

FCC Test Report (NFC)

Report No.: RF190516E08-3

FCC ID: MQT-AT170R18U

Test Model: xCL AT-170-R-18U

Received Date: May 16, 2019

Test Date: June 20 to 25, 2019

Issued Date: July 11, 2019

Applicant: XAC AUTOMATION CORP.

Address: 4F, No. 30, INDUSTRY E. RD. IX, SCIENCE-BASED INDUSTRIAL

PARK, HSINCHU, TAIWAN

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

FCC Registration /

723255 / TW2022 **Designation Number:**

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record3				
1	(Certificate of Conformity	4		
2	;	Summary of Test Results	5		
	2.1	Measurement Uncertainty			
	2.2	Modification Record	5		
3	(General Information	6		
	3.1	General Description of EUT (NFC)			
	3.2	Description of Test Modes			
	3.2.1				
	3.3	Description of Support Units			
	3.3.1				
	3.4	General Description of Applied Standards			
4	•	Test Types and Results	13		
	4.1	Radiated Emission Measurement			
		Limits of Radiated Emission Measurement			
		? Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		Test Setup			
		EUT Operating Conditions			
		Test Results			
	4.2	Conducted Emission Measurement			
		Limits of Conducted Emission Measurement			
		? Test Instruments			
		Test Procedures Deviation from Test Standard			
		Test Setup EUT Operating Conditions			
		Test Results			
	4.2.7	Frequency Stability			
		Limits of Frequency Stability Measurement			
		2 Test Setup			
		Test Instruments			
		- Test Procedure			
		Deviation from Test Standard			
		EUT Operating Conditions			
		Test Result			
	4.4	20dB Bandwidth			
	4.4.1	Limits of 20dB bandwidth Measurement			
		Part Setup			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		EUT Operating Conditions			
		Test Results			
5	I	Pictures of Test Arrangements	36		
		dix – Information of the Testing Laboratories			
	-				

Release Control Record

Issue No.	Description	Date Issued
RF190516E08-3	Original release.	July 11, 2019

1 Certificate of Conformity

Product: Terminal

Brand: XAC

Test Model: xCL_AT-170-R-18U

Sample Status: ENGINEERING SAMPLE

Applicant: XAC AUTOMATION CORP.

Test Date: June 20 to 25, 2019

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.225)

47 CFR FCC Part 15, Subpart C (Section 15.215)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: Thomas Huang, Date: July 11, 2019

Phoenix Huang / Specialist

Approved by : , **Date:** July 11, 2019

May Chen / Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.225, 15.215)					
FCC Clause	Test Item	Result	Remarks		
15.207	5.207 Conducted emission test		Meet the requirement of limit. Minimum passing margin is -14.11dB at 10.30469 MHz.		
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz	Pass	Meet the requirement of limit. Minimum passing margin is -28.08dB at 13.636 MHz.		
15.225 (b)	The field strength of any emissions within the bands 13.410-13.553 MHz and 13.567-13.710 MHz	Pass	Meet the requirement of limit.		
15.225 (c)	The field strength of any emissions within the bands 13.110-13.410 MHz and 13.710-14.010 MHz	Pass	Meet the requirement of limit.		
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	Pass	Meet the requirement of limit. Minimum passing margin is -1.8dB at 271.24 MHz.		
15.225 (e)	The frequency tolerance	Pass	Meet the requirement of limit.		
15.215 (c)	20dB Bandwidth	Pass	Meet the requirement of limit.		
15.203 Antenna Requirement		Pass	No antenna connector is used.		

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.8 dB
Padiated Emissions up to 1 CHz	9kHz ~ 30MHz	3.0 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	4.9 dB
	1GHz ~ 6GHz	5.1 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.9 dB
	18GHz ~ 40GHz	5.2 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (NFC)

Product	Terminal
Brand	XAC
Test Model	xCL_AT-170-R-18U
Status of EUT	ENGINEERING SAMPLE
Dower Cumply Dating	5Vdc from power adapter or
Power Supply Rating	3.8Vdc from battery
Modulation Type	ASK
Transfer Rate	106 kbit/s
Operating Frequency	13.56 MHz
Number of Channel	1
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	Battery x1 (option), Adapter x 1 (option)
Data Cable Supplied	NA

Note:

1. The EUT has below radios as following table:

Radio 1	Radio 2	Radio 3
WLAN+Bluetooth	WWAN	NFC

2. Simultaneously transmission condition.

Condition	Technology		
1	WWAN	NFC	
2	WWAN	Bluetooth	
3	WLAN 2.4GHz	NFC	
4	WLAN 5GHz	NFC	
5	Bluetooth	NFC	

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.

