

Rhein Tech Laboratories
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Report Number: 2003191 R0.04
FCC: Part 15.247
Industry Canada: RSS-210
FCC ID: MQOTT600-50300
Model: TT-600

APPENDIX A: RF EXPOSURE

Please see the Celltech Labs, Inc. Evaluation Report # 011904-463MQO that follows.

Test Report S/N:	011904-463MQO
Test Date(s):	February 20, 2004
Test Type:	FCC/IC SAR Evaluation

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION

Test Lab

CELLTECH LABS INC.
Testing and Engineering Services
1955 Moss Court
Kelowna, B.C.
Canada V1Y 9L3
Phone: 250 - 448-7047
Fax: 250 - 448-7046
e-mail: info@celltechlabs.com
web site: www.celltechlabs.com

Applicant Information

VOCOLLECT INC.
703 Rodi Road, Suite 200
Pittsburgh, PA 15235

Rule Part(s):	FCC §2.1093; IC RSS-102 Issue 1 (Provisional)
Test Procedure(s):	FCC OET Bulletin 65 Supplement C (01-01)
Device Classification:	Digital Transmission System (DTS)
Device Type:	Waist-Worn Terminal with Senao SL2511CD WLAN Card
FCC IDENTIFIER:	MQOTT600-50300
Model(s):	Talkman T2 with Senao SL2511CD
Modulation:	Direct Sequence Spread Spectrum (DSSS)
Tx Frequency Range:	2412 - 2462 MHz
Max. Duty Cycle Tested:	30% (Crest Factor: 1:3.33)
RF Conducted Power Measured:	19.90 dBm Peak Conducted (2437 MHz)
Source-Based Time-Aver. Power:	14.67 dBm Peak Conducted (2437 MHz)
Battery Type(s) Tested:	Lithium-ion 7.2 V 1650 mAh (Model: 730016) Lithium-ion 7.2 V 3300 mAh (Model: 730017)
Antenna Type(s) Tested:	Internal
Body-Worn Accessories:	Belt (P/N: BL-601-105) Slim Belt-Clip (P/N: 611037) Headset-Microphone (P/N: HD-601-1) Scanner (P/N: BC-605-2) Terminal Cover (P/N: TC-601-1)
Max. SAR Level Measured:	0.390 W/kg (1g average)

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and Industry Canada RSS-102 Issue 1 (Provisional) for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Russell Pipe
Senior Compliance Technologist
Celltech Labs Inc.

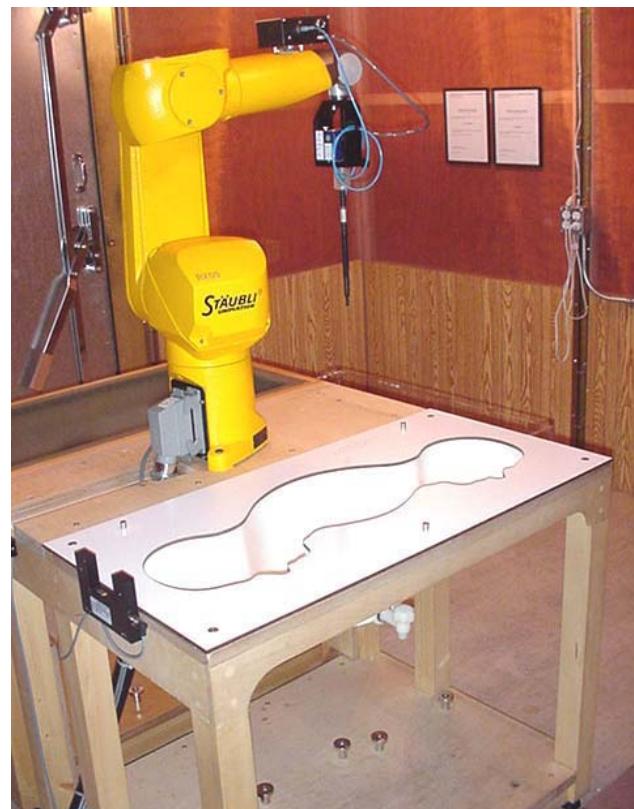
TABLE OF CONTENTS

1.0	INTRODUCTION.....	3
2.0	DESCRIPTION OF DUT.....	3
3.0	SAR MEASUREMENT SYSTEM.....	4
4.0	MEASUREMENT SUMMARY.....	5
5.0	DETAILS OF SAR EVALUATION.....	6
6.0	EVALUATION PROCEDURES.....	6
7.0	SYSTEM PERFORMANCE CHECK.....	7
8.0	SIMULATED EQUIVALENT TISSUES.....	8
9.0	SAR SAFETY LIMITS.....	8
10.0	ROBOT SYSTEM SPECIFICATIONS.....	9
11.0	PROBE SPECIFICATION.....	10
12.0	SAM PHANTOM.....	10
13.0	PLANAR PHANTOM.....	10
14.0	DEVICE HOLDER.....	10
15.0	TEST EQUIPMENT LIST.....	11
16.0	MEASUREMENT UNCERTAINTIES.....	12-13
17.0	REFERENCES.....	14
APPENDIX A - SAR MEASUREMENT DATA.....		15
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA.....		16
APPENDIX C - SYSTEM VALIDATION.....		17
APPENDIX D - PROBE CALIBRATION.....		18
APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS.....		19
APPENDIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY.....		20
APPENDIX G - SAR TEST SETUP & DUT PHOTOGRAPHS.....		21

1.0 INTRODUCTION

This measurement report demonstrates that the VOCOLLECT INC. Model: Talkman T2 Waist-Worn Terminal with Senao SL2511CD DSSS WLAN Card FCC ID: MQOTT600-50300 complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) for the General Population / Uncontrolled Exposure environment and Health Canada Safety Code 6 (see reference [2]). The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]) and IC RSS-102 Issue 1 (Provisional) (see reference [4]), were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION of DEVICE UNDER TEST (DUT)


Rule Part(s)	FCC §2.1093; IC RSS-102 Issue 1		
Test Procedure(s)	FCC OET Bulletin 65, Supplement C (01-01)		
Device Classification	Digital Transmission System (DTS)		
Device Type	Waist-Worn Terminal with Senao SL2511CD DSSS WLAN Card		
FCC ID	MQOTT600-50300		
Model(s)	Talkman T2 with Senao SL2511CD		
Serial No.	63143020 (Identical Prototype)		
Modulation	Direct Sequence Spread Spectrum (DSSS)		
Tx Frequency Range	2412 - 2462 MHz		
Max. Duty Cycle Tested	30% (Crest Factor: 1:3.33)		
RF Conducted Output Power Tested	Measured Peak	Source-Based Time-Aver.	Frequency
	19.9 dBm	14.67 dBm	2437 MHz
Battery Type(s) Tested	Lithium-ion	7.2V, 1650 mAh	P/N: 370016
	Lithium-ion	7.2V, 3300 mAh	P/N: 370017
Antenna Type(s) Tested	Internal		
Body-Worn Accessories	Belt (P/N: BL-601-105)		
	Slim Belt-Clip (P/N: 611037)		
	Headset-Microphone (P/N: HD-601-1)		
	Scanner (P/N: BC-605-2)		
	Terminal Cover (P/N: TC-601-1)		

