	BUREAU VERITAS
	FCC Test Report (NFC)
Report No.:	RF200601E06-4
FCC ID:	MQT-AT100R3
Test Model:	xCL_AT-100-R3-18U
Received Date:	June 01, 2020
Test Date:	July 05 to 15, 2020
Issued Date:	Oct. 16, 2020
Applicant:	XAC AUTOMATION CORP.
Address:	4F, No. 30, INDUSTRY E. RD. IX, SCIENCE-BASED INDUSTRIAL PARK,HSINCHU,TAIWAN
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
FCC Registration / Designation Number:	723255 / TW2022
	BIC-MRA Tating Laboratory 2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification.

Table of Contents

Releas	e Control Record	3
1	Certificate of Conformity	4
2	Summary of Test Results	5
2.1 2.2	Measurement Uncertainty Modification Record	
3	General Information	6
3.1 3.2 3.2.1 3.3 3.3.1 3.4	Description of Support Units	8 9 11 .12 .13
4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.2	Radiated Emission Measurement Limits of Radiated Emission Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement	14 15 17 17 18 18 19 33
4.2.2	Test Instruments	33
4.2.4 4.2.5 4.2.6 4.2.7 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	 Deviation from Test Standard	34 35 36 38 38 38 38 38 38 38 38
	Test Result	39
4.4.2 4.4.3 4.4.4 4.4.5 4.4.6	20dB Bandwidth Limits of 20dB bandwidth Measurement 2 Test Setup 3 Test Instruments 5 Test Procedures 6 Deviation from Test Standard 5 EUT Operating Conditions 7 Test Results	40 40 40 40 40 40 40
5	Pictures of Test Arrangements	42
Appen	dix – Information of the Testing Laboratories	43

	Release Control Record	
Issue No.	Description	Date Issued
RF200601E06-4	Original release.	Oct. 16, 2020

1 Certificate of Conformity

Product:	Terminal
Brand:	XAC
Test Model:	xCL_AT-100-R3-18U
Sample Status:	ENGINEERING SAMPLE
Applicant:	XAC AUTOMATION CORP.
Test Date:	July 05 to 15, 2020
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.225)
	47 CFR FCC Part 15, Subpart C (Section 15.215)
	ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

-cid erce

, Date: Oct. 16, 2020

Oct. 16, 2020

Date:

Joyce Kuo / Specialist

Approved by :

Clark Lin / Technical Manager

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.225, 15.215)					
FCC Clause	Test Item	Result	Remarks			
15.207	Conducted emission test	PASS	Meet the requirement of limit. Minimum passing margin is -20.47dB at 16.61719MHz.			
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz	PASS	Meet the requirement of limit. Minimum passing margin is -5.9dB at 48.99MHz.			
15.225 (b)	The field strength of any emissions within the bands 13.410-13.553 MHz and 13.567-13.710 MHz	PASS	Meet the requirement of limit.			
15.225 (c)	The field strength of any emissions within the bands 13.110-13.410 MHz and 13.710-14.010 MHz	PASS	Meet the requirement of limit.			
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	PASS	Meet the requirement of limit. Minimum passing margin is -7.6dB at 50.05MHz.			
15.225 (e)	The frequency tolerance	PASS	Meet the requirement of limit.			
15.215 (c)	20dB Bandwidth	PASS	Meet the requirement of limit.			
15.203	Antenna Requirement	PASS	Antenna connector is i-pex(MHF) not a standard connector.			

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Conducted emissions	-	2.5 dB
Redicted Emissions up to 1 CHz	9kHz ~ 30MHz	3.1 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.4 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (NFC)

Product		Termina	al			
Brand		XAC				
Test Model		xCL_AT-100-R3-18U				
Status of EL	IT		ERING SAMPLE			
Power Supp		Refer to				
Modulation		ASK	liote			
Transfer Ra		Refer to	Note			
Operating F		13.56M				
Number of (1				
Antenna Typ		Refer to	Note			
Antenna Co		Refer to				
Accessory D			x1 (Option)			
Data Cable		NA	, , , , , , , , , , , , , , , , , , ,			
Note:	Cappiloa					
	as three radios a	as follow	ing table:			
	Radio 1	Radio 2 Radio 3			Radio 3	
WLAN(2.4GF	lz + 5GHz) + Bl	Bluetooth WWAN(LTE + WCDMA) NFC			NFC	
	usly transmissic	n condit				
Condition				chnology		
1		WW			NFC	
2		WW		Bluetooth		
3		WLAN 2		NFC		
4		WLAN		NFC		
5		Bluet		NFC		
Note: The emi	ssion of the sim	ultaneou	s operation has bee	n evaluated ar	nd no non-compliance was found.	
			dapter and battery a	s following tab	ble:	
Adapter (Only Brand	test not for sale	e) Model		Crecification		
Brand		woder		Specification	0-240Vac, 0.3A, 50-60Hz	
MASS POWE	R	NBS10	B050200VUU	DC Output: 5		
Battery (Optio	n)					
Brand		Model		Specification		
Shenzhen Ris Electronics Te Ltd.	shengzhi echnology Co.,	J625		3.7V, 3000m	Ah, 11.1Wh	