3. The EUT must be supplied with a power adapter or a battery as following table:

Adapter				
Brand	Model No.	Spec.		
MASS POWER	NBS10B050200VUU	Input: 100-240Vac, 0.3A, 50~60Hz Output: 5Vdc, 2A DC output cable: Shielded, 1.2 m		
Battery				
Brand	Model No.	Spec.		
Shenzhen Rishengzhi Electronics Technology Co., Ltd.	J601	3.8Vdc, 5200mAh, 19.76Wh		
Niete, Euges the electric education and le		d aminaian tant was found in Adouter Thornton		

Note: From the above adapter and battery, the worst radiated emission test was found in **Adapter**. Therefore only the test data of the modes were recorded in this report.

4. The antennas provided to the EUT, please refer to the following table:

Ant. No.	RF Chain No.	Brand	Model	Ant. Net Gain (dBi)	Frequency Range	Antenna Type	Connector Type
Wi-Fi + BT	Main	Main awan-ant	AYF6P-100000	2.34	2.4~2.4835 GHz	FPCB	i-pex(MHF)
VVI-FI + DI				4.48	5.15~5.85 GHz	FPCB	i-pex(MHF)
3G/LTE	Main	awan-ant	AXF6P-100002	3.44	699~2690 MHz	FPCB	i-pex(MHF)
3G/LTE	Aux	awan-ant	AXF6P-100003	3.75	699~2690 MHz	FPCB	i-pex(MHF)
NFC	Main	XAC	RTOS	13	13.56 MHz	Wire	None

5. The EUT has one type according to NFC technology as following table:

		<i>j</i>	
Mode	Туре	Modulation	Data rate
Active	A	100%, ASK	106 kbit/s

6. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

One channel was provided to this EUT:

Channel	Frequency (MHz)
1	13.56

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure Mode		Description			
Mode	RE	PLC	FS	EB	Description
-	√	-	√	V	-

Where

RE≥1G: Radiated Emission

PLC: Power Line Conducted Emission

FS: Frequency Stability

EB: 20dB Bandwidth measurement

Radiated Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type
1	1	ASK

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type
1	1	ASK

Frequency Stability:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

	,	
Available Channel	Tested Channel	Modulation Type
1	1	ASK

20dB Bandwidth:

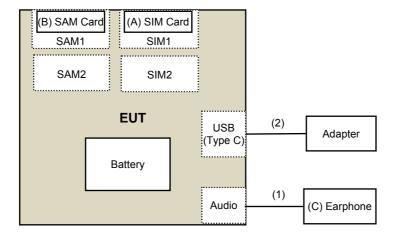
- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type
1	1	ASK

Test Condition:

Applicable to Environmental Conditions		Input Power	Tested By
DE	23deg. C, 67%RH,	120\/00 60 =	Robert Cheng,
RE	22deg. C, 67%RH	120Vac, 60Hz	Ryan Chen
PLC	24deg. C, 76%RH	120Vac, 60Hz	Andy Ho
FS	25deg. C, 60%RH	120Vac, 60Hz	Jyunchun Lin
EB	25deg. C, 60%RH	120Vac, 60Hz	Jyunchun Lin


3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	SIM Card	NA	NA	NA	NA	Provided by Lab
B.	SAM Card	NA	NA	NA	NA	Supplied by client
C.	Earphone	Sony	NA	NA	NA	Provided by Lab

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	Audio Cable	1	0.6	No	0	Provided by Lab
2.	USB Type C Cable	1	1.2	Yes	0	Supplied by client