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 SAR Measurement System with planar phantom

DASY4 SAR Measurement System with SAM phantom

4.0 MEASUREMENT SUMMARY

BODY-WORN SAR MEASUREMENT RESULTS

Freq (MHz)	Chan	Test Mode	Conducted Power Before (dBm)		Battery Type	Body-Worn Accessories	Test Position	Phantom Section	Separation Distance to Phantom (cm)	Measured SAR 1g (W/kg)	SAR Drift (dB)	Scaled SAR 1g (W/kg)		
			Meas.	SBTA										
2437	6	DSSS	19.9	14.67	Li-ion 1650mAh	Slim Belt-Clip Headset-Mic Belt, Scanner	Right Section Belt-Clip Side	Planar	0.0	0.301	-1.13	0.390		
2437	6	DSSS	19.9	14.67	Li-ion 1650mAh	Slim Belt-Clip Headset-Mic Belt, Scanner	Belt-Clip Side	Right Head	0.0	0.190	-0.879	0.233		
2437	6	DSSS	19.9	14.67	Li-ion 3300mAh	Slim Belt-Clip Headset-Mic Belt, Scanner	Right Section Belt-Clip Side	Planar	0.0	0.286	-0.706	0.336		
2437	6	DSSS	19.9	14.67	Li-ion 1650mAh	Slim Belt-Clip Headset-Mic Belt, Scanner	Left Section Belt-Clip Side	Planar	0.0	0.077	-1.12	0.100		
2437	6	DSSS	19.9	14.67	Li-ion 3300mAh	Slim Belt-Clip Headset-Mic Belt, Scanner	Left Section Belt-Clip Side	Planar	0.0	0.059	-0.805	0.071		
2437	6	DSSS	19.9	14.67	Li-ion 1650mAh	Slim Belt-Clip Headset-Mic Belt, Scanner	Top Side	Planar	0.0	0.208	-1.36	0.284		
2437	6	DSSS	19.9	14.67	Li-ion 3300mAh	Slim Belt-Clip Headset-Mic Belt, Scanner	Top Side	Planar	0.0	0.231	-1.00	0.291		
2437	6	DSSS	19.9	14.67	Li-ion 1650mAh	Slim Belt-Clip Headset-Mic Belt, Scanner	Bottom Side	Planar	0.0	P	0.058	-0.818	P	0.070
										S	0.048	-0.818	S	0.058
										S	0.045	-0.818	S	0.054
										S	0.038	-0.818	S	0.046
2437	6	DSSS	19.9	14.67	Li-ion 3300mAh	Slim Belt-Clip Headset-Mic Belt, Scanner	Bottom Side	Planar	0.0	P	0.060	-0.724	P	0.071
										S	0.054	-0.724	S	0.064

ANSI / IEEE C95.1 1992 - SAFETY LIMIT
BODY: 1.6 W/kg (averaged over 1 gram)
Spatial Peak - Uncontrolled Exposure / General Population

Max. Duty Cycle Tested	30%		Date Tested	02/20/04	
Crest Factor	1:3.33		Relative Humidity	31 %	
Measured Mixture Type	2450MHz Body		Atmospheric Pressure	109.3 kPa	
Dielectric Constant ϵ_r	IEEE Target	Measured	Ambient Temperature	25.0 °C	
	52.7 ±5%	50.3	Fluid Temperature	23.8 °C	
Conductivity σ (mho/m)	IEEE Target	Measured	Fluid Depth	≥ 15 cm	
	1.95 ±5%	2.01	ρ (Kg/m ³)	1000	

Note(s):

- The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- If the SAR measurements performed at the mid channel of the frequency band were ≥ 3dB below the SAR limit; SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]).
- Secondary peak SAR locations within 2dB of the Primary were evaluated and reported as shown in the above table and Appendix A (SAR Test Plots). P = Primary, S = Secondary.
- Due to the shape of the DUT, a SAR comparison evaluation was performed for the worst-case planar section configuration using the head section of the SAM phantom (right head section). The SAR result was comparatively lower using the head section of the phantom versus the planar section.

5.0 DETAILS OF SAR EVALUATION

The VOCOLLECT INC. Waist-Worn Terminal Model: Talkman T2 with Senao SL2511CD DSSS WLAN Card FCC ID: MQOTT600-50300 was determined to be compliant for localized Specific Absorption Rate based on the test provisions and conditions described below. Detailed test setup photographs are shown in Appendix H.

1. The DUT was tested for body-worn SAR on the belt-clip side (back side) of the device with belt accessory attached. The left and right sections of the belt-clip side were evaluated (due to the shape of the DUT) with the DUT facing parallel to the planar phantom and a 0.0 cm separation distance (DUT touching the planar phantom at two points on the belt-clip side).
2. The DUT was tested for body-worn SAR on the top and bottom sides of the device with belt accessory attached. The top and bottom sides were evaluated with the DUT facing parallel to the planar phantom and a 0.0 cm separation distance (DUT touching the planar phantom).
3. Due to the shape of the DUT, a SAR comparison evaluation was performed for the worst-case planar section configuration using the head section of the SAM phantom (right head section). The SAR result was comparatively lower using the head section of the phantom versus the planar section.
4. The slim belt-clip, belt, headset-microphone, and scanner accessories were connected to the DUT for the duration of the tests. The Terminal Cover accessory was not evaluated for SAR RF exposure compliance based on the fact that it does not contain any metallic components and provides a separation distance from the DUT to the user's body; therefore the worst-case separation distance (0.0 cm) was tested.
5. Secondary peak SAR locations within 2dB of the Primary were evaluated and reported as shown in the above table and Appendix A (SAR Test Plots). P = Primary, S = Secondary.
6. The DUT was placed into test mode using HyperTerminal software program controlled from a PC connected to the DUT via serial cable. The DUT was tested at maximum power in modulated DSSS continuous transmit mode.
7. The peak conducted power levels were measured before the tests using a Gigatronics 8652A Universal Power Meter according to the procedures described in FCC 47 CFR §2.1046.
8. The power drifts measured by the DASY system during the SAR evaluations were > 5%. The power drifts were subsequently added to the measured SAR levels to report scaled SAR results as shown in the test data table (page 5). SAR versus Time drift evaluations were performed for the duration of the area scan in the test configuration that measured the highest SAR level, first with Lithium-ion battery, then using an external power source to show the power drift characteristics of the DUT. See Appendix A (SAR Test Plots) for SAR versus Time drift evaluation plots.
9. The area scan evaluations were performed with a fully charged battery. After each area scan was completed the battery was replaced with a fully charged battery prior to the zoom scan evaluation.
10. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures listed were consistent for all measurement periods.
11. The dielectric parameters of the simulated body fluid were measured prior to the evaluation using an 85070C Dielectric Probe Kit and an 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
(ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm. An area scan was determined as follows:
 - c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
 - d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
- A 1g and 10g spatial peak SAR was determined as follows:
 - e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix D). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
 - f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
 - g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluation a system check was performed in the planar section of the SAM phantom with a 2450MHz dipole (see Appendix C for system validation procedures). The dielectric parameters of the simulated brain fluid were measured prior to the system performance check using an 85070C Dielectric Probe Kit and an 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ (see Appendix B for system performance check test plot).

