02275	0.59253	PASS
GFSK	39	2441	1.04400	0.62267	PASS
	78	2480	1.03200	0.59093	PASS
	00	2402	0.98625	0.84200	PASS
8DPSK	39	2441	0.94650	0.84133	PASS
	78	2480	1.00300	0.84533	PASS

Note: Limit (MHz) = two/three of 20dB Bandwidth

9.4. Number of Hopping Frequency Used

Requirements

At least 15 channels frequencies, and should be equally spaced.

Test procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

Test Setup

The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Test Data

There are 79 hopping frequencies in the hopping mode. On the plots, it shows that the hopping frequencies are equally spaced.

			G	FSK		
Keysight Sp	ectrum Analyzer - Sv	vept SA				
RL Center F		2 DC 50000 GHz PNO: Fast IFGain:Low		ALIGN AUTO Avg Type: Log-Pwi		Frequency
0 dB/div	Ref Offset 1 Ref 20.00			Mkr2	2.480 000 0 GHz 7.50 dBm	Auto Tur
. og 10.0 0.00 10.0					2	Center Fre 2.441750000 GF
10.0 10.0 10.0						Start Fre 2.400000000 GF
50.0 60.0 70.0						Stop Fre 2.483500000 GF
	0000 GHz 1.0 MHz	#V	BW 3.0 MHz	Sweep	Stop 2.48350 GHz 1.000 ms (1001 pts)	CF Ste 8.350000 Mi Auto Mi
IKR MODE T	1 f	× 2.402 000 0 GHz	Y 7.55 dBm	FUNCTION FUNCTION WIDT	H FUNCTION VALUE	
2 N · 3 4 · · · · · · · · · · · · · · · · · ·	1 f	2.480 000 0 GHz	7.50 dBm		E	Freq Offs 01
7 8 9						Scale Typ
0					Ţ.	Log <u>L</u>

			8	DPSK			
Keysight Spectrum A							- 6 - ×
Center Freq 2	50 Ω DC 2.441750000 C	GHz PNO: Fast ↔	SENSE:	Avç ın	ALIGN AUTO J Type: Log-Pwr	08:35:37 PM Jun 11, 2021 TRACE 1 2 3 4 5 6 TYPE M WWWWW	Frequency
	Offset 12 dB 20.00 dBm	IFGain:Low	#Atten: 20 dB	3	Mkr2 2	.480 000 0 GHz 7.04 dBm	Auto Tune
Log 1 10.0 1 .10.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~			in the second	2	Center Free 2.441750000 GH: Start Free
-30.0 -40.0 -50.0 -70.0							2.400000000 GH Stop Free 2.483500000 GH
Start 2.40000 (#Res BW 1.0 N	ЛНz ×		3.0 MHz	FUNCTION		Stop 2.48350 GHz .000 ms (1001 pts)	CF Stej 8.350000 MH <u>Auto</u> Ma
1 N 1 F 2 N 1 F 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		00 0 GHz 00 0 GHz	7.51 dBm 7.04 dBm				Freq Offse 0 H
7 8 9 10							Scale Type
11							Log <u>Li</u>
ISG					STATUS	3	

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, TaiwanTelephone:+886-2-7737-3000Facsimile (FAX):+886-3-583-7948Doc No: 17-EM-F0876 / 6.0

9.5. Dwell Time on Each Channel

Requirements


The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.
- f. Measure the maximum time duration of one single pulse.

```
A Period Time = (channel number)*0.4
For normal mode:
DH1 Time Slot: Reading * (1600/2)*31.6/(channel number)
DH3 Time Slot: Reading * (1600/4)*31.6/(channel number)
DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)
For AFH mode:
DH1 Time Slot: Reading * (800/2)*31.6/(channel number)
DH3 Time Slot: Reading * (800/4)*31.6/(channel number)
DH5 Time Slot: Reading * (800/6)*31.6/(channel number)
```

<u>Test Setup</u>

The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

Underwriters Laboratories Taiwan Co., Ltd.

Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, TaiwanTelephone:+886-2-7737-3000Facsimile (FAX):+886-3-583-7948Doc No: 17-EM-F0876 / 6.0

Test Data

GFSK

Modulation	Channel	Frequency (MHz)	Length of transmission time (msec)	Result (msec)	Limit (msec)	Result
DH1	39	2441	0.3803	121.600	400	PASS
DH3	39	2441	1.638	262.080	400	PASS
DH5	39	2441	2.900	309.343	400	PASS

8DPSK

Modulation	Channel	Frequency (MHz)	Length of transmission time (msec)	Result (msec)	Limit (msec)	Result
3DH1	39	2441	0.3867	123.840	400	PASS
3DH3	39	2441	1.648	263.680	400	PASS
3DH5	39	2441	2.900	309.343	400	PASS

Note :

1. In normal mode:

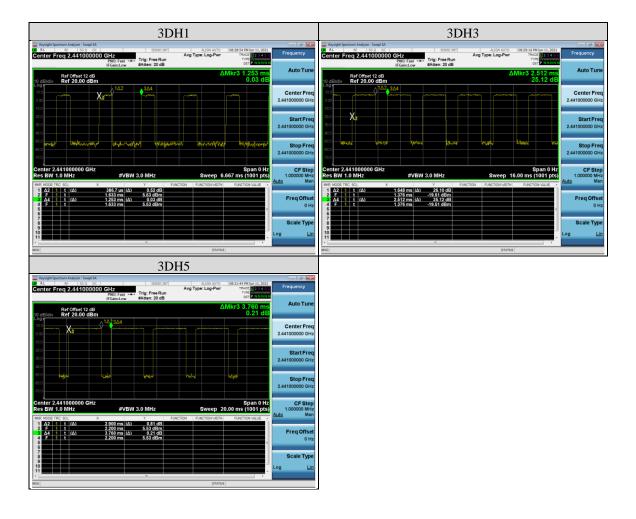
DH1 hopping rate is 1600 hops/s with 2 slots in 79 hopping channels. With channel hopping rate (1600 / 2 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 2 / 79) x (0.4 x 79) = 320 hops.