3.3.1 Configuration of System under Test

3.4 **General Description of Applied Standards** The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards: **FCC Part 15, Subpart C (15.225) FCC Part 15, Subpart C (15.215)** ANSI C63.10-2013 All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission Measurement

- 4.1.1 Limits of Radiated Emission Measurement
 - (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
 - (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
 - (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
 - (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209 as below table:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 4. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER	WODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver Keysight	N9038A	MY54450088	July 05, 2018	July 04, 2019
Pre-Amplifier EMCI	EMC001340	980142	Jan. 25, 2019	Jan. 24, 2020
Loop Antenna Electro-Metrics	EM-6879	269	Sep. 07, 2018	Sep. 06, 2019
RF Cable	NA	LOOPCAB-001	Jan. 14, 2019	Jan. 13, 2020
RF Cable	NA	LOOPCAB-002	Jan. 14, 2019	Jan. 13, 2020
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-01	Oct. 30, 2018	Oct. 29, 2019
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Nov. 22, 2018	Nov. 21, 2019
RF Cable	8D	966-4-1	Mar. 19, 2019	Mar. 18, 2020
RF Cable	8D	966-4-2	Mar. 19, 2019	Mar. 18, 2020
RF Cable	8D	966-4-3	Mar. 19, 2019	Mar. 18, 2020
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-4-01	Sep. 27, 2018	Sep. 26, 2019
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA
Spectrum Analyzer R&S	FSV40	100964	June 04, 2019	June 03, 2020
DC Power Supply Topward	6603D	795558	NA	NA
Temperature & Humidity Chamber Giant Force	GTH-150-40-SP-AR	MAA0812-008	Jan. 09, 2019	Jan. 08, 2020
True RMS Clamp Meter FLUKE	325	31130711WS	May 21, 2019	May 20, 2020

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 4.
- 3. Loop antenna was used for all emissions below 30 MHz.
- 4. Tested Date: June 20 to 24, 2019

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak or Average Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

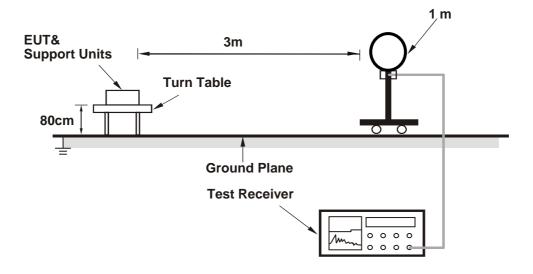
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

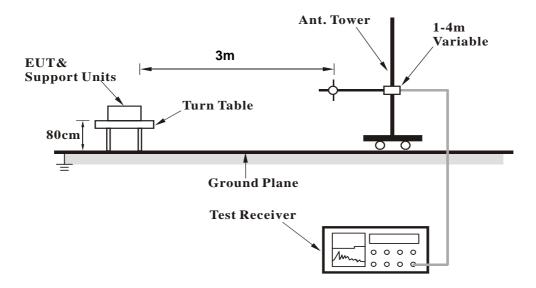
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated Emission below 30MHz

For Radiated Emission 30MHz to 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

	Frequency Range	13.110 ~ 14.010MHz	Detector Function	Quasi-Peak
--	-----------------	--------------------	-------------------	------------

	Antenna Polarity & Test Distance: Parallel at 3m								
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction	
No.	(MHz)	Level	_	(dB)	Height	Angle	Value	Factor	
	(IVIITZ)	(MHz) (dBuV/m) (dBuV/m) (dBuV/m)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)		
1	13.417	51.73 QP	90.47	-38.74	1.00	251	55.14	-3.41	
2	13.492	54.37 QP	90.47	-36.10	1.00	250	57.79	-3.42	
3	*13.560	76.16 QP	124.00	-47.84	1.00	263	79.59	-3.43	
4	13.630	54.96 QP	90.47	-35.51	1.00	267	58.41	-3.45	
5	13.704	52.98 QP	90.47	-37.49	1.00	267	56.45	-3.47	

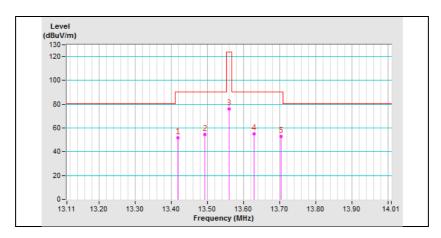
REMARKS:

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. Above limits have been translated by the formula
- 6. " * ": Fundamental frequency.