SYSTEM PERFORMANCE CHECK													
Test Date	2450MHz Equiv. Tissue	SAR 1g (W/kg)		Dielectric Constant ϵ_r		Conductivity σ (mho/m)		ρ (Kg/m ³)	Amb. Temp. (°C)	Fluid Temp. (°C)	Fluid Depth (cm)	Humid. (%)	Barom. Press. (kPa)
		IEEE Target	Measured	IEEE Target	Measured	IEEE Target	Measured						
02/20/04	Brain	13.1 $\pm 10\%$	13.3 (+1.5%)	39.2 $\pm 5\%$	37.5	1.80 $\pm 5\%$	1.89	1000	25.0	23.9	≥ 15	31	109.2

Note(s):

1. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods.

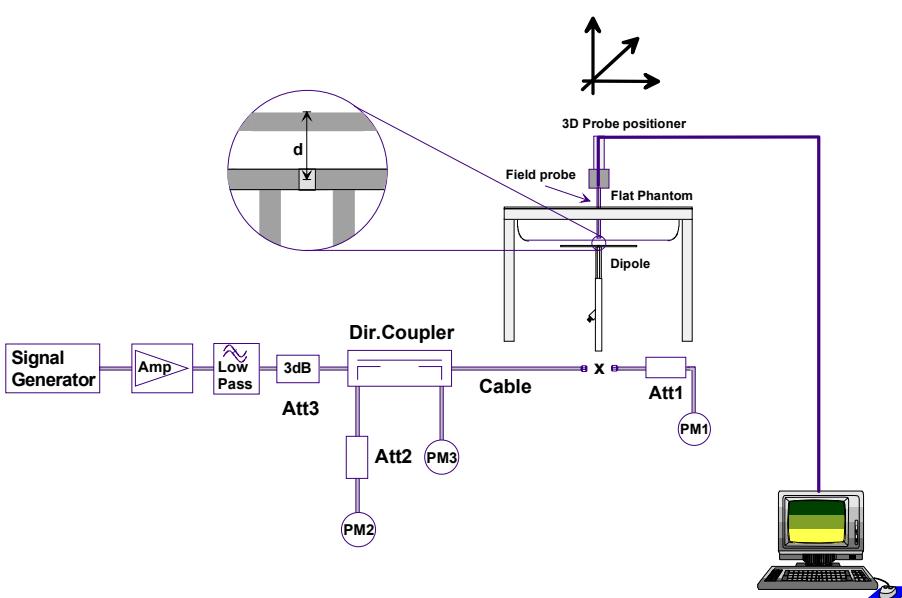


Figure 1. System Performance Check Measurement Setup

2450MHz Dipole Setup

8.0 SIMULATED EQUIVALENT TISSUES

The 2450MHz brain and body simulated tissue mixtures consist of Glycol-monobutyl, water, and salt (body mixture only). The fluid was prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

SIMULATED TISSUE MIXTURES		
INGREDIENT	2450MHz Brain Mixture (System Performance Check)	2450MHz Body Mixture (DUT Evaluation)
Water	52.00 %	69.98 %
Glycol Monobutyl	48.00 %	30.00 %
Salt	-	0.02 %

9.0 SAR SAFETY LIMITS

EXPOSURE LIMITS	SAR (W/Kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

Notes:

1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

POSITIONER: Stäubli Unimation Corp. Robot Model: RX60L
Repeatability: 0.02 mm
No. of axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: AMD Athlon XP 2400+
Clock Speed: 2.0 GHz
Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic
Software: DASY4 software
Connecting Lines: Optical downlink for data and status info.
 Optical uplink for commands and clock

DASY4 Measurement Server

Function: Real-time data evaluation for field measurements and surface detection
Hardware: PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections: COM1, COM2, DAE, Robot, Ethernet, Service Interface

E-Field Probe

Model: ET3DV6
Serial No.: 1590
Construction: Triangular core fiber optic detection system
Frequency: 10 MHz to 6 GHz
Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Phantom(s)

Validation & Evaluation Phantom

Type: SAM V4.0C
Shell Material: Fiberglass
Thickness: 2.0 ± 0.1 mm
Volume: Approx. 20 liters

11.0 PROBE SPECIFICATION (ET3DV6)

Construction:	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g. glycol)
Calibration:	In air from 10 MHz to 2.5 GHz In brain simulating tissue at frequencies of 900 MHz and 1.8 GHz (accuracy \pm 8%)
Frequency:	10 MHz to >6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)
Directivity:	\pm 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation normal to probe axis)
Dynamic Range:	5 μ W/g to >100 mW/g; Linearity: \pm 0.2 dB
Surface Detection:	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Dimensions:	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm
Application:	Distance from probe tip to dipole centers: 2.7 mm General dosimetry up to 3 GHz Compliance tests of mobile phone

ET3DV6 E-Field Probe

12.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections.

SAM Phantom

13.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

14.0 TEST EQUIPMENT LIST

TEST EQUIPMENT	SERIAL NO.	CALIBRATION DATE
Schmid & Partner DASY4 System	-	-
DASY4 Measurement Server	1078	N/A
-Robot	599396-01	N/A
-ET3DV6 E-Field Probe	1590	May 2003
-300MHz Validation Dipole	135	Oct 2003
-450MHz Validation Dipole	136	Nov 2003
-900MHz Validation Dipole	054	June 2003
-1800MHz Validation Dipole	247	June 2003
-2450MHz Validation Dipole	150	Sept 2003
-SAM Phantom V4.0C	1033	N/A
-Barski Planar Phantom	03-01	N/A
HP 85070C Dielectric Probe Kit	N/A	N/A
Gigatronics 8651A Power Meter	8650137	April 2003
Gigatronics 8652A Power Meter	1835267	April 2003
Power Sensor 80701A	1833542	April 2003
Power Sensor 80701A	1834350	April 2003
HP E4408B Spectrum Analyzer	US39240170	Dec 2003
HP 8594E Spectrum Analyzer	3543A02721	April 2003
HP 8753E Network Analyzer	US38433013	May 2003
HP 8648D Signal Generator	3847A00611	May 2003
Amplifier Research 5S1G4 Power Amplifier	26235	N/A

15.0 MEASUREMENT UNCERTAINTIES

UNCERTAINTY BUDGET FOR DEVICE EVALUATION						
Error Description	Uncertainty Value $\pm\%$	Probability Distribution	Divisor	c_i 1g	Standard Uncertainty $\pm\%$ (1g)	v_i or v_{eff}
Measurement System						
Probe calibration	± 4.5	Normal	1	1	± 4.5	∞
Axial isotropy of the probe	± 4.7	Rectangular	$\sqrt{3}$	$(1-c_p)$	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	$\sqrt{3}$	(c_p)	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	$\sqrt{3}$	1	± 0.0	∞
Boundary effects	± 5.5	Rectangular	$\sqrt{3}$	1	± 3.2	∞
Probe linearity	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Readout electronics	± 1.0	Normal	1	1	± 1.0	∞
Response time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5	∞
Integration time	± 1.4	Rectangular	$\sqrt{3}$	1	± 0.8	∞
RF ambient conditions	± 3.0	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	$\sqrt{3}$	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	$\sqrt{3}$	1	± 1.7	∞
Extrapolation & integration	± 3.9	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Test Sample Related						
Device positioning	± 6.0	Normal	$\sqrt{3}$	1	± 6.7	12
Device holder uncertainty	± 5.0	Normal	$\sqrt{3}$	1	± 5.9	8
Power drift	± 5.0	Rectangular	$\sqrt{3}$		± 2.9	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	$\sqrt{3}$	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid conductivity (measured)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	$\sqrt{3}$	0.6	± 1.7	∞
Combined Standard Uncertainty						
Expanded Uncertainty (k=2)						
± 13.2						
± 26.4						

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

MEASUREMENT UNCERTAINTIES (Cont.)