DH3 hopping rate is 1600 hops/s with 4 slots in 79 hopping channels. With channel hopping rate (1600 / 4 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 4 / 79) x (0.4 x 79) = 160 hops.

DH5 hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.

2. Dwell time (ms) = Hops Over Occupancy Time (hops) x Length of transmission time (ms).

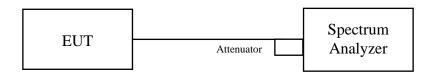
Test report No.	: 4789969990-US-R3-V0
Page	: 27 of 58
Issued date	: 2021/7/30
FCC ID	: MQT-AT170R18W


GFSK

Test report No.	: 4789969990-US-R3-V0
Page	: 28 of 58
Issued date	: 2021/7/30
FCC ID	: MQT-AT170R18W

8DPSK

9.6. Conducted Out of Band Emission


Requirements

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b) (3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209 (a) is not required.

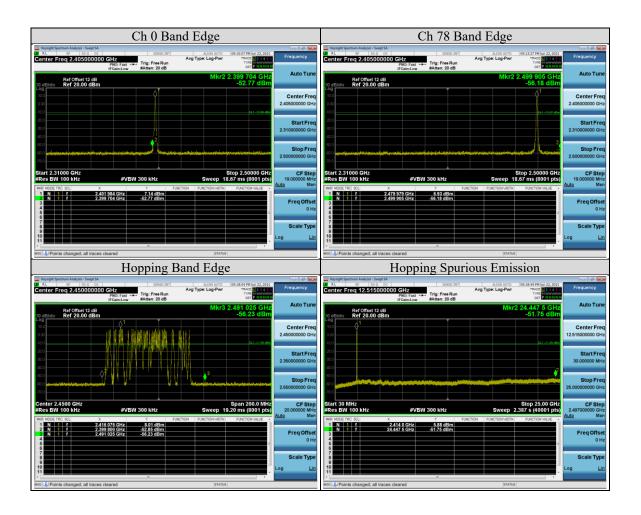
Test procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

Test Setup

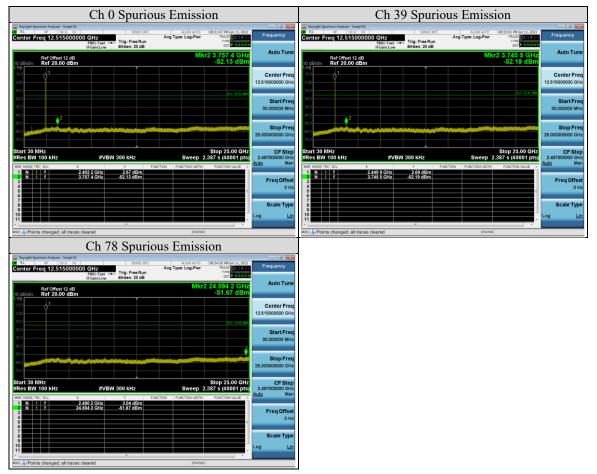
The loss between RF output port of the EUT and the input port of the Spectrum Analyzer has been taken into consideration.

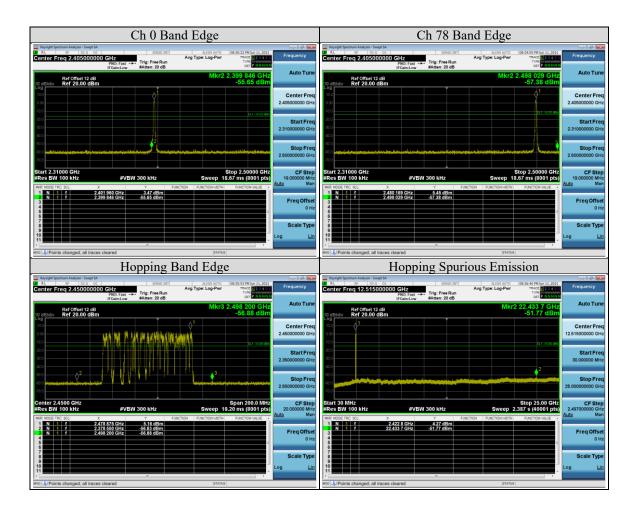
Test report No.	: 4789969990-US-R3-V0
Page	: 30 of 58
Issued date	: 2021/7/30
FCC ID	: MQT-AT170R18W