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

13.56MHz = 15848uV/m

30m


= 84dBuV/m

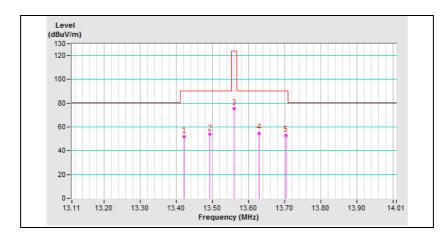
30m

 $= 84+20\log(30/3)^2$

3m

= 124dBuV/m

	Antenna Polarity & Test Distance: Perpendicular at 3m									
No.	Freq.	Emission Level	Limit	Margin	Antenna Height	Table Angle	Raw Value	Correction Factor		
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)			
1	13.421	51.99 QP	90.47	-38.48	1.00	16	55.40	-3.41		
2	13.492	54.16 QP	90.47	-36.31	1.00	356	57.58	-3.42		
3	*13.560	75.69 QP	124.00	-48.31	1.00	360	79.12	-3.43		
4	13.629	54.78 QP	90.47	-35.69	1.00	13	58.23	-3.45		
5	13.703	52.62 QP	90.47	-37.85	1.00	360	56.09	-3.47		


- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. Above limits have been translated by the formula
- 6. " * ": Fundamental frequency.

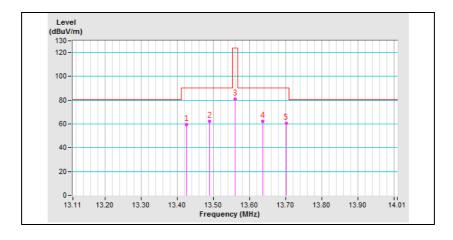
The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

13.56MHz =30m 15848uV/m

= 84dBuV/m 30m $= 84 + 20 \log(30/3)^2$ 3m

124dBuV/m

	Antenna Polarity & Test Distance: Ground Parallel at 3m								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	13.426	59.58 QP	90.47	-30.89	1.00	360	62.99	-3.41	
2	13.489	62.03 QP	90.47	-28.44	1.00	2	65.45	-3.42	
3	*13.560	80.84 QP	124.00	-43.16	1.00	0	84.27	-3.43	
4	13.636	62.39 QP	90.47	-28.08	1.00	1	65.84	-3.45	
5	13.701	60.56 QP	90.47	-29.91	1.00	349	64.03	-3.47	

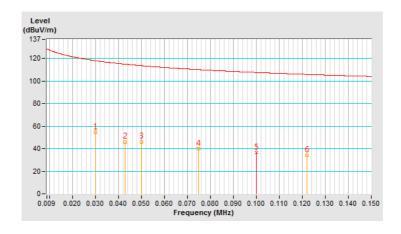

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. Above limits have been translated by the formula
- 6. " * ": Fundamental frequency.

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

13.56MHz =30m 15848uV/m = 84dBuV/m 30m

> $= 84 + 20 \log(30/3)^2$ 3m

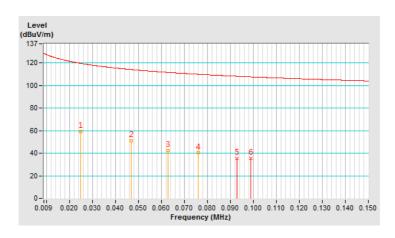
124dBuV/m



Frequency Range	9kHz ~ 0.15MHz	Detector Function	Average; Quasi-Peak

	Antenna Polarity & Test Distance: Parallel at 3m									
No.	Freq.	Emission Level	Limit	Margin	Antenna Height	Table Angle	Raw Value	Correction Factor		
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)			
1	0.030	54.50 AV	118.05	-63.55	1.00	125	26.86	27.64		
2	0.043	45.84 AV	114.92	-69.08	1.00	215	21.26	24.58		
3	0.050	45.82 AV	113.62	-67.80	1.00	213	22.87	22.95		
4	0.075	39.84 AV	110.10	-70.26	1.00	203	20.19	19.65		
5	0.100	36.40 QP	107.60	-71.20	1.00	315	20.02	16.38		
6	0.122	34.06 AV	105.87	-71.81	1.00	301	18.60	15.46		