Antenna Set	RF Chain NO.	Brand	Model	Antenna Net Gain(dBi)	Frequency range	Antenna Type	Connecter Type	
NFC	Main	XAC	RTOS	13	13.56MHz	wire	None	
Wi-Fi	Main	A) A / A N I		2.31	2.4~2.4835GHz			
BT	Main	AWAN	AYF6P-100002	2.99	5.15~5.85GHz	PIFA	i-pex(MHF)	
	Main(B2) TX			1.19	1850 MHz to 1910 MHz			
	Main(B4) TX			2.67	1710 MHz to 1755 MHz		i-pex(MHF)	
	Main(B12) TX		AXF6P-	0.82	699 MHz to 715 MHz	5154		
LTE	Main(B2) RX	AWAN	AWAN	100013	2.35	1930 MHz to 1990 MHz	PIFA	
	Main(B4) RX			2.05	2110 MHz to 2155 MHz		i-pex(MHF)	
	Main(B12) RX			2.45	729 MHz to 745 MHz			
	Aux(B2) RX			2.54	1930 MHz to 1990 MHz			
LTE	Aux(B4) RX AW	AWAN	AXF6P- 100005	-0.26	2110 MHz to 2155 MHz	PIFA	i-pex(MHF)	
	Aux(B12) RX		100005	-1.21	729 MHz to 746 MHz			
	Main(B2) TX			1.19	1850 MHz to 1910 MHz			
	Main(B5) TX		AXF6P-	0.12	824 MHz to 849 MHz	PIFA	i-pex(MHF)	
WCDMA	Main(B2) RX	AWAN	100013	2.35	1930 MHz to 1990 MHz			
	Main(B5) RX			2.62	869 MHz to 894 MHz		i-pex(MHF)	
	Aux(B2) RX	010/0 N	AXF6P-	2.54	1930 MHz to 1990 MHz	DIEA		
WCDMA	Aux(B5) RX	AVVAN	AWAN 100005		869 MHz to 894 MHz	PIFA	i-pex(MHF)	

4. The antennas provided to the EUT, please refer to the following table:

was pre-tested for radiated test under following test modes:

Pre-test Mode	Power		
Mode A	Power from Adapter		
Mode B	Power from Battery		
From the above modes, the worst radiated test was found in Mode A			

From the above modes, the worst radiated test was found in **Mode A**.

6. The EUT was pre-tested for conducted test under following test modes:

Pre-test Mode	Power			
Mode A	Power from Adapter		Power from Adapter	
Mode B	Power from Laptop			
From the above modes, the worst radiated test was found in Mode A				

From the above modes, the worst radiated test was found in **Mode A**.

7. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

8. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3.2 Description of Test Modes

One channel was provided to this EUT:

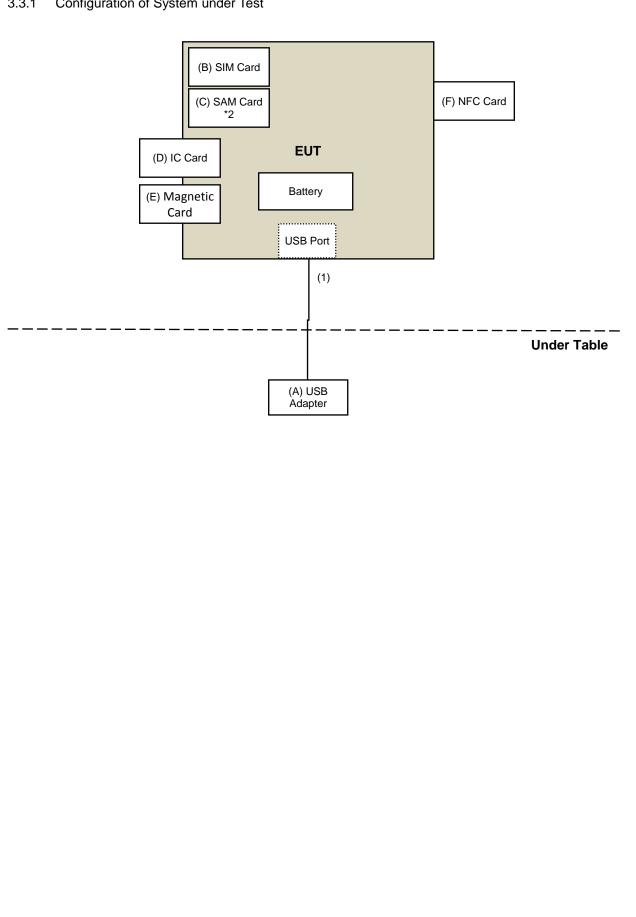
Channel	Frequency (MHz)		
1	13.56		

EUT Configure		Applicable to				
Mode	RE	PLC	FS	EB	Description	
-		\checkmark	\checkmark	\checkmark	-	
Vhere	RE≥1G: Radiated Emissi FS: Frequency Stability	on		ine Conducted Emiss		
Radiated En	nission Test:					
between architectu	has been conducted available modulation ire). g channel(s) was (we	s, data rates an	d antenna ports	(if EUT with anten		
	able Channel		ted Channel		odulation Type	
	1		1		ASK	
	g channel(s) was (we lable Channel 1		Tested Channel		odulation Type	
	has been conducted available modulation					
_	g channel(s) was (we	T T				
Avai		Tes		N		
🛛 Pre-Scan	has been conducted	s, data rates an	d antenna ports ((if EUT with anten		
architectu	able Channel		ted Channel		odulation Type	
🛛 Following	1		1		ASK	
<u>20dB Bandv</u> ⊠ Pre-Scan	has been conducted available modulation ure). g channel(s) was (we lable Channel	d to determine th s, data rates an re) selected for	d antenna ports (the final test as ted Channel	ode from all possil (if EUT with anten isted below.	na diversity Iodulation Type	

Test Condition:

Applicable to	Environmental Conditions	Input Power (System)	Tested By	
RE	23deg. C, 69%RH	120Vac, 60Hz	Andy Ho	
PLC	25deg. C, 75%RH	120Vac, 60Hz	Kevin Ko	
FS	25deg. C, 60%RH	120Vac, 60Hz	Jyunchun Lin	
EB	25deg. C, 60%RH	120Vac, 60Hz	Jyunchun Lin	

3.3 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	USB Adapter	MASS POWER	NBS10B050200VUU	NA	NA	Supplied by client
В.	SIM Card	Keysight	NA	NA	NA	Provided by Lab
C.	SAM Card *2	XAC	NA	NA	NA	Supplied by client
D.	IC Card	XAC	NA	NA	NA	Supplied by client
Ε.	Magnetic Card	XAC	NA	NA	NA	Supplied by client
F.	NFC Card	XAC	NA	NA	NA	Supplied by client

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Type C to USB Cable	1	1.2	Yes	0	Supplied by client

Configuration of System under Test 3.3.1

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.225) FCC Part 15, Subpart C (15.215) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

(b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.