Test Data

GFSK

	Ch 0 Spuriou	us Emission				ous Emission	
Keysight Spectrum Analyzer - Swept SA RL RF S0 Ω DC Center Freq 12.5150000	00 GHz PNC: Fast →→ IFGain:Low #Atten: 20 dB	ALIGN AUTO 09:10:51 PM JU Avg Type: Log-Pwr TRACE TYPE DET	n 22, 2021 2 3 4 5 5 NMM N N	Keysight Spectrum Analyzer - Swe RL RF 50 Ω Center Freq 12.5150	DC SENSE:INT	ALIGN AUTO 09:12:29 PM Jun 22, 2021 Avg Type: Log-Pwr TRACE 23:45 Tree to the top of to	Frequency
Ref Offset 12 dB 10 dB/div Ref 20.00 dBm		Mkr2 24.752 8 -51.97	GHz Auto Tune	Ref Offset 12 10 dB/div Ref 20.00 d		Mkr2 23.857 6 GHz -52.35 dBm	Auto Tune
			Center Freq	10.0 1			Center Freq
-10.0			Start Freq	-10.0			Start Freq
-30.0			30.000000 MHz	-30.0			30.000000 MHz
-50.0 -50.0 -70.0			Stop Freq 25.00000000 GHz	-50.0 -60.0 -70.0			Stop Freq 25.00000000 GHz
Start 30 MHz #Res BW 100 kHz	#VBW 300 kHz	Stop 25.0 Sweep 2.387 s (400	01 pts) 2.497000000 GHz Auto Man	Start 30 MHz #Res BW 100 kHz	#VBW 300 kHz	Stop 25.00 GHz Sweep 2.387 s (40001 pts	CF Step 2.497000000 GHz Auto Man
MAR MODE TRC SCL X	2.402.2.GHz 7.16.dBm 4.752.8.GHz -51.97.dBm	NCTION FUNCTION WIDTH FUNCTION V	Freq Offset 0 Hz	MAR MODE TRC SCL 1 N 1 f 2 N 1 f 3 4 6	X Y F 2.440 9 GHz 6.09 dBm 23.857 6 GHz -52.36 dBm	UNCTION FUNCTION WIDTH FUNCTION VALUE	Freq Offset 0 Hz
7 8 9			Scale Type	7			Scale Type
MSO J Points changed; all traces	m.	STATUS	Log Lin	MSG Depints changed; all to		STATUS	Log <u>Lin</u>
Q Forna changed, un aucoa	Ch 78 Spurio			ov r onto changed, and			
Keysight Spectrum Analyzer - Swept SA RL RF S0 Q DC Center Freg 12.5150000	SENSE:INT	ALIGN AUTO 09:14:12 PM Jui	n 22, 2021 2 3 4 5 6 Frequency				
	PNO: Fast IFGain:Low #Atten: 20 dB	Mkr2 22.825 1	Auto Tuno				
10 dB/div Ref 20.00 dBm		-52.09	dBm				
			Center Freq 12.515000000 GHz				
-20.0			Start Freq				
-40.0			30.000000 MHz				
-60.0 -70.0			25.00000000 GHz				
Start 30 MHz #Res BW 100 kHz	#VBW 300 kHz	Stop 25.0 Sweep 2.387 s (400	01 pts) 2.497000000 GHz				
	2.480 2.GHz 6.85 dBm 2.825 1.GHz -52.09 dBm	PUNCTION WIDTH FUNCTION V	Freq Offset 0 Hz				
7 8 9			Scale Type				
MSG Depints changed; all traces	m.	STATUS	Log Lin				
		annoa		J			


Test report No.	: 4789969990-US-R3-V0		
Page	: 31 of 58		
Issued date	: 2021/7/30		
FCC ID	: MQT-AT170R18W		


Test report No.	: 4789969990-US-R3-V0
Page	: 32 of 58
Issued date	: 2021/7/30
FCC ID	: MQT-AT170R18W

8DPSK

Test report No.	: 4789969990-US-R3-V0		
Page	: 33 of 58		
Issued date	: 2021/7/30		
FCC ID	: MQT-AT170R18W		

9.7. Radiated Spurious Emission

Requirements

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequency(MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Test Procedures

[For $9 \text{ kHz} \sim 30 \text{ MHz}$]

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. For measurement below 30MHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

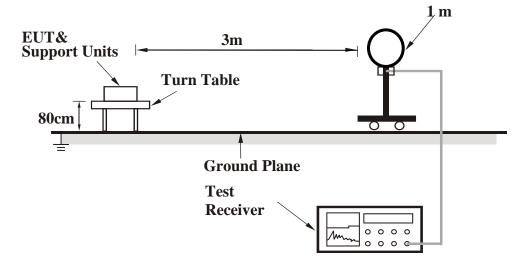
[For above 30 MHz]

- The EUT was placed on the top of a rotating table 0.8 meters (for $30MHz \sim 1GHz$) / 1.5 meters a. (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Underwriters Laboratories Taiwan Co., Ltd.

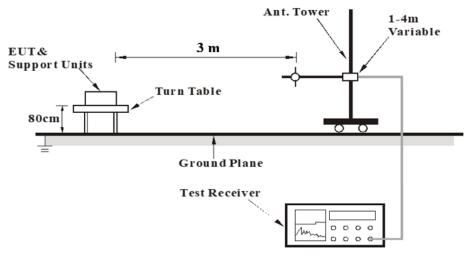
Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.