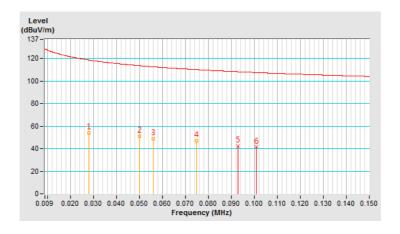
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



Frequency Range	9kHz ~ 0.15MHz	Detector Function	Average; Quasi-Peak
, ,			•

	Antenna Polarity & Test Distance: Perpendicular at 3m									
No.	Freq. (MHz)	Emission Level	Limit (dBuV/m)	Margin (dB)	Antenna Height	Table Angle	Raw Value	Correction Factor		
(IVITZ)	(dBuV/m)	(dbuv/iii) (db)	(db)	(m)	(Degree)	(dBuV)	(dB/m)			
1	0.025	59.39 AV	119.63	-60.24	1.00	265	29.56	29.83		
2	0.047	51.06 AV	114.15	-63.09	1.00	165	27.42	23.64		
3	0.063	42.43 AV	111.61	-69.18	1.00	124	21.19	21.24		
4	0.076	40.49 AV	109.98	-69.49	1.00	200	20.96	19.53		
5	0.093	35.59 QP	108.23	-72.64	1.00	302	18.29	17.30		
6	0.099	35.69 QP	107.69	-72.00	1.00	247	19.18	16.51		

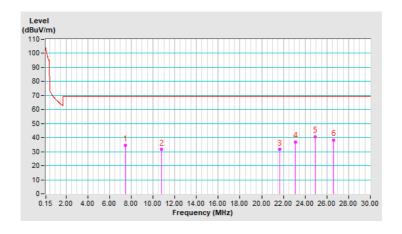
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



Frequency Range 9kHz ~ 0.15MHz	Detector Function	Average; Quasi-Peak
--------------------------------	-------------------	---------------------

	Antenna Polarity & Test Distance: Ground Parallel at 3m									
No.	Freq.	Emission Level	Limit	Margin	Antenna Height	Table Angle	Raw Value	Correction Factor		
(MHz)	(dBuV/m)	(dBuV/m) (dB)	(m)	(Degree)	(dBuV)	(dB/m)				
1	0.028	54.16 AV	118.65	-64.49	1.00	326	25.64	28.52		
2	0.050	51.23 AV	113.62	-62.39	1.00	311	28.28	22.95		
3	0.056	48.72 AV	112.63	-63.91	1.00	79	26.56	22.16		
4	0.075	46.97 AV	110.10	-63.13	1.00	217	27.32	19.65		
5	0.093	42.60 QP	108.23	-65.63	1.00	85	25.30	17.30		
6	0.101	41.66 QP	107.51	-65.85	1.00	102	25.32	16.34		

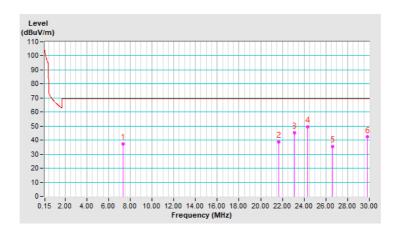
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



|--|

	Antenna Polarity & Test Distance: Parallel at 3m									
No.	Freq.	Emission Level	Limit	Margin	Antenna Height	Table Angle	Raw Value	Correction Factor		
(MHz)	(dBuV/m)	(dBuV/m) (dE	(dB)	(m)	(Degree)	(dBuV)	(dB/m)			
1	7.458	34.49 QP	69.50	-35.01	1.00	176	37.74	-3.25		
2	10.796	31.50 QP	69.50	-38.00	1.00	184	34.44	-2.94		
3	21.662	31.50 QP	69.50	-38.00	1.00	111	35.81	-4.31		
4	23.129	36.95 QP	69.50	-32.55	1.00	327	41.04	-4.09		
5	24.900	40.64 QP	69.50	-28.86	1.00	175	44.46	-3.82		
6	26.611	38.44 QP	69.50	-31.06	1.00	36	42.00	-3.56		