(c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

(d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209 as below table:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. The emission limits shown in the above table are based on measurements employing a CISPR quasipeak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 4. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

^{1.} The lower limit shall apply at the transition frequencies.

4.1.2 Test Instruments

DESCRIPTION &		SERIAL NO.	CALIBRATED	CALIBRATED	
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL	
Test Receiver	N9038A	MY54450088	July 06, 2020	July 05, 2021	
Keysight	N9038A	WT54450066	July 00, 2020	July 05, 2021	
Pre-Amplifier EMCI	EMC001340	980142	May 25, 2020	May 24, 2021	
Loop Antenna Electro-Metrics	EM-6879	264	Feb. 18, 2020	Feb. 17, 2021	
RF Cable	NA	LOOPCAB-001	Jan. 08, 2020	Jan. 07, 2021	
RF Cable	NA	LOOPCAB-002	Jan. 08, 2020	Jan. 07, 2021	
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	Apr. 28, 2020	Apr. 27, 2021	
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 11, 2019	Nov. 10, 2020	
RF Cable	8D	966-3-1	Mar. 17, 2020	Mar. 16, 2021	
RF Cable	8D	966-3-2	Mar. 17, 2020	Mar. 16, 2021	
RF Cable	8D	966-3-3	Mar. 17, 2020	Mar. 16, 2021	
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 26, 2019	Sep. 25, 2020	
Software	ADT_Radiated_V8.7.08	NA	NA	NA	
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA	

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in 966 Chamber No. 3.

3. Tested Date: July 06, 2020

For other test items:								
DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED				
MANUFACTURER			DATE	UNTIL				
Spectrum Analyzer R&S	FSV40	100964	May 29, 2020	May 28, 2021				
Spectrum Analyzer Keysight	N9030A	MY54490679	July 13, 2020	July 12, 2021				
Power meter Anritsu	ML2495A	1529002	July 26, 2019	July 25, 2020				
Power sensor Anritsu	MA2411B	1339443	July 26, 2019	July 25, 2020				
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 14, 2020	Apr. 13, 2021				
Mech Switch Absorptive Mini-Circuits	MSP4TA-18+	0140	Feb. 10, 2020	Feb. 09, 2021				
FXD ATTEN Mini-Circuits	BW-S3W2+	MN71981	Feb. 10, 2020	Feb. 09, 2021				
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA				

NOTE: 1. The test was performed in Oven room 2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: July 15, 2020

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak or Average Detects Function and Specified Bandwidth with Maximum Hold Mode.

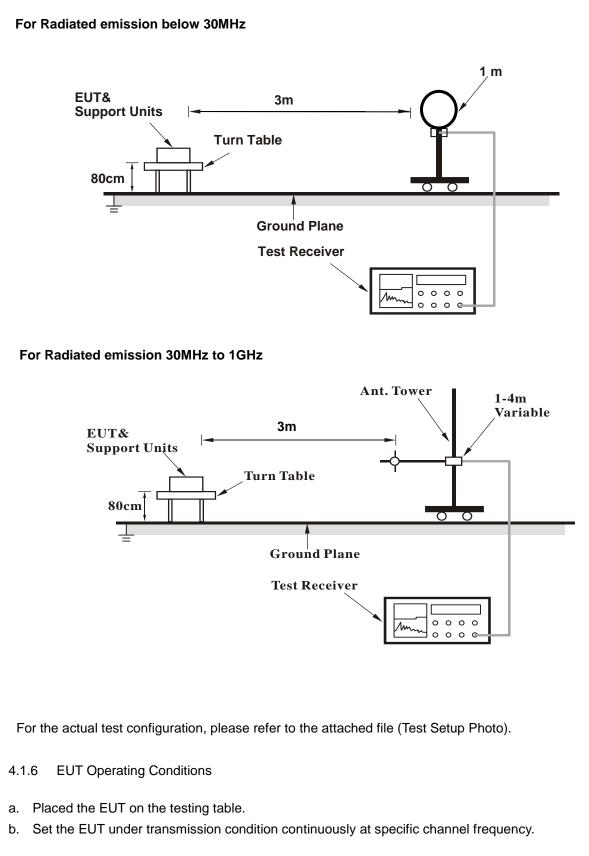
Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Note:

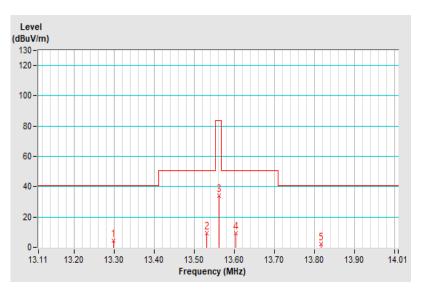

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Setup

4.1.7 Test Results

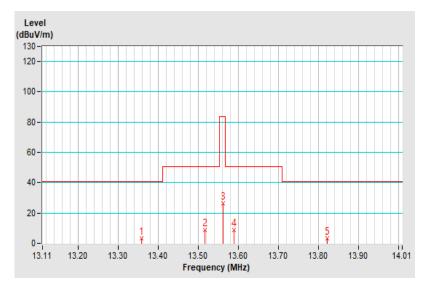

Frequency Range13.11 ~ 14.01MHz	Detector Function	Quasi-Peak
---------------------------------	-------------------	------------

	Antenna Polarity : Parallel										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	13.297	4.58 QP	40.51	-35.93	1.00	256	48.07	-43.49			
2	13.530	9.31 QP	50.47	-41.16	1.00	134	52.84	-43.53			
3	*13.561	34.20 QP	84.00	-49.80	1.00	126	77.74	-43.54			
4	13.604	9.36 QP	50.47	-41.11	1.00	304	52.90	-43.54			
5	13.817	2.25 QP	40.51	-38.26	1.00	228	45.83	-43.58			

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. For the test distance below 0.49 ~ 30MHz is 3m, extrapolate the measured field strength to a distance of 30 meters.