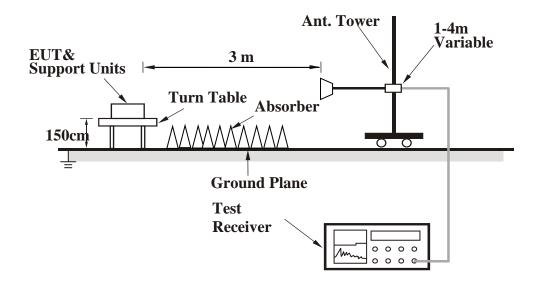

Configuration	Average		
Configuration	RBW	VBW	
Bluetooth	1MHz	510Hz	

Note:

- The GFSK Duty cycle = (2.9/3.76)*100% = 77.128 < 98%, so video bandwidth is 1/2.9 = 0.345 kHz. Therefore VBW configuration is 510Hz for testing.
- The 8DPSK Duty cycle = (2.9/3.76)*100% = 77.128 < 98%, so video bandwidth is 1/2.9 = 0.345kHz. Therefore VBW configuration is 510Hz for testing.
- Refer to section 9.5 for duty cycle plots.
- 4. All modes of operation were investigated (includes all external accessories) and the worst-case emissions are reported.


Test Setup

<Frequency Range 9 kHz ~ 30 MHz>



<Frequency Range 30 MHz ~ 1 GHz >

<Frequency Range above 1 GHz>

For the actual test configuration, please refer to the Setup Configurations.

Test Data

Above 1GHz Data

GFSK

EUT Test Condition		Measurement Detail			
Channel	Channel 0	Frequency Range	1 GHz ~ 26.5 GHz		

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark			
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)				
*	4804	36.92	2.46	39.38	74	-34.62	Peak			
-	2320.45	30.81	6.16	36.97	54	-17.03	Average			
@	2402	98.95	6.13	105.08	-	-	Average			
-	2338.69	40.57	6.08	46.65	74	-27.35	Peak			
@	2402	99.32	6.13	105.45	-	-	Peak			
		Antenna Po	larity & Test	Distance: Ver	rtical at 3 m					
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark			
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)				
*	4804	36.24	2.46	38.7	74	-35.3	Peak			
-	2317.41	30.59	6.17	36.76	54	-17.24	Average			
@	2402	94.3	6.13	100.43	-	-	Average			
-	2361.3	41.16	6.05	47.21	74	-26.79	Peak			
@	2402	94.67	6.13	100.8	-	-	Peak			

- 1. Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- 2. Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- 4. "@": Fundamental Frequency.
- 5. " * ": The peak result under 20 dB above and complies with AVG limit, AVG result is deemed to comply with AVG limit.
- 6. The other emission levels were very low against the limit.

EUT Test Condition		Measurement Detail			
Channel	Channel 39	Frequency Range	1 GHz ~ 26.5 GHz		

	Antenna Polarity & Test Distance: Horizontal at 3 m								
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark		
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)			
*	4882	35.86	2.66	38.52	74	-35.48	Peak		
-	2372.32	30.55	6.08	36.63	54	-17.37	Average		
@	2441	98.03	6.11	104.14	-	-	Average		
-	2499.05	30.55	6.1	36.65	54	-17.35	Average		
-	2348.76	41.15	6.04	47.19	74	-26.81	Peak		
@	2441	98.26	6.11	104.37	-	-	Peak		
-	2488.22	40.17	6.1	46.27	74	-27.73	Peak		
		Antenna Po	larity & Test	Distance: Ver	rtical at 3 m				
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark		
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)			
*	4882	36.62	2.66	39.28	74	-34.72	Peak		
-	2369.47	30.6	6.07	36.67	54	-17.33	Average		
@	2441	94.55	6.11	100.66	-	-	Average		
-	2500	30.49	6.1	36.59	54	-17.41	Average		
-	2353.51	41.09	6.04	47.13	74	-26.87	Peak		
@	2441	94.87	6.11	100.98	-	-	Peak		
-	2493.35	40.75	6.1	46.85	74	-27.15	Peak		

- 1. Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- 2. Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- 4. "@": Fundamental Frequency.
- 5. " * ": The peak result under 20 dB above and complies with AVG limit, AVG result is deemed to comply with AVG limit.
- 6. The other emission levels were very low against the limit.

EUT Test Condition		Measurement Detail			
Channel	Channel 78	Frequency Range	1 GHz ~ 26.5 GHz		

Antenna Polarity & Test Distance: Horizontal at 3 m									
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark		
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)			
*	4960	36.45	2.62	39.07	74	-34.93	Peak		
@	2480	97.89	6.1	103.99	-	-	Average		
-	2483.66	31.88	6.1	37.98	54	-16.02	Average		
@	2480	98.37	6.1	104.47	-	-	Peak		
-	2499.24	39.95	6.1	46.05	74	-27.95	Peak		
		Antenna Po	larity & Test	Distance: Vei	rtical at 3 m				
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark		
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)			
*	4960	35.78	2.62	38.4	74	-35.6	Peak		
@	2480	93.76	6.1	99.86	-	-	Average		
-	2483.66	30.82	6.1	36.92	54	-17.08	Average		
@	2480	94.11	6.1	100.21	-	-	Peak		
-	2489.17	40.52	6.1	46.62	74	-27.38	Peak		

- 1. Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- 2. Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- 4. "@": Fundamental Frequency.
- 5. " * ": The peak result under 20 dB above and complies with AVG limit, AVG result is deemed to comply with AVG limit.
- 6. The other emission levels were very low against the limit.