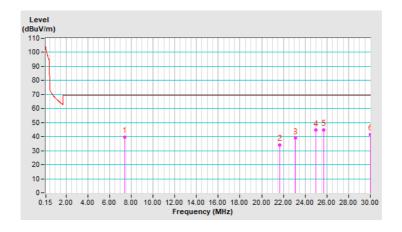
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



Frequency Range	0.15MHz ~ 30MHz	Detector Function	Quasi-Peak
-----------------	-----------------	-------------------	------------

	Antenna Polarity & Test Distance: Perpendicular at 3m											
No.	Freq.	Emission Level	Limit Margir	Margin	Antenna Height	Table Angle	Raw Value	Correction Factor				
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)				
1	7.345	37.42 QP	69.50	-32.08	1.00	192	40.68	-3.26				
2	21.664	38.88 QP	69.50	-30.62	1.00	360	43.19	-4.31				
3	23.129	45.26 QP	69.50	-24.24	1.00	234	49.35	-4.09				
4	24.350	49.59 QP	69.50	-19.91	1.00	108	53.50	-3.91				
5	26.614	35.59 QP	69.50	-33.91	1.00	243	39.15	-3.56				
6	29.798	42.27 QP	69.50	-27.23	1.00	205	45.35	-3.08				

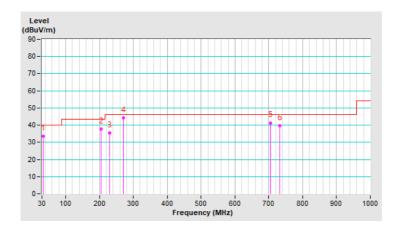
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



|--|

	Antenna Polarity & Test Distance: Ground Parallel at 3m										
No.	Freq.	Freq. Emission Limit Margi		Margin	Antenna Height	Table Angle	Raw Value	Correction Factor			
110.	(MHz)	(MHz) (dBuV/m) (dBuV/m)	(m)	(Degree)	(dBuV)	(dB/m)					
1	7.372	39.52 QP	69.50	-29.98	1.00	200	42.78	-3.26			
2	21.662	34.03 QP	69.50	-35.47	1.00	155	38.34	-4.31			
3	23.129	38.92 QP	69.50	-30.58	1.00	280	43.01	-4.09			
4	24.961	44.55 QP	69.50	-24.95	1.00	310	48.37	-3.82			
5	25.693	44.93 QP	69.50	-24.57	1.00	359	48.63	-3.70			
6	29.996	41.52 QP	69.50	-27.98	1.00	360	44.57	-3.05			

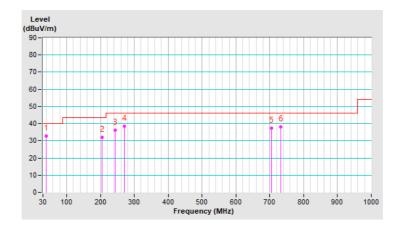
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value



Frequency Range	30MHz ~ 1000MHz	Detector Function	Quasi-Peak
. , ,			

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	34.63	33.5 QP	40.0	-6.5	2.00 H	173	42.8	-9.3				
2	203.75	37.9 QP	43.5	-5.6	1.50 H	47	48.2	-10.3				
3	230.60	35.5 QP	46.0	-10.5	1.50 H	37	45.1	-9.6				
4	271.24	44.2 QP	46.0	-1.8	1.00 H	206	52.1	-7.9				
5	705.17	41.4 QP	46.0	-4.6	1.00 H	127	39.2	2.2				
6	732.30	39.5 QP	46.0	-6.5	1.00 H	104	36.4	3.1				