Distance factor $@3m = 40*\log(3/30) = -40dB$

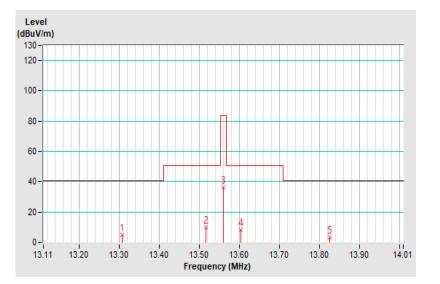

Frequency Range	13.11 ~ 14.01MHz	Detector Function	Quasi-Peak

	Antenna Polarity : Perpendicular										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	13.357	3.29 QP	40.51	-37.22	1.00	142	46.79	-43.50			
2	13.517	8.91 QP	50.47	-41.56	1.00	265	52.44	-43.53			
3	*13.561	26.55 QP	84.00	-57.45	1.00	308	70.09	-43.54			
4	13.590	8.94 QP	50.47	-41.53	1.00	252	52.48	-43.54			
5	13.822	3.53 QP	40.51	-36.98	1.00	203	47.11	-43.58			

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. For the test distance below 0.49 ~ 30MHz is 3m, extrapolate the measured field strength to a distance of 30 meters.

Distance factor@3m = 40*log(3/30) = -40dB

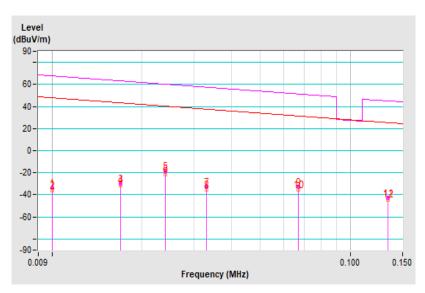

Frequency Range	13.11 ~ 14.01MHz	Detector Function	Quasi-Peak

	Antenna Polarity : Ground-parallel										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	13.306	4.85 QP	40.51	-35.66	1.00	119	48.34	-43.49			
2	13.517	9.91 QP	50.47	-40.56	1.00	264	53.44	-43.53			
3	*13.560	36.34 QP	84.00	-47.66	1.00	115	79.88	-43.54			
4	13.604	8.34 QP	50.47	-42.13	1.00	295	51.88	-43.54			
5	13.826	3.53 QP	40.51	-36.98	1.00	112	47.11	-43.58			

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. For the test distance below 0.49 ~ 30MHz is 3m, extrapolate the measured field strength to a distance of 30 meters.

Distance factor@3m = 40*log(3/30) = -40dB



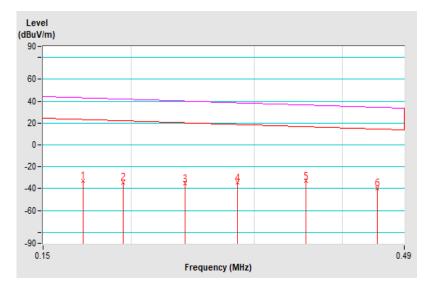
Frequ	lency Range	9kHz ~ ′	150kHz	Dete	ctor Functior	า	Peak/Average	е			
Antenna Polarity : Parallel											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree	Raw Value) (dBuV)	Correction Factor (dB/m)			
1	0.010	-33.72 PK	67.60	-101.32	1.00	301	9.85	-43.57			
2	0.010	-36.14 AV	47.60	-83.74	1.00	301	7.43	-43.57			
3	0.017	-29.93 PK	62.99	-92.92	1.00	142	16.92	-46.85			
4	0.017	-31.16 AV	43.00	-74.16	1.00	142	15.69	-46.85			
5	0.024	-19.03 PK	60.00	-79.03	1.00	258	30.94	-49.97			
6	0.024	-21.12 AV	40.00	-61.12	1.00	258	28.85	-49.97			
7	0.033	-33.15 PK	57.23	-90.38	1.00	334	20.04	-53.19			
8	0.033	-35.26 AV	37.23	-72.49	1.00	334	17.93	-53.19			
9	0.067	-33.00 PK	51.07	-84.07	1.00	142	26.28	-59.28			
10	0.067	-35.13 AV	31.08	-66.21	1.00	142	24.15	-59.28			
11	0.134	-42.99 PK	45.06	-88.05	1.00	269	22.22	-65.21			
12	0.134	-44.27 AV	25.06	-69.33	1.00	269	20.94	-65.21			

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.

Distance factor $@3m = 40*\log(3/300) = -80dB$

Frequency Range	150kHz ~ 490kHz	Detector Function	Peak/Average

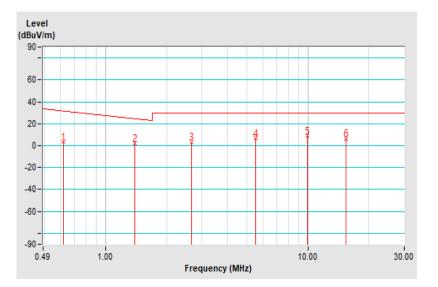

			Antenna	a Polarity :	Parallel			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	0.171	-32.73 QP	22.94	-55.67	1.00	165	34.02	-66.75
2	0.195	-34.07 QP	21.80	-55.87	1.00	266	33.67	-67.74
3	0.239	-35.13 QP	20.03	-55.16	1.00	264	34.44	-69.57
4	0.284	-34.48 QP	18.54	-53.02	1.00	179	36.95	-71.43
5	0.355	-32.85 QP	16.60	-49.45	1.00	264	40.19	-73.04
6	0.449	-39.53 QP	14.56	-54.09	1.00	171	35.11	-74.64

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) + Distance Factor

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.