Uncertainty Budget for System Validation						
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	v _i or v _{eff}
Measurement System						
Probe calibration	± 4.5	Normal	1	1	± 4.5	∞
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(c _p)	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	∞
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	∞
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	∞
Readout electronics	± 1.0	Normal	1	1	± 1.0	∞
Response time	± 0.8	Rectangular	√3	1	± 0.5	∞
Integration time	± 1.4	Rectangular	√3	1	± 0.8	∞
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	∞
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	∞
Dipole						
Dipole Axis to Liquid Distance	± 2.0	Rectangular	√3	1	± 1.2	∞
Input Power	± 4.7	Rectangular	√3	1	± 2.7	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Combined Standard Uncertainty						
Expanded Uncertainty (k=2)						
					± 9.8	
					± 19.6	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

16.0 REFERENCES

- [1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6.
- [3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada, "Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields", Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.
- [5] IEEE Std 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

APPENDIX A - SAR MEASUREMENT DATA

Body-Worn SAR - DUT Belt-Clip Side - Right Section - 7.2V 1650mAh Li-ion Battery Pack

Test Date: 02/20/04

DUT: Vocollect Inc. Model: Talkman T2; Type: Waist-Worn Terminal with 2.4 GHz DSSS WLAN; Serial: 63143020

Ambient Temp: 25.0 °C; Fluid Temp: 23.8 °C; Barometric Pressure: 109.3 kPa; Humidity: 31%

Body-Worn Accessories: Slim Belt-Clip, Belt, Headset-Microphone, Scanner

Communication System: DSSS WLAN

RF Output Power: 19.9 dBm (Conducted)

7.2 V Li-ion Battery Pack 1650 mAh (P/N: 370016)

Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:3.33

Medium: M2450 ($\sigma = 2.01 \text{ mho/m}$; $\epsilon_r = 50.3$; $\rho = 1000 \text{ kg/m}^3$)

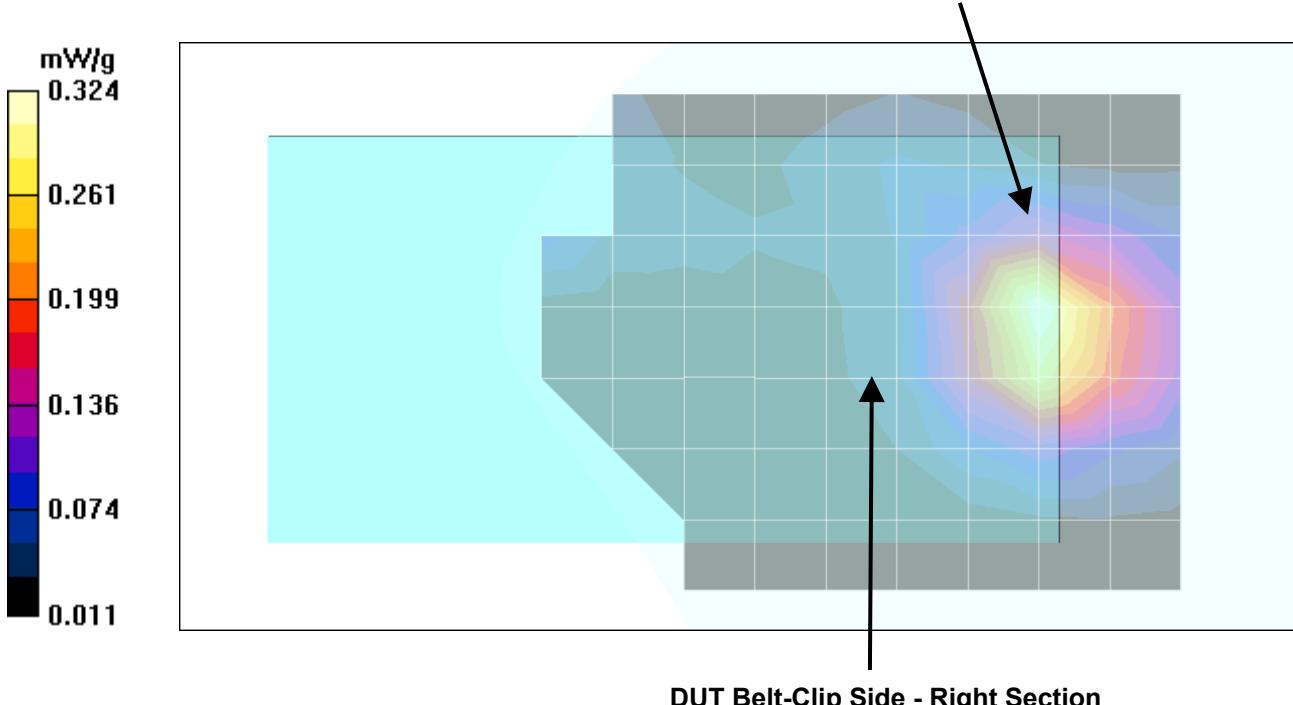
- Probe: ET3DV6 - SN1590; ConvF(4.4, 4.4, 4.4); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: SAM front; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

DUT Belt-Clip Side - Right Section - 0.0 cm Separation Distance - Mid Channel/Area Scan (8x14x1):

Measurement grid: dx=15mm, dy=15mm

DUT Belt-Clip Side - Right Section - 0.0 cm Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