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



Frequency Range	30MHz ~ 1000MHz	Detector Function	Quasi-Peak
-----------------	-----------------	-------------------	------------

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	39.97	32.7 QP	40.0	-7.3	1.00 V	214	41.4	-8.7				
2	203.73	31.9 QP	43.5	-11.6	1.25 V	65	42.2	-10.3				
3	244.10	36.3 QP	46.0	-9.7	1.65 V	42	45.1	-8.8				
4	271.24	38.4 QP	46.0	-7.6	1.75 V	100	46.3	-7.9				
5	705.19	37.4 QP	46.0	-8.6	1.65 V	211	35.2	2.2				
6	732.28	38.0 QP	46.0	-8.0	2.14 V	301	34.9	3.1				

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguency (MHz)	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

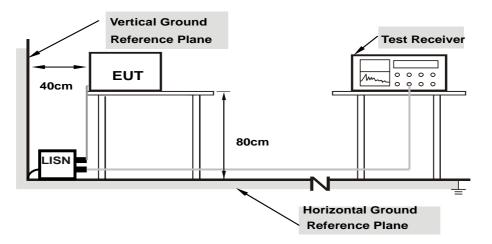
4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 24, 2018	Oct. 23, 2019
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 22, 2018	Oct. 21, 2019
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 17, 2019	Mar. 16, 2020
50 ohms Terminator	N/A	3	Oct. 22, 2018	Oct. 21, 2019
RF Cable	5D-FB	COCCAB-001	Sep. 28, 2018	Sep. 27, 2019
Fixed attenuator EMCI	STI02-2200-10	003	Mar. 14, 2019	Mar. 13, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3 Tested Date: June 25, 2019

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
----------------	-------------------	-----------------------------------

	Phase Of Power : Line (L)											
	Frequency	Correction		Reading Value		Emission Level		nit	Ma	_		
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.15000	10.03	37.23	18.98	47.26	29.01	66.00	56.00	-18.74	-26.99		
2	0.16562	10.04	34.39	15.67	44.43	25.71	65.18	55.18	-20.75	-29.47		
3	10.30469	10.72	32.02	25.17	42.74	35.89	60.00	50.00	-17.26	-14.11		
4	11.69922	10.81	30.28	23.31	41.09	34.12	60.00	50.00	-18.91	-15.88		
5	15.92578	11.09	32.06	24.38	43.15	35.47	60.00	50.00	-16.85	-14.53		
6	24.71875	11.47	28.20	12.72	39.67	24.19	60.00	50.00	-20.33	-25.81		

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

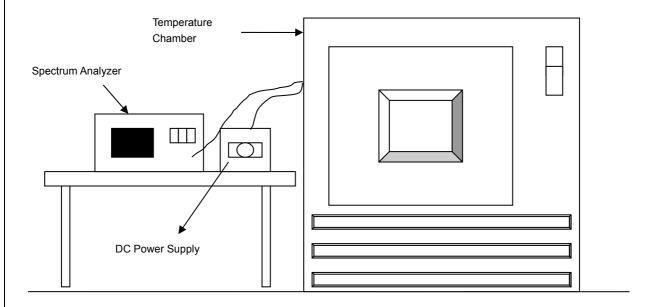


Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)

Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor	9		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
110	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.94	37.68	18.36	47.62	28.30	66.00	56.00	-18.38	-27.70
2	0.16562	9.94	34.25	15.55	44.19	25.49	65.18	55.18	-20.99	-29.69
3	10.28125	10.55	29.51	22.62	40.06	33.17	60.00	50.00	-19.94	-16.83
4	13.58984	10.75	28.52	21.77	39.27	32.52	60.00	50.00	-20.73	-17.48
5	17.33594	10.98	30.40	22.92	41.38	33.90	60.00	50.00	-18.62	-16.10
6	24.25781	11.21	27.52	12.10	38.73	23.31	60.00	50.00	-21.27	-26.69

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Frequency Stability

4.3.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of –20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- b. Turn the EUT on and couple its output to a spectrum analyzer.
- c. Turn the EUT off and set the chamber to the highest temperature specified.
- d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 Minutes.
- e. Repeat step (d) with the temperature chamber set to the next desired temperature until measurements down to the lowest specified temperature have been completed.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 Minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.3.5 Deviation from Test Standard

No deviation.