Distance factor $@3m = 40*\log(3/300) = -80dB$



Frequ	Frequency Range 490kHz ~ 30MHz			Det	ector Functior	ר ו	Peak/Average	Peak/Average	
			Antenna	a Polarity	: Parallel				
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree	Raw Value) (dBuV)	Correction Factor (dB/m)	
1	0.618	3.70 QP	31.78	-28.08	1.00	245	40.14	-36.44	
2	1.388	2.11 QP	24.75	-22.64	1.00	174	42.37	-40.26	
3	2.671	3.23 QP	29.54	-26.31	1.00	159	46.28	-43.05	
4	5.537	6.75 QP	29.54	-22.79	1.00	263	50.52	-43.77	
5	9.942	8.87 QP	29.54	-20.67	1.00	164	51.81	-42.94	
6	15.459	6.17 QP	29.54	-23.37	1.00	263	50.01	-43.84	

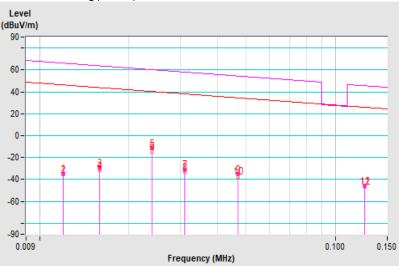
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below 0.49 ~ 30MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.

Distance factor $@3m = 40*\log(3/30) = -40dB$

Frequ	lency Range	9kHz ~ 1	150kHz	Deteo	ctor Functior	۱	Peak/Average				
Antenna Polarity : Perpendicular											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree	Raw Value (dBuV)	Correction Factor (dB/m)			
1	0.012	-34.76 PK	66.02	-100.78	1.00	302	9.75	-44.51			
2	0.012	-35.13 AV	46.02	-81.15	1.00	302	9.38	-44.51			
3	0.016	-29.52 PK	63.52	-93.04	1.00	245	16.86	-46.38			
4	0.016	-31.42 AV	43.52	-74.94	1.00	245	14.96	-46.38			
5	0.024	-11.68 PK	60.00	-71.68	1.00	138	38.29	-49.97			
6	0.024	-14.15 AV	40.00	-54.15	1.00	138	35.82	-49.97			
7	0.031	-31.23 PK	57.77	-89.00	1.00	267	21.52	-52.75			
8	0.031	-33.14 AV	37.78	-70.92	1.00	267	19.61	-52.75			
9	0.047	-35.27 PK	54.16	-89.43	1.00	142	20.98	-56.25			
10	0.047	-37.26 AV	34.16	-71.42	1.00	142	18.99	-56.25			
11	0.126	-45.86 PK	45.59	-91.45	1.00	263	19.01	-64.87			
12	0.126	-46.47 AV	25.59	-72.06	1.00	263	18.40	-64.87			

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)


2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) + Distance Factor

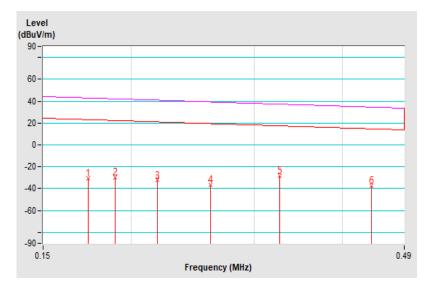
3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. For the test distance below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.

Distance factor $@3m = 40*\log(3/300) = -80dB$

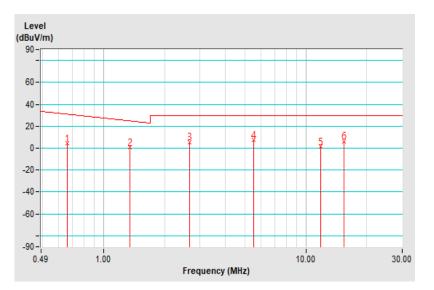
Frequency Range	150kHz ~ 490kHz	Detector Function	Peak/Average


	Antenna Polarity : Perpendicular											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	0.174	-30.41 QP	22.79	-53.20	1.00	141	36.47	-66.88				
2	0.190	-29.54 QP	22.03	-51.57	1.00	302	38.00	-67.54				
3	0.218	-32.28 QP	20.83	-53.11	1.00	269	36.43	-68.71				
4	0.260	-36.55 QP	19.30	-55.85	1.00	147	33.89	-70.44				
5	0.326	-27.92 QP	17.34	-45.26	1.00	224	44.62	-72.54				
6	0.440	-37.41 QP	14.73	-52.14	1.00	196	37.08	-74.49				

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) + Distance Factor

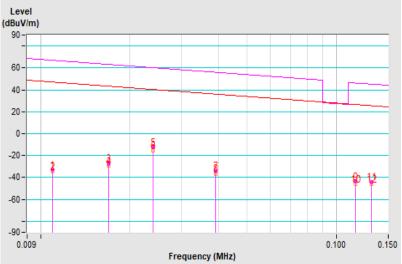
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.