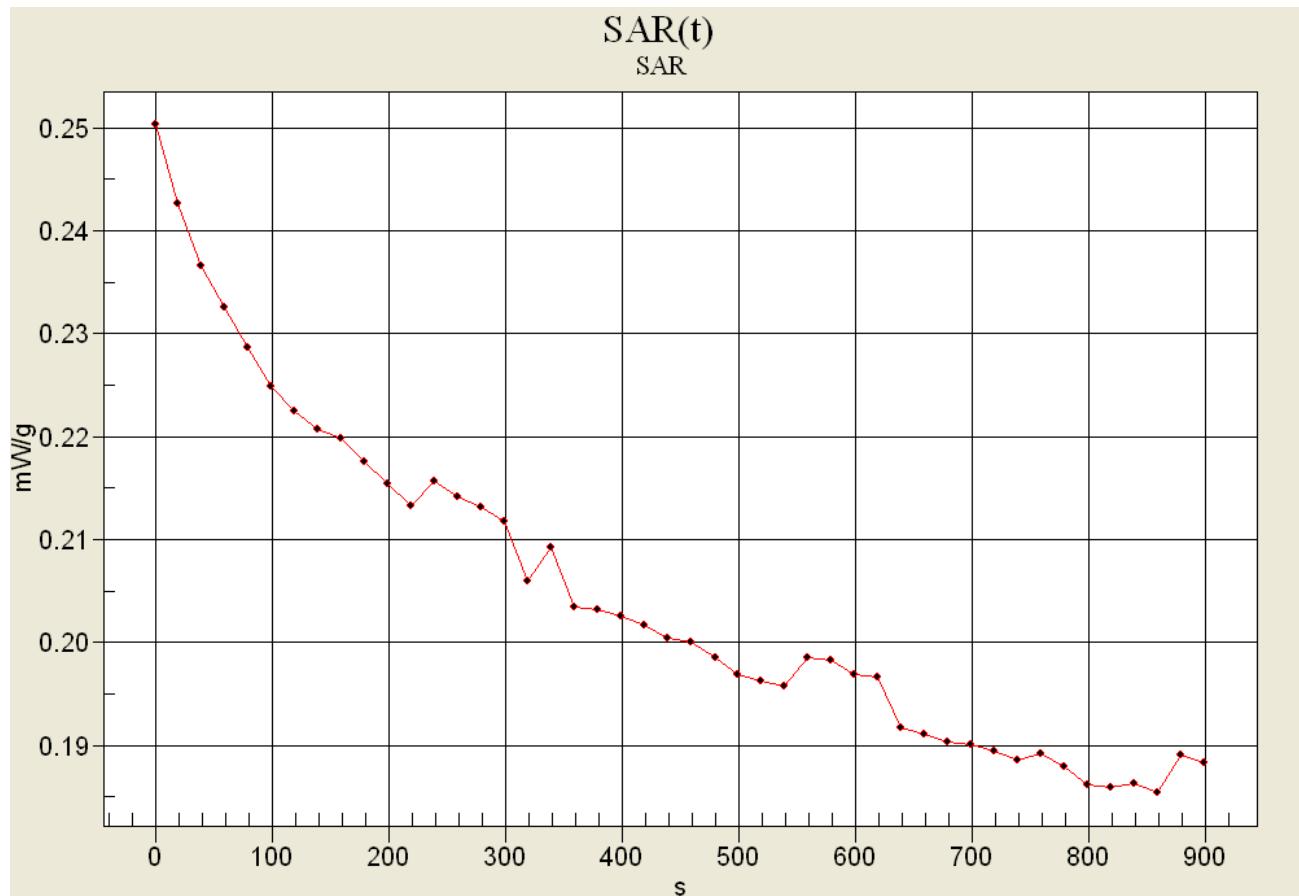

Peak SAR (extrapolated) = 0.565 W/kg

SAR(1 g) = 0.301 mW/g; SAR(10 g) = 0.168 mW/g


Reference Value = 7.34 V/m

Power Drift = -1.13 dB

Accessory Plug-in end / Antenna side



SAR versus Time – 15-Minute Duration - 7.2V 1650mAh Li-ion Battery Pack

Initial Level: 0.309 mW/g
Minimum Level: 0.216 mW/g (-1.56 dB)

SAR versus Time - 15-Minute Duration - External Power Source

Initial Level: 0.251 mW/g
 Minimum Level: 0.186 mW/g (-1.30 dB)

SAR comparison evaluation using Head Section of SAM Phantom (Right Head Section)

Test Date: 02/20/04

DUT: Vocollect Inc. Model: Talkman T2; Type: Waist-Worn Terminal with 2.4 GHz DSSS WLAN; Serial: 63143020

Ambient Temp: 25.0 °C; Fluid Temp: 23.8 °C; Barometric Pressure: 109.3 kPa; Humidity: 31%

Body-Worn Accessories: Slim Belt-Clip, Belt, Headset-Microphone, Scanner

Communication System: DSSS WLAN

RF Output Power: 19.9 dBm (Conducted)

7.2 V Li-ion Battery Pack 3300 mAh (P/N: 370017)

Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:3.33

Medium: M2450 ($\sigma = 2.01 \text{ mho/m}$; $\epsilon_r = 50.3$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1590; ConvF(4.4, 4.4, 4.4); Calibrated: 15/05/2003

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

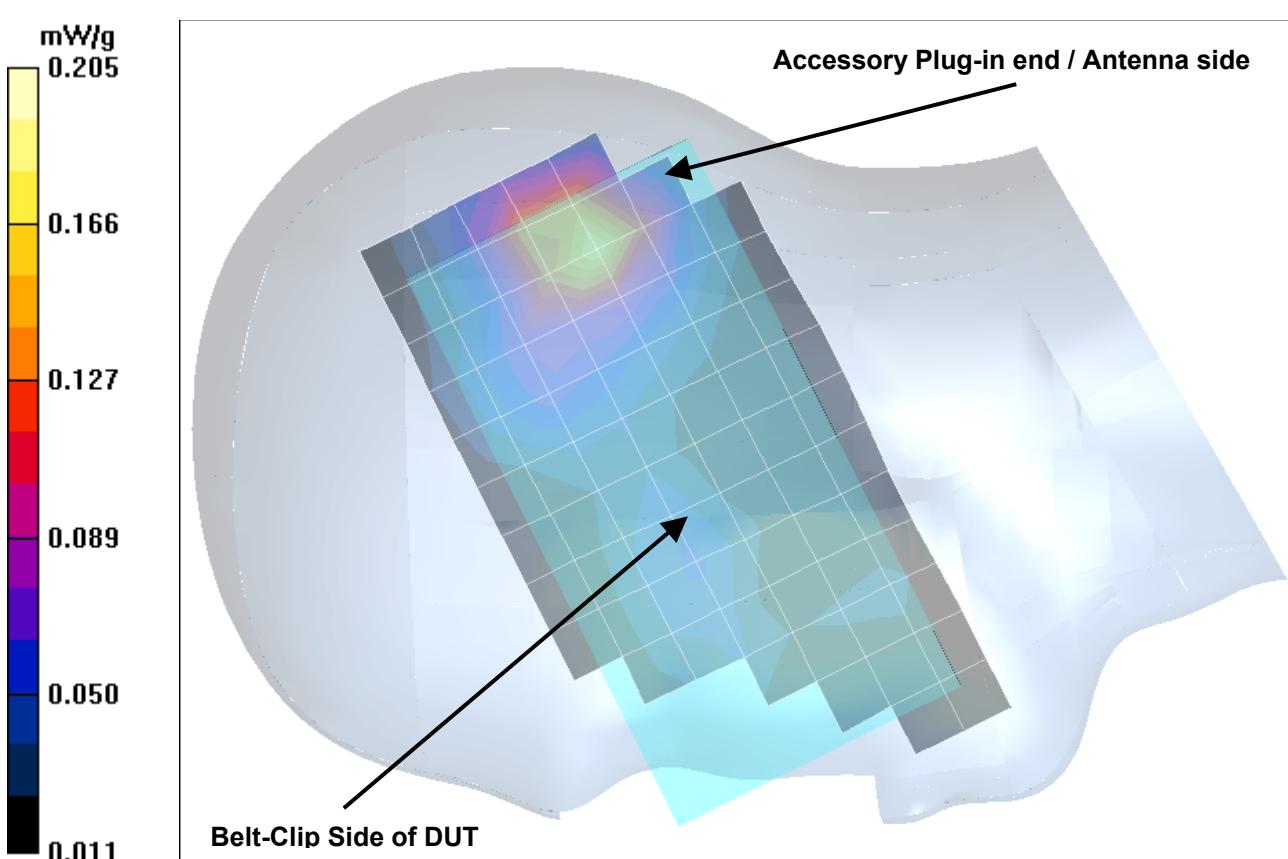
- Phantom: SAM front; Type: SAM 4.0; Serial: 1033; Section: Right Head

- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

DUT Belt-Clip Side - Right Section - 0.0 cm Separation Distance - Mid Channel/Area Scan (8x14x1):

Measurement grid: dx=15mm, dy=15mm

DUT Belt-Clip Side - Right Section - 0.0 cm Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.348 W/kg

SAR(1 g) = 0.190 mW/g; SAR(10 g) = 0.110 mW/g

Reference Value = 4.48 V/m

Power Drift = -0.9 dB

Body-Worn SAR - DUT Belt-Clip Side - Right Section - 7.2V 3300mAh Li-ion Battery Pack

Test Date: 02/20/04

DUT: Vocollect Inc. Model: Talkman T2; Type: Waist-Worn Terminal with 2.4 GHz DSSS WLAN; Serial: 63143020

Ambient Temp: 25.0 °C; Fluid Temp: 23.8 °C; Barometric Pressure: 109.3 kPa; Humidity: 31%

Body-Worn Accessories: Slim Belt-Clip, Belt, Headset-Microphone, Scanner

Communication System: DSSS WLAN

RF Output Power: 19.9 dBm (Conducted)

7.2 V Li-ion Battery Pack 3300 mAh (P/N: 370017)

Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:3.33

Medium: M2450 ($\sigma = 2.01 \text{ mho/m}$; $\epsilon_r = 50.3$; $\rho = 1000 \text{ kg/m}^3$)

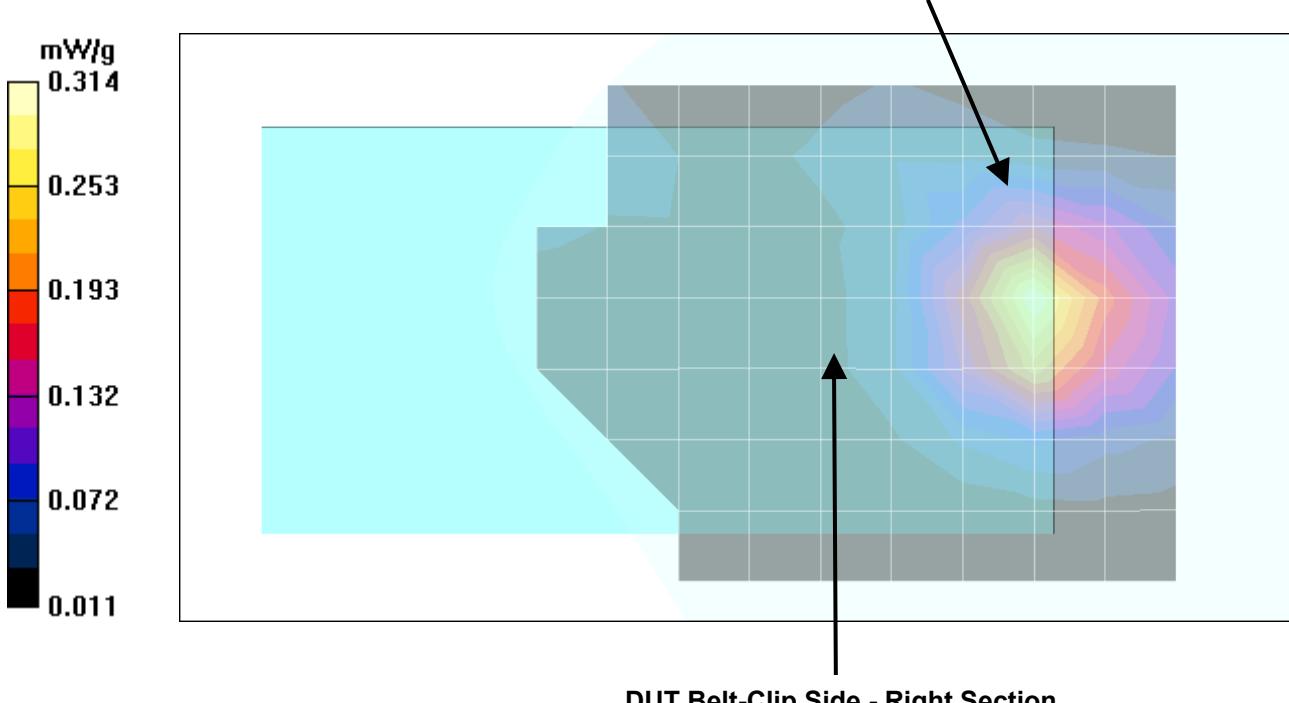
- Probe: ET3DV6 - SN1590; ConvF(4.4, 4.4, 4.4); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: SAM front; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

DUT Belt-Clip Side - Right Section - 0.0 cm Separation Distance - Mid Channel/Area Scan (8x14x1):

Measurement grid: dx=15mm, dy=15mm

DUT Belt-Clip Side - Right Section - 0.0 cm Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.560 W/kg

SAR(1 g) = 0.286 mW/g; SAR(10 g) = 0.157 mW/g

Reference Value = 6.01 V/m

Power Drift = -0.706 dB

Accessory Plug-in end / Antenna side

Body-Worn SAR - DUT Belt-Clip Side - Left Section - 7.2V 1650mAh Li-ion Battery Pack

Test Date: 02/20/04

DUT: Vocollect Inc. Model: Talkman T2; Type: Waist-Worn Terminal with 2.4 GHz DSSS WLAN; Serial: 63143020

Ambient Temp: 25.0 °C; Fluid Temp: 23.8 °C; Barometric Pressure: 109.3 kPa; Humidity: 31%

Body-Worn Accessories: Slim Belt-Clip, Belt, Headset-Microphone, Scanner

Communication System: DSSS WLAN

RF Output Power: 19.9 dBm (Conducted)

7.2 V Li-ion Battery Pack 1650 mAh (P/N: 370016)

Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:3.33

Medium: M2450 ($\sigma = 2.01 \text{ mho/m}$; $\epsilon_r = 50.3$; $\rho = 1000 \text{ kg/m}^3$)