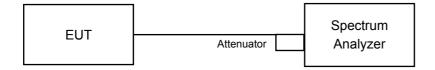
4.3.6 EUT Operating Conditions

Same as Item 4.1.6.

4.3.7 Test Result

Frequency Stability Versus Temp.									
Temp.	Power Supply (Vdc)	0 Minute		2 Minutes		5 Minutes		10 Minutes	
		Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%
50	3.8	13.56001	0.00007	13.56001	0.00007	13.56002	0.00015	13.56002	0.00015
40	3.8	13.55997	-0.00022	13.55997	-0.00022	13.55997	-0.00022	13.55997	-0.00022
30	3.8	13.55996	-0.00029	13.55995	-0.00037	13.55995	-0.00037	13.55997	-0.00022
20	3.8	13.55998	-0.00015	13.55996	-0.00029	13.55997	-0.00022	13.55997	-0.00022
10	3.8	13.55997	-0.00022	13.55998	-0.00015	13.55997	-0.00022	13.55996	-0.00029
0	3.8	13.55998	-0.00015	13.55998	-0.00015	13.55998	-0.00015	13.55998	-0.00015
-10	3.8	13.56005	0.00037	13.56005	0.00037	13.56004	0.00029	13.56003	0.00022
-20	3.8	13.56	0.00000	13.56	0.00000	13.55999	-0.00007	13.55998	-0.00015

Frequency Stability Versus Voltage									
Temp. (°C)	Power Supply (Vdc)	0 Minute		2 Minutes		5 Minutes		10 Minutes	
		Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%
	4.37	13.55998	-0.00015	13.55996	-0.00029	13.55997	-0.00022	13.55997	-0.00022
20	3.8	13.55998	-0.00015	13.55996	-0.00029	13.55997	-0.00022	13.55997	-0.00022
	3.23	13.55998	-0.00015	13.55996	-0.00029	13.55997	-0.00022	13.55997	-0.00022



4.4 20dB Bandwidth

4.4.1 Limits of 20dB BANDWIDTH Measurement

The 20dB bandwidth shall be specified in operating frequency band.

4.4.2 Test Setup

4.4.3 Test Instruments

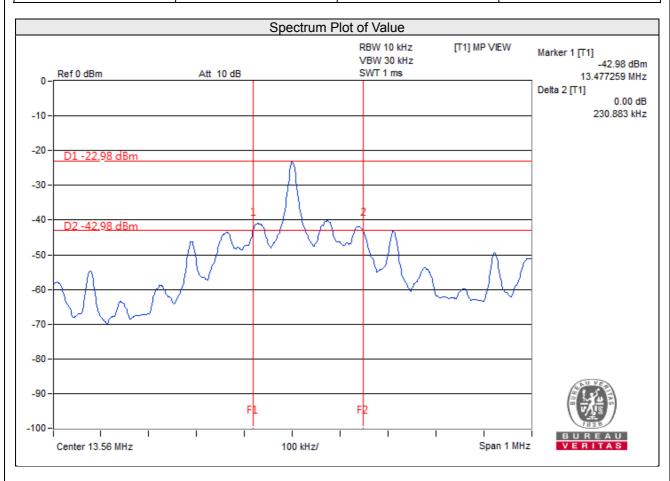
Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 1kHz RBW and 3kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.4.5 Deviation from Test Standard

No deviation.


4.4.6 EUT Operating Conditions

Same as Item 4.1.6.

4.4.7 Test Results

20dBc Point (Low) (MHz)	20dBc Point (High) (MHz)	Operating Frequency Band (MHz)	Pass/Fail
13.47	13.70	13.11 – 14.01	Pass

5 Pictures of Test A	Arrangements				
Please refer to the attached file (Test Setup Photo).					

 Report No.: RF190516E08-3
 Page No. 36 / 37
 Report Format Version: 6.1.1

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Hsin Chu EMC/RF/Telecom Lab
Tel: 886-3-6668565
Fax: 886-3-6668323

Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---