Distance factor $@3m = 40*\log(3/300) = -80dB$

_			_	_							
ency Range	Dete	ector Functior	1	Quasi-Peak							
Antenna Polarity : Perpendicular											
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle	Raw Value) (dBuV)	Correction Factor (dB/m)				
0.661	4.32 QP	31.20	-26.88	1.00	142	41.10	-36.78				
1.345	0.52 QP	25.02	-24.50	1.00	265	40.70	-40.18				
2.671	5.51 QP	29.54	-24.03	1.00	332	48.56	-43.05				
5.537	7.42 QP	29.54	-22.12	1.00	263	51.19	-43.77				
11.866	1.47 QP	29.54	-28.07	1.00	202	44.72	-43.25				
15.459	6.34 QP	29.54	-23.20	1.00	224	50.18	-43.84				
	(MHz) 0.661 1.345 2.671 5.537 11.866	Frequency (MHz) Emission Level (dBuV/m) 0.661 4.32 QP 1.345 0.52 QP 2.671 5.51 QP 5.537 7.42 QP 11.866 1.47 QP 15.459 6.34 QP	Emission Level (MHz) Limit (dBuV/m) 0.661 4.32 QP 31.20 1.345 0.52 QP 25.02 2.671 5.51 QP 29.54 5.537 7.42 QP 29.54 11.866 1.47 QP 29.54 15.459 6.34 QP 29.54	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) 0.661 4.32 QP 31.20 -26.88 1.345 0.52 QP 25.02 -24.50 2.671 5.51 QP 29.54 -22.12 11.866 1.47 QP 29.54 -28.07 15.459 6.34 QP 29.54 -23.20	Emission (MHz) Limit (dBuV/m) Margin (dB) Antenna Height (m) 0.661 4.32 QP 31.20 -26.88 1.00 1.345 0.52 QP 25.02 -24.50 1.00 2.671 5.51 QP 29.54 -24.03 1.00 5.537 7.42 QP 29.54 -22.12 1.00 11.866 1.47 QP 29.54 -28.07 1.00 15.459 6.34 QP 29.54 -23.20 1.00	Antenna Polarity : Perpendicular Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (dB) Table Angle (Degree 0.661 4.32 QP 31.20 -26.88 1.00 142 1.345 0.52 QP 25.02 -24.50 1.00 265 2.671 5.51 QP 29.54 -24.03 1.00 332 5.537 7.42 QP 29.54 -22.12 1.00 263 11.866 1.47 QP 29.54 -23.20 1.00 202 15.459 6.34 QP 29.54 -23.20 1.00 224	Antenna Polarity : Perpendicular Antenna Polarity : Perpendicular Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (m) Table Angle (Degree) Raw Value (dBuV) 0.661 4.32 QP 31.20 -26.88 1.00 142 41.10 1.345 0.52 QP 25.02 -24.50 1.00 265 40.70 2.671 5.51 QP 29.54 -24.03 1.00 332 48.56 5.537 7.42 QP 29.54 -22.12 1.00 263 51.19 11.866 1.47 QP 29.54 -28.07 1.00 202 44.72 15.459 6.34 QP 29.54 -23.20 1.00 224 50.18				

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below 0.49 ~ 30MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.

Distance factor $@3m = 40*\log(3/30) = -40dB$



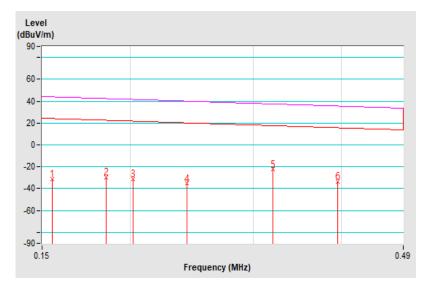
Frequ	ency Range	9kHz ~ 1	50kHz	Deteo	ctor Functior	ı	Peak/Average	e				
	Antenna Polarity : Ground-parallel											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree	Raw Value) (dBuV)	Correction Factor (dB/m)				
1	0.011	-32.98 PK	66.78	-99.76	1.00	265	11.06	-44.04				
2	0.011	-34.56 AV	46.78	-81.34	1.00	265	9.48	-44.04				
3	0.017	-27.16 PK	62.99	-90.15	1.00	302	19.69	-46.85				
4	0.017	-29.26 AV	43.00	-72.26	1.00	302	17.59	-46.85				
5	0.024	-12.33 PK	60.00	-72.33	1.00	159	37.64	-49.97				
6	0.024	-15.42 AV	40.00	-55.42	1.00	159	34.55	-49.97				
7	0.039	-34.33 PK	55.78	-90.11	1.00	264	20.18	-54.51				
8	0.039	-36.41 AV	35.78	-72.19	1.00	264	18.10	-54.51				
9	0.116	-43.55 PK	46.31	-89.86	1.00	311	20.92	-64.47				
10	0.116	-46.13 AV	26.31	-72.44	1.00	311	18.34	-64.47				
11	0.132	-43.93 PK	45.19	-89.12	1.00	247	21.19	-65.12				
12	0.132	-46.13 AV	25.19	-71.32	1.00	247	18.99	-65.12				

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.

Distance factor $@3m = 40*\log(3/300) = -80dB$

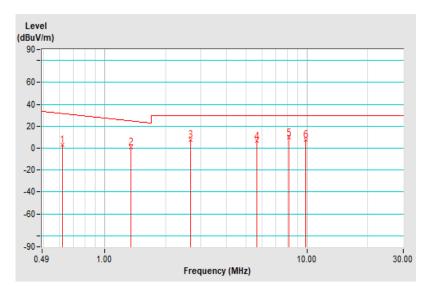
Frequency Range	150kHz ~ 490kHz	Detector Function	Peak/Average


	Antenna Polarity : Ground-parallel											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	0.155	-31.20 QP	23.80	-55.00	1.00	302	34.89	-66.09				
2	0.185	-29.56 QP	22.26	-51.82	1.00	334	37.76	-67.32				
3	0.202	-31.11 QP	21.50	-52.61	1.00	264	36.93	-68.04				
4	0.241	-35.26 QP	19.96	-55.22	1.00	206	34.39	-69.65				
5	0.320	-22.22 QP	17.50	-39.72	1.00	145	50.22	-72.44				
6	0.395	-33.25 QP	15.67	-48.92	1.00	142	40.46	-73.71				

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) + Distance Factor

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below 0.49MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.