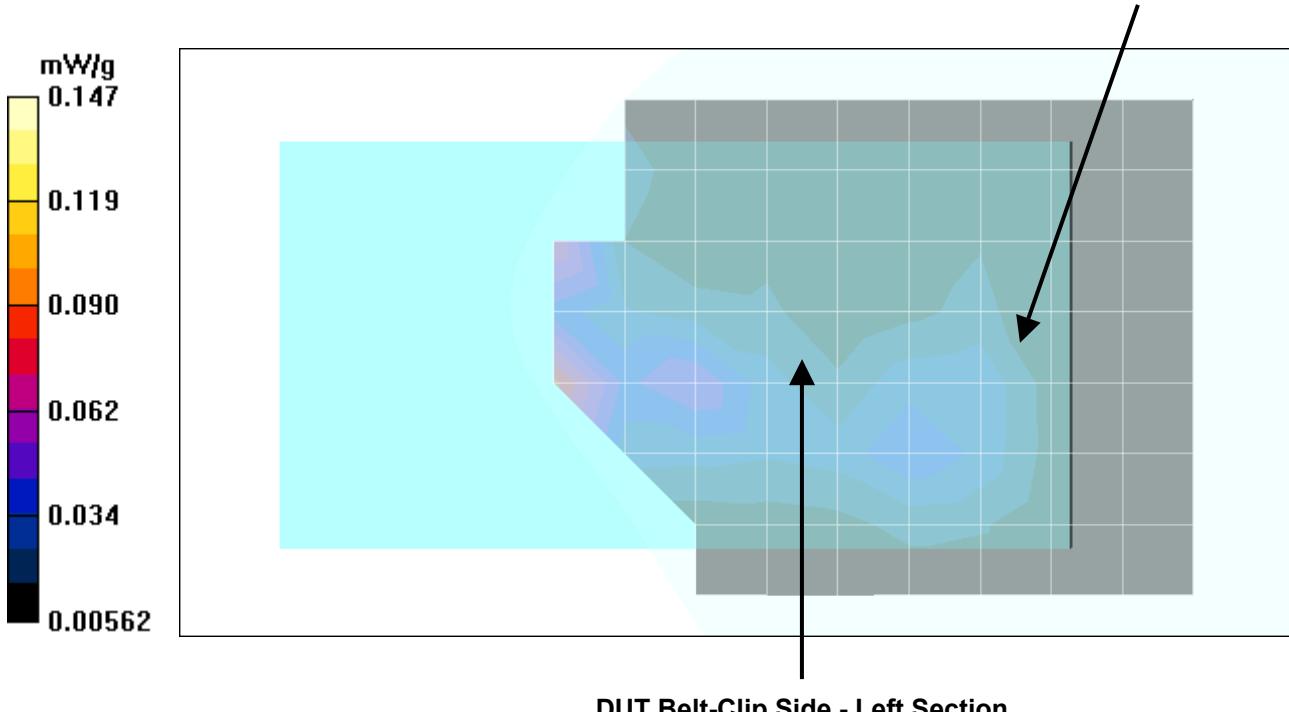
- Probe: ET3DV6 - SN1590; ConvF(4.4, 4.4, 4.4); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: SAM front; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

DUT Belt-Clip Side - Left Section - 0.0 cm Separation Distance - Mid Channel/Area Scan (8x14x1):

Measurement grid: dx=15mm, dy=15mm

DUT Belt-Clip Side - Left Section - 0.0 cm Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.169 W/kg

SAR(1 g) = 0.077 mW/g; SAR(10 g) = 0.046 mW/g

Reference Value = 5.17 V/m

Power Drift = -1.12 dB

Battery Latch end

Body-Worn SAR - DUT Belt-Clip Side - Left Section - 7.2V 3300mAh Li-ion Battery Pack

Test Date: 02/20/04

DUT: Vocollect Inc. Model: Talkman T2; Type: Waist-Worn Terminal with 2.4 GHz DSSS WLAN; Serial: 63143020

Ambient Temp: 25.0 °C; Fluid Temp: 23.8 °C; Barometric Pressure: 109.3 kPa; Humidity: 31%

Body-Worn Accessories: Slim Belt-Clip, Belt, Headset-Microphone, Scanner

Communication System: DSSS WLAN

RF Output Power: 19.9 dBm (Conducted)

7.2 V Li-ion Battery Pack 3300 mAh (P/N: 370017)

Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:3.33

Medium: M2450 ($\sigma = 2.01 \text{ mho/m}$; $\epsilon_r = 50.3$; $\rho = 1000 \text{ kg/m}^3$)

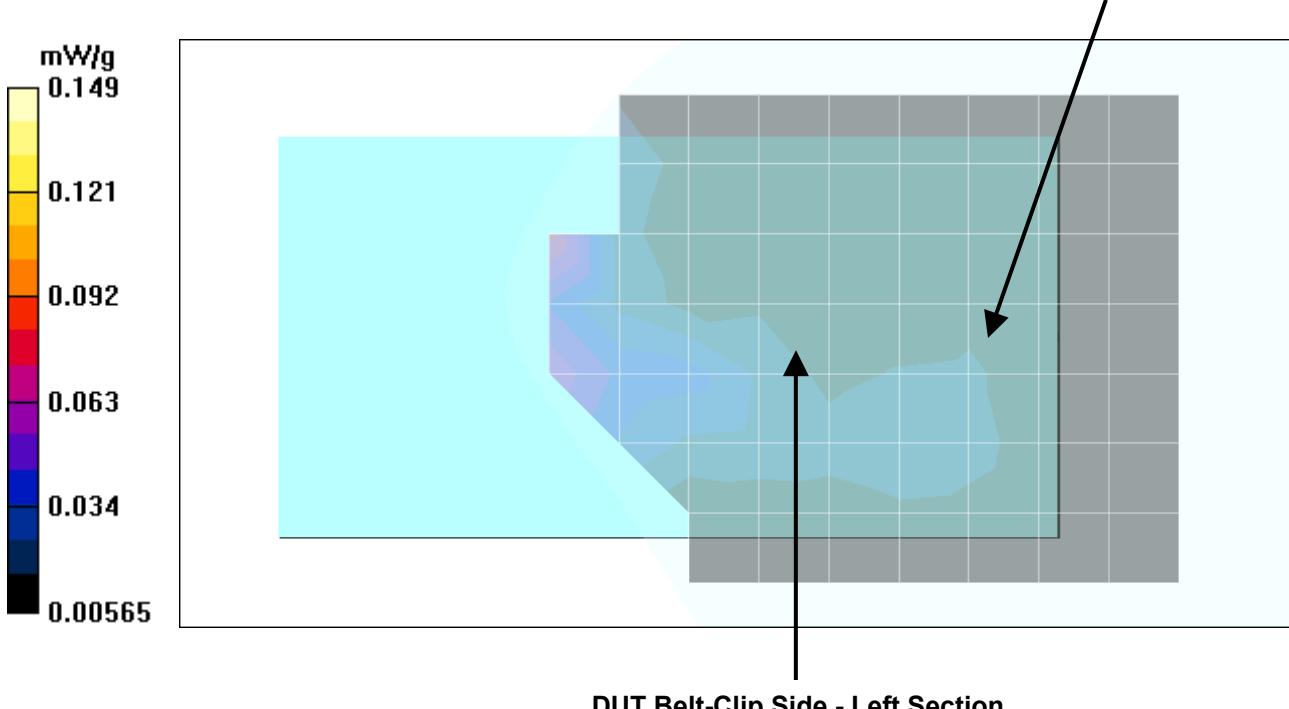
- Probe: ET3DV6 - SN1590; ConvF(4.4, 4.4, 4.4); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: SAM front; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