8DPSK

EUT Test Condition		Measurement Detail			
Channel	Channel 0	Frequency Range	1 GHz ~ 26.5 GHz		

	Antenna Polarity & Test Distance: Horizontal at 3 m									
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark			
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)				
*	4804	35.88	2.46	38.34	74	-35.66	Peak			
-	2374.41	30.74	6.08	36.82	54	-17.18	Average			
@	2402	95.74	6.13	101.87	-	-	Average			
-	2337.93	41.32	6.08	47.4	74	-26.6	Peak			
@	2402	97.97	6.13	104.1	-	-	Peak			
		Antenna Po	larity & Test	Distance: Ver	tical at 3 m					
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark			
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)				
*	4804	36.6	2.46	39.06	74	-34.94	Peak			
-	2312.85	30.47	6.18	36.65	54	-17.35	Average			
@	2402	90.38	6.13	96.51	-	-	Average			
-	2339.64	40.74	6.07	46.81	74	-27.19	Peak			
@	2402	92.89	6.13	99.02	-	-	Peak			

- 1. Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- 2. Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- 4. "@": Fundamental Frequency.
- 5. " * ": The peak result under 20 dB above and complies with AVG limit, AVG result is deemed to comply with AVG limit.
- 6. The other emission levels were very low against the limit.

EUT Test Condition		Measurement Detail			
Channel	Channel 39	Frequency Range	1 GHz ~ 26.5 GHz		

	Antenna Polarity & Test Distance: Horizontal at 3 m								
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark		
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)			
*	4882	34.91	2.66	37.57	74	-36.43	Peak		
-	2315.4	30.97	16.18	47.15	54	-6.85	Average		
@	2441	84.52	16.11	100.63	-	-	Average		
-	2504.8	30.47	16.1	46.57	54	-7.43	Average		
-	2374	42.14	16.08	58.22	74	-15.78	Peak		
@	2441	87.07	16.11	103.18	-	-	Peak		
-	2495	40.61	16.1	56.71	74	-17.29	Peak		
		Antenna Po	larity & Test	Distance: Ver	rtical at 3 m				
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark		
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)			
*	4882	35.42	2.66	38.08	74	-35.92	Peak		
-	2327.2	30.63	16.12	46.75	54	-7.25	Average		
@	2441	80.41	16.11	96.52	-	-	Average		
-	2508	30.49	16.1	46.59	54	-7.41	Average		
-	2385.4	40.84	16.09	56.93	74	-17.07	Peak		
@	2441	82.57	16.11	98.68	-	-	Peak		
-	2492.2	40.72	16.1	56.82	74	-17.18	Peak		

- 1. Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- 2. Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- 4. "@": Fundamental Frequency.
- 5. " * ": The peak result under 20 dB above and complies with AVG limit, AVG result is deemed to comply with AVG limit.
- 6. The other emission levels were very low against the limit.

EUT Test Condition		Measurement Detail			
Channel	Channel 78	Frequency Range	1 GHz ~ 26.5 GHz		

Antenna Polarity & Test Distance: Horizontal at 3 m									
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark		
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)			
*	4960	36.69	2.62	39.31	74	-34.69	Peak		
@	2480	95.37	6.1	101.47	-	-	Average		
-	2483.66	31.77	6.1	37.87	54	-16.13	Average		
@	2480	97.02	6.1	103.12	-	-	Peak		
-	2497.91	40.46	6.1	46.56	74	-27.44	Peak		
		Antenna Po	larity & Test	Distance: Ver	tical at 3 m				
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark		
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)			
*	4960	35.66	2.62	38.28	74	-35.72	Peak		
@	2480	90.3	6.1	96.4	-	-	Average		
-	2483.66	30.61	6.1	36.71	54	-17.29	Average		
@	2480	93.6	6.1	99.7	-	-	Peak		
-	2495.25	40.8	6.1	46.9	74	-27.1	Peak		

- 1. Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- 2. Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- 4. "@": Fundamental Frequency.
- 5. " * ": The peak result under 20 dB above and complies with AVG limit, AVG result is deemed to comply with AVG limit.
- 6. The other emission levels were very low against the limit.

9 kHz ~ 30 MHz Data:

For 9 kHz to 30 MHz radiated emission have performed all modes of operation were investigated. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

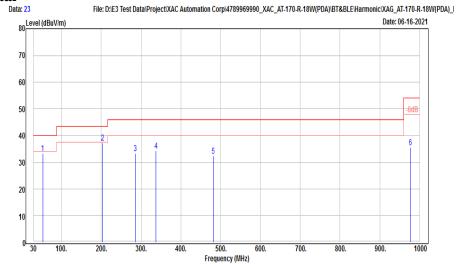
No non-compliance noted:

KDB 414788 D01 OATS and Chamber Correlation Justification

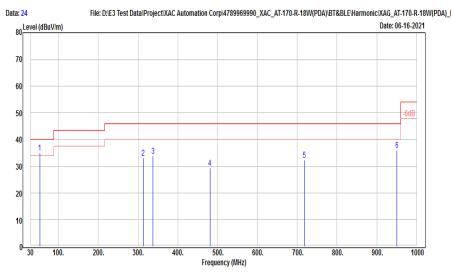
- Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

- OATs and chamber correlation testing had been performed and chamber measured test results is the worst case test result.

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30m open area test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.