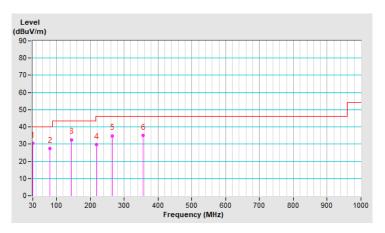

Distance factor $@3m = 40*\log(3/300) = -80dB$

Frequ	iency Range	490kHz	~ 30MHz	Dete	ctor Functior	1	Quasi-Peak				
Antenna Polarity : Ground-parallel											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree	Raw Value) (dBuV)	Correction Factor (dB/m)			
1	0.618	3.24 QP	31.78	-28.54	1.00	116	39.68	-36.44			
2	1.345	0.78 QP	25.02	-24.24	1.00	264	40.96	-40.18			
3	2.671	7.89 QP	29.54	-21.65	1.00	206	50.94	-43.05			
4	5.665	6.69 QP	29.54	-22.85	1.00	302	50.43	-43.74			
5	8.145	9.76 QP	29.54	-19.78	1.00	242	53.03	-43.27			
6	9.856	7.63 QP	29.54	-21.91	1.00	142	50.59	-42.96			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) + Distance Factor
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. For the test distance below 0.49 ~ 30MHz is 3m, extrapolate the measured field strength to a distance of 300 meters.

Distance factor $@3m = 40*\log(3/30) = -40dB$

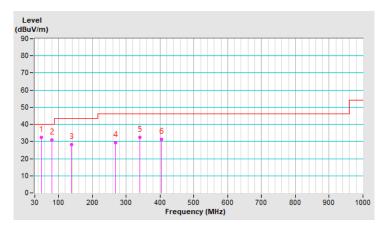
Free	Frequency Range 30MHz ~ 1000MHz D			Detector Function Quasi-Peak							
	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz) Emission Level (dBuV/m) (dBuV/m) (dB)		Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)					
1	30.39	30.5 QP	40.0	-9.5	2.00 H	0	39.3	-8.8			
2	81.17	27.6 QP	40.0	-12.4	2.00 H	328	40.4	-12.8			
3	145.24	32.6 QP	43.5	-10.9	2.00 H	77	39.6	-7.0			
4	219.08	29.8 QP	46.0	-16.2	1.50 H	245	39.6	-9.8			
5	264.89	34.9 QF	46.0	-11.1	1.00 H	96	42.2	-7.3			
6	356.02	35.1 QP	46.0	-10.9	1.00 H	245	39.2	-4.1			


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.


5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

Frequency Range			0MHz ~ 1000l	MHz	Detector Fund	ction	Quasi-Peak	(
Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emissio Level (dBuV/m	(dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	50.05	32.4 QP	40.0	-7.6	2.00 V	40	39.9	-7.5		
2	80.78	30.9 QP	40.0	-9.1	1.00 V	68	43.6	-12.7		
3	139.00	28.2 QP	43.5	-15.3	1.00 V	57	35.5	-7.3		
4	268.01	29.2 QP	46.0	-16.8	1.50 V	135	36.3	-7.1		
5	340.01	32.3 QP	46.0	-13.7	2.00 V	275	36.9	-4.6		
6	404.01	31.1 QP	46.0	-14.9	1.50 V	265	34.0	-2.9		

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
 All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 19, 2020	Mar. 18, 2021
50 ohms Terminator	50	3	Oct. 23, 2019	Oct. 22, 2020
RF Cable	5D-FB	COCCAB-001	Sep. 27, 2019	Sep. 26, 2020
Fixed attenuator EMCI	STI02-2200-10	005	Aug. 30, 2019	Aug. 29, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

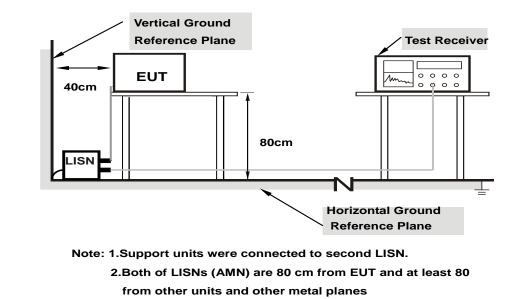
1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Conduction 1.

3 Tested Date: July 05, 2020

4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.


Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

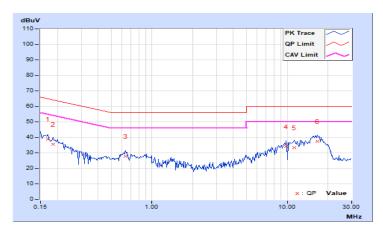
4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

Phase Line (L)				D	Detector Function Quasi-Pe Average			Peak (QP) je (AV)	/	
	Cori		r. Reading Value		Emissi	Emission Level		nit	Margin	
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB ([uV)]	(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16953	10.03	28.95	10.37	38.98	20.40	64.98	54.98	-26.00	-34.58
2	0.18516	10.03	25.64	12.05	35.67	22.08	64.25	54.25	-28.58	-32.17
3	0.64219	10.08	17.77	10.15	27.85	20.23	56.00	46.00	-28.15	-25.77
4	9.74609	10.76	23.14	14.32	33.90	25.08	60.00	50.00	-26.10	-24.92
5	11.29297	10.87	22.53	14.48	33.40	25.35	60.00	50.00	-26.60	-24.65
6	16.61719	11.25	26.26	18.28	37.51	29.53	60.00	50.00	-22.49	-20.47

Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

Phase Neutral (N)					C	Detector Function Quasi-Pe Average			Peak (QP) ge (AV)	/	
_ Cor		Corr.	Corr. Reading Value I			Emission Level Limit			t Margin		
No	Freq.	Factor	[dB (uV)] [dB (uV)]		[dB (uV)]		(dB)				
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	10.02	24.96	11.25	34.98	21.27	66.00	56.00	-31.02	-34.73	
2	0.19297	10.04	20.70	5.13	30.74	15.17	63.91	53.91	-33.17	-38.74	
3	0.23594	10.04	18.65	3.58	28.69	13.62	62.24	52.24	-33.55	-38.62	
4	0.66953	10.09	11.61	5.58	21.70	15.67	56.00	46.00	-34.30	-30.33	
5	11.05078	10.75	18.64	8.35	29.39	19.10	60.00	50.00	-30.61	-30.90	
6	15.24219	10.97	22.53	11.55	33.50	22.52	60.00	50.00	-26.50	-27.48	
D	_	•	•		•	•			•		

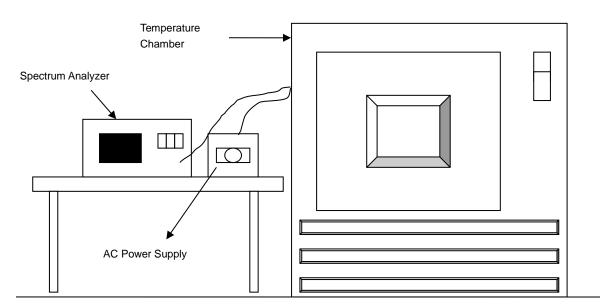
1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value



4.3 Frequency Stability

4.3.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within $\pm - 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal AC voltage.
- b. Turned the EUT on and coupled its output to a spectrum analyzer.
- c. Turned the EUT off and set the chamber to the highest temperature specified.
- d. Allowed sufficient time (approximately 30 min) for the temperature of the chamber to stabilize then turned the EUT on and measured the operating frequency after 2, 5, and 10 minutes.
- e. Repeated step 2 and 3 with the temperature chamber set to the lowest temperature.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
- 4.3.5 Deviation from Test Standard

No deviation.

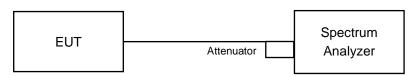
4.3.6 EUT Operating Conditions

Same as Item 4.1.6.

4.3.7 Test Result

	Frequemcy Stability Versus Temp.												
		0 Mi	nute	2 Minutes		5 Minutes		10 Minutes					
TEMP. (℃)	Power Supply (Vac)	Measured Frequency	Frequency Drift	Measured Frequency		Measured Frequency		Measured Frequency	Frequency Drift				
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%				
40	120	13.56006	0.00044	13.56005	0.00037	13.56006	0.00044	13.56006	0.00044				
30	120	13.55996	-0.00029	13.55996	-0.00029	13.55997	-0.00022	13.55997	-0.00022				
20	120	13.55993	-0.00052	13.55992	-0.00059	13.55992	-0.00059	13.55993	-0.00052				
10	120	13.55995	-0.00037	13.55996	-0.00029	13.55996	-0.00029	13.55996	-0.00029				
0	120	13.56007	0.00052	13.56006	0.00044	13.56006	0.00044	13.56006	0.00044				

	Frequemcy Stability Versus Voltage												
		0 Minute		2 Minutes		5 Minutes		10 Minutes					
TEMP . (℃)	Power Supply (Vac)	Measured Frequency	Frequency Drift	Measured Frequency		Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift				
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%				
	138	13.55993	-0.00052	13.55992	-0.00059	13.55992	-0.00059	13.55993	-0.00052				
20	120	13.55993	-0.00052	13.55992	-0.00059	13.55992	-0.00059	13.55993	-0.00052				
	102	13.55993	-0.00052	13.55992	-0.00059	13.55992	-0.00059	13.55993	-0.00052				



4.4 20dB Bandwidth

4.4.1 Limits of 20dB BANDWIDTH Measurement

The 20dB bandwidth shall be specified in operating frequency band.

4.4.2 Test Setup

4.4.3 Test Instruments

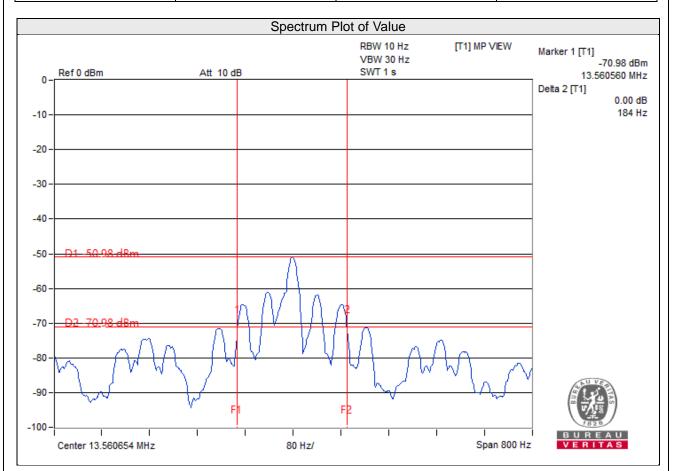
Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 10kHz RBW and 30kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.4.5 Deviation from Test Standard

No deviation.


4.4.6 EUT Operating Conditions

Same as Item 4.1.6.

4.4.7 Test Results

20dBc Point (Low)	20dBc Point (High)	Operating Frequency	Pass/Fail
(MHz)	(MHz)	Band (MHz)	
13.56056	13.560744	13.11 – 14.01	Pass

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---