30 MHz ~ 1 GHz Data


GFSK

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	30 MHz ~ 1 GHz	

Horizontal

Vertical

Underwriters Laboratories Taiwan Co., Ltd. Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948 Doc No: 17-EM-F0876 / 6.0

	Antenna Polarity & Test Distance: Horizontal at 3 m						
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
-	53.28	44.51	-11.11	33.4	40	-6.6	Peak
-	203.63	51.16	-13.96	37.2	43.5	-6.3	Peak
-	286.08	43.63	-10.39	33.24	46	-12.76	Peak
-	337.49	43.09	-8.77	34.32	46	-11.68	Peak
-	482.02	37.33	-5.08	32.25	46	-13.75	Peak
-	977.69	31.47	4.13	35.6	54	-18.4	Peak
		Antenna Po	larity & Test	Distance: Ver	tical at 3 m		
Notation	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
-	53.28	46.24	-11.11	35.13	40	-4.87	Peak
-	313.24	42.63	-9.6	33.03	46	-12.97	Peak
-	337.49	42.54	-8.77	33.77	46	-12.23	Peak
-	481.05	34.41	-5.13	29.28	46	-16.72	Peak
-	718.7	32.25	0.11	32.36	46	-13.64	Peak
-	950.53	32.26	3.82	36.08	46	-9.92	Peak

- 1. Result value (dBuV/m) = Reading value (dBuV/m) + Correction Factor (dB/m).
- 2. Margin(dB) = Result value (dBuV/m) Limit value (dBuV/m).
- 3. Correction Factor (dB/m) = Antenna Factor (dBuV/m) + Cable Loss (dB) Preamp Factor (dB).
- 4. The peak result complies with QP limit, QP result is deemed to comply with QP limit.
- 5. The other emission levels were very low against the limit.

9.8. AC Power Line Conducted Emission

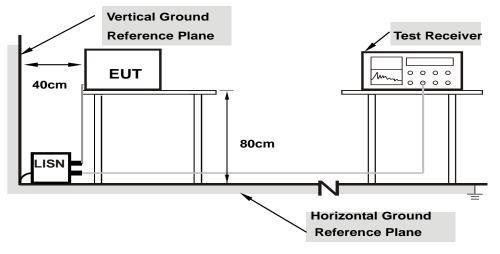
Requirements

Frequency (MHz)	Conducted limit (dBµV)			
Frequency (MHz)	Quasi-peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30	60	50		

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE:

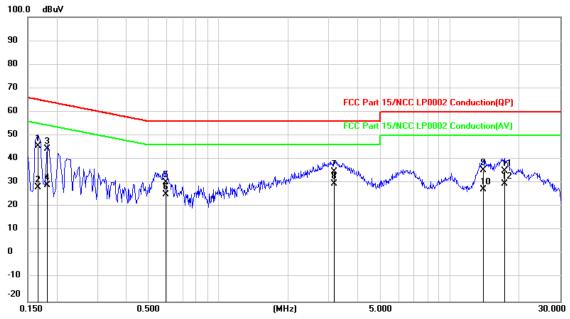
1. The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

(U)	Test report No. Page Issued date FCC ID	: 4789969990-US-R3-V0 : 48 of 58 : 2021/7/30 : MQT-AT170R18W
-----	--	---

Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the Setup Configurations.



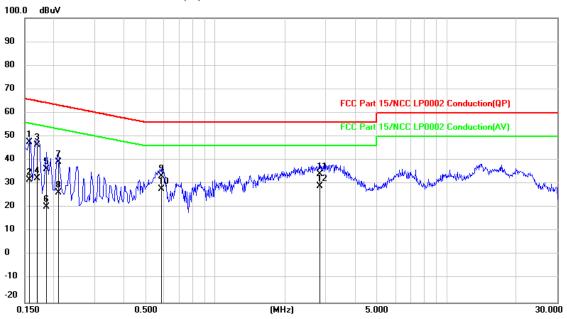
Test report No.	: 4789969990-US-R3-V0
Page	: 49 of 58
Issued date	: 2021/7/30
FCC ID	: MQT-AT170R18W

Test Data

GFSK

EUT Test Condition		Measurement Detail		
Channel	Channel 0	Frequency Range	150 kHz ~ 30 MHz	

Phase of Power : Line (L)

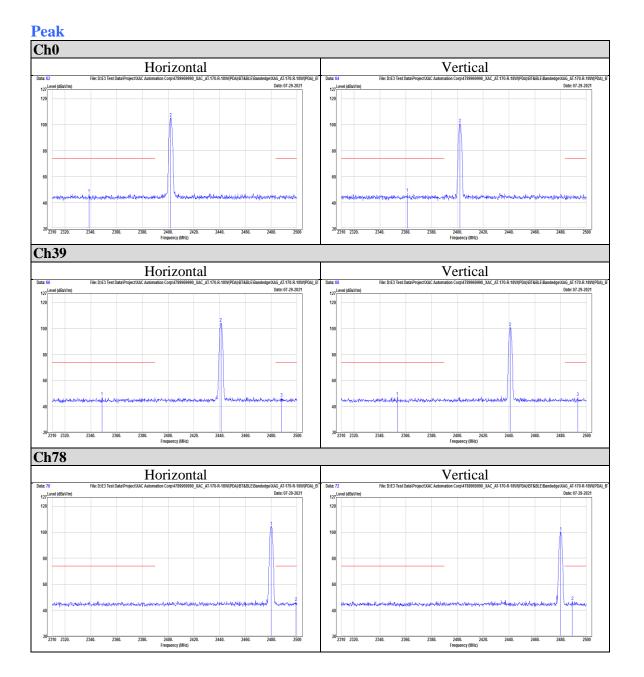

Doc No: 17-EM-F0876 / 6.0

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	dB	(dBuV)	(dBuV)	(dB)	
1	0.1660	25.98	19.50	45.48	65.16	-19.68	QP
2	0.1660	8.75	19.50	28.25	55.16	-26.91	AVG
3	0.1819	24.71	19.49	44.20	64.40	-20.20	QP
4	0.1819	9.53	19.49	29.02	54.40	-25.38	AVG
5	0.5940	10.66	19.49	30.15	56.00	-25.85	QP
6	0.5940	5.75	19.49	25.24	46.00	-20.76	AVG
7	3.1700	15.09	19.56	34.65	56.00	-21.35	QP
8	3.1700	10.04	19.56	29.60	46.00	-16.40	AVG
9	13.9260	15.69	19.71	35.40	60.00	-24.60	QP
10	13.9260	7.65	19.71	27.36	50.00	-22.64	AVG
11	17.2900	15.34	19.74	35.08	60.00	-24.92	QP
12	17.2900	10.02	19.74	29.76	50.00	-20.24	AVG

- 1. Result value (dBuV) = Reading value (dBuV) + Correction Factor (dB)
- 2. Margin(dB) = Result value (dBuV) Limit value (dBuV)
- 3. Correction Factor(dB) = Insertion loss(dB) + Cable loss(dB)
- 4. The other emission levels were very low against the limit.

Test report No. : 4789969990-1 Page : 51 of 58 Issued date : 2021/7/30 FCC ID : MQT-AT1701	US-R3-V0 R18W
--	------------------

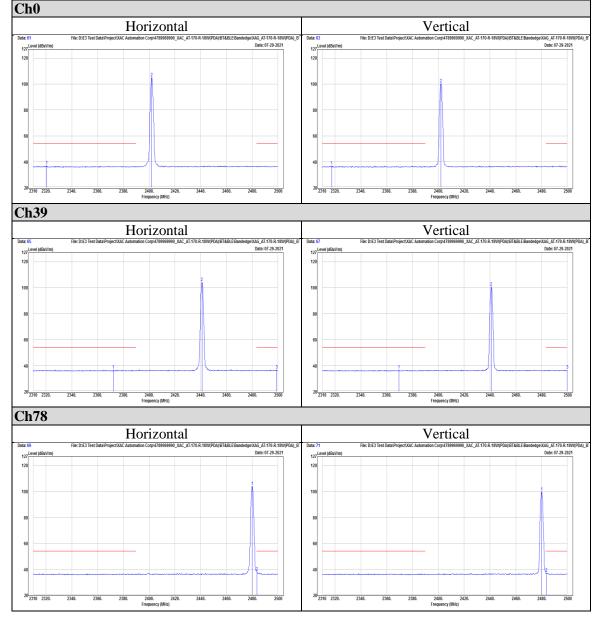
Phase of Power : Neutral (N)


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	dB	(dBuV)	(dBuV)	(dB)	
1	0.1580	28.28	19.50	47.78	65.57	-17.79	QP
2	0.1580	12.21	19.50	31.71	55.57	-23.86	AVG
3	0.1700	26.89	19.50	46.39	64.96	-18.57	QP
4	0.1700	12.79	19.50	32.29	54.96	-22.67	AVG
5	0.1860	16.84	19.49	36.33	64.21	-27.88	QP
6	0.1860	0.78	19.49	20.27	54.21	-33.94	AVG
7	0.2100	19.74	19.49	39.23	63.21	-23.98	QP
8	0.2100	7.01	19.49	26.50	53.21	-26.71	AVG
9	0.5860	13.85	19.49	33.34	56.00	-22.66	QP
10	0.5860	8.36	19.49	27.85	46.00	-18.15	AVG
11	2.8380	14.64	19.54	34.18	56.00	-21.82	QP
12	2.8380	9.41	19.54	28.95	46.00	-17.05	AVG

- 1. Result value (dBuV) = Reading value (dBuV) + Correction Factor (dB)
- 2. Margin(dB) = Result value (dBuV) Limit value (dBuV)
- 3. Correction Factor(dB) = Insertion loss(dB) + Cable loss(dB)
- 4. The other emission levels were very low against the limit.

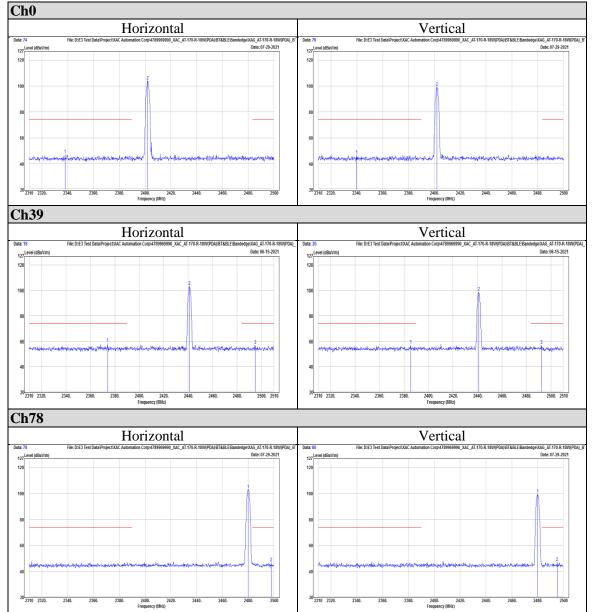
Appendix I Radiated Band Edge Measurement

GFSK



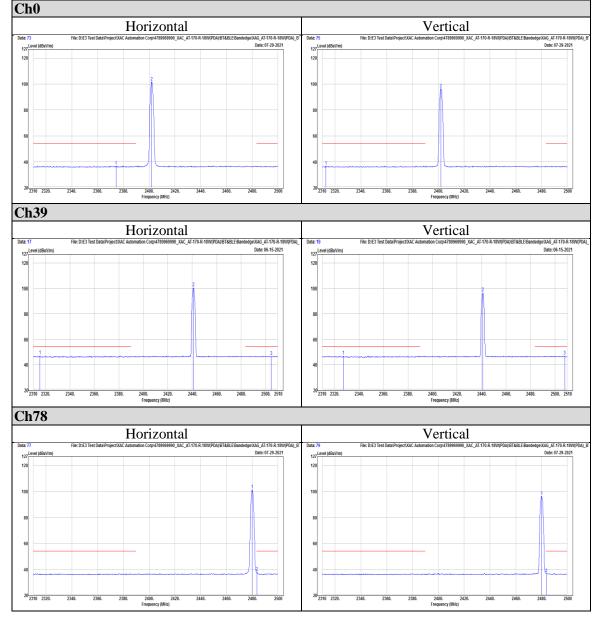
Underwriters Laboratories Taiwan Co., Ltd. Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948 Doc No: 17-EM-F0876 / 6.0

Test report No.	: 4789969990-US-R3-V0
Page	: 54 of 58
Issued date	: 2021/7/30
FCC ID	: MQT-AT170R18W

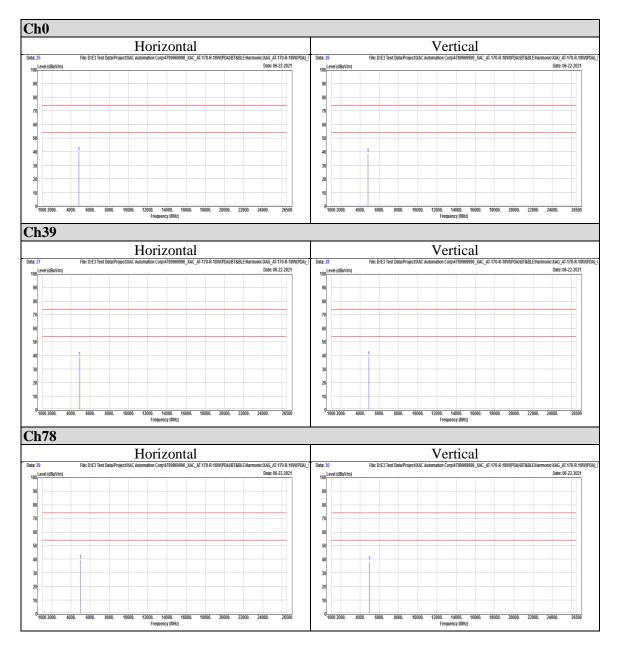

Average

Issued date :	4/89969990-US-R3-V0 55 of 58 2021/7/30 MQT-AT170R18W
---------------	---

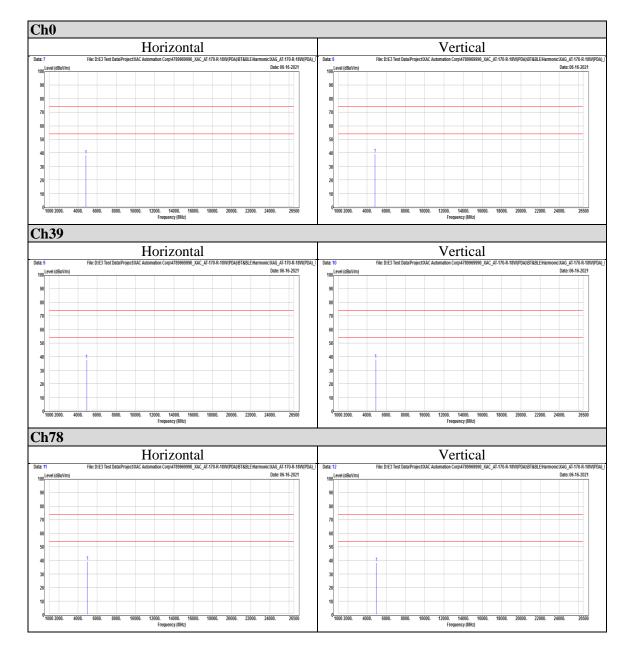
8DPSK


Peak

Test report No.	: 4789969990-US-R3-V0
Page	: 56 of 58
Issued date	: 2021/7/30
FCC ID	: MQT-AT170R18W


Average

Appendix II Radiated Spurious Emission Measurement


GFSK

Underwriters Laboratories Taiwan Co., Ltd. Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948 Doc No: 17-EM-F0876 / 6.0

8DPSK

END OF REPORT

Underwriters Laboratories Taiwan Co., Ltd. Building B and Building E, No. 372-7, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County, Taiwan Telephone :+886-2-7737-3000 Facsimile (FAX) :+886-3-583-7948 Doc No: 17-EM-F0876 / 6.0