DUT Belt-Clip Side - Left Section - 0.0 cm Separation Distance - Mid Channel/Area Scan (8x14x1):

Measurement grid: dx=15mm, dy=15mm

DUT Belt-Clip Side - Left Section - 0.0 cm Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.150 W/kg

SAR(1 g) = 0.059 mW/g; SAR(10 g) = 0.037 mW/g

Reference Value = 4.79 V/m

Power Drift = -0.805 dB

Battery Latch end

Body-Worn SAR - Top Side of DUT - 7.2V 1650mAh Li-ion Battery Pack

Test Date: 02/20/04

DUT: Vocollect Inc. Model: Talkman T2; Type: Waist-Worn Terminal with 2.4 GHz DSSS WLAN; Serial: 63143020

Ambient Temp: 25.0 °C; Fluid Temp: 23.8 °C; Barometric Pressure: 109.3 kPa; Humidity: 31%

Body-Worn Accessories: Slim Belt-Clip, Belt, Headset-Microphone, Scanner

Communication System: DSSS WLAN

RF Output Power: 19.9 dBm (Conducted)

7.2 V Li-ion Battery Pack 1650 mAh (P/N: 370016)

Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:3.33

Medium: M2450 ($\sigma = 2.01 \text{ mho/m}$; $\epsilon_r = 50.3$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1590; ConvF(4.4, 4.4, 4.4); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: SAM front; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

Top Side of DUT - 0.0 cm Separation Distance - Mid Channel/Area Scan (6x13x1):

Measurement grid: dx=15mm, dy=15mm

Top Side of DUT - 0.0 cm Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.419 W/kg

SAR(1 g) = 0.208 mW/g; SAR(10 g) = 0.109 mW/g

Reference Value = 6.66 V/m

Power Drift = -1.36 dB

Body-Worn SAR - Top Side of DUT - 7.2V 3300mAh Li-ion Battery Pack

Test Date: 02/20/04

DUT: Vocollect Inc. Model: Talkman T2; Type: Waist-Worn Terminal with 2.4 GHz DSSS WLAN; Serial: 63143020

Ambient Temp: 25.0 °C; Fluid Temp: 23.8 °C; Barometric Pressure: 109.3 kPa; Humidity: 31%

Body-Worn Accessories: Slim Belt-Clip, Belt, Headset-Microphone, Scanner

Communication System: DSSS WLAN

RF Output Power: 19.9 dBm (Conducted)

7.2 V Li-ion Battery Pack 3300 mAh (P/N: 370017)

Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:3.33

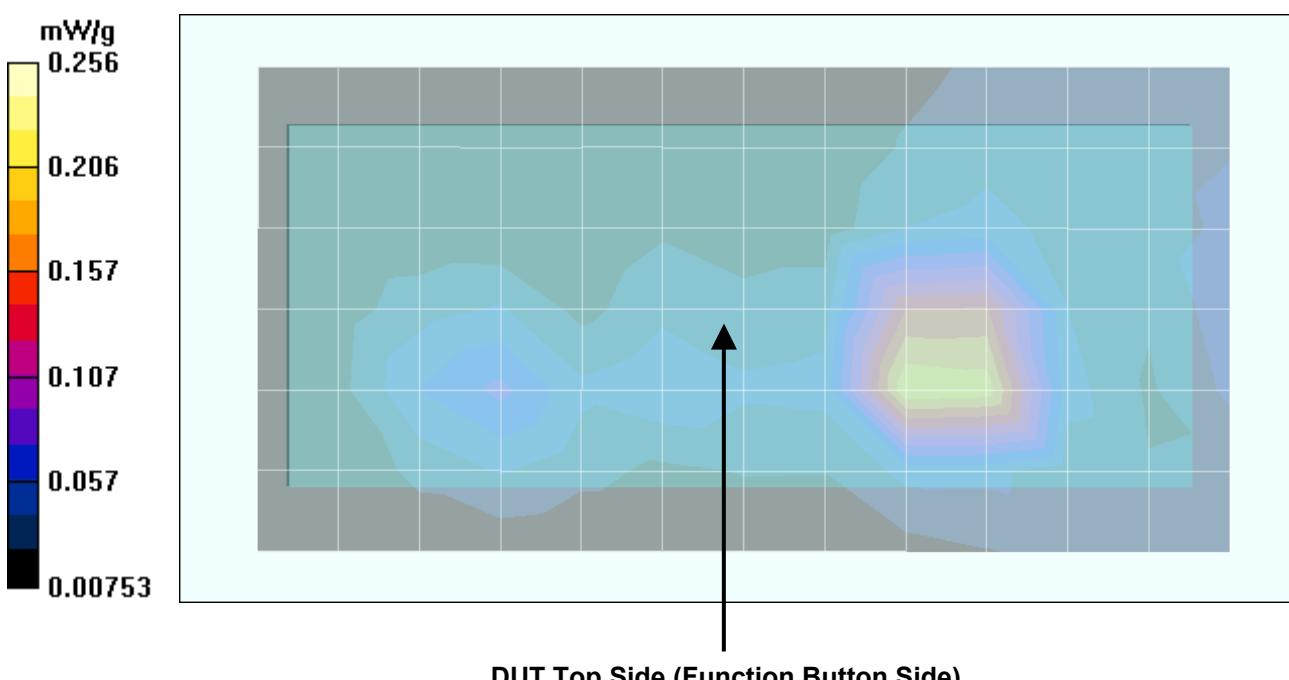
Medium: M2450 ($\sigma = 2.01 \text{ mho/m}$; $\epsilon_r = 50.3$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1590; ConvF(4.4, 4.4, 4.4); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: SAM front; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

Top Side of DUT - 0.0 cm Separation Distance - Mid Channel/Area Scan (7x13x1):

Measurement grid: dx=15mm, dy=15mm

Top Side of DUT - 0.0 cm Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.496 W/kg

SAR(1 g) = 0.231 mW/g; SAR(10 g) = 0.116 mW/g

Reference Value = 5.65 V/m

Power Drift = -1.00 dB

Body-Worn SAR - Bottom Side of DUT - 7.2V 1650mAh Li-ion Battery Pack

Date Tested: 02/20/04

DUT: Vocollect Inc. Model: Talkman T2; Type: Waist-Worn Terminal with 2.4 GHz DSSS WLAN; Serial: 63143020

Ambient Temp: 25.0 °C; Fluid Temp: 23.8 °C; Barometric Pressure: 109.3 kPa; Humidity: 31%

Body-Worn Accessories: Slim Belt-Clip, Belt, Headset-Microphone, Scanner

Communication System: DSSS WLAN

RF Output Power: 19.9 dBm (Conducted)

7.2 V Li-ion Battery Pack 1650 mAh (P/N: 370016)

Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:3.33

Medium: M2450 ($\sigma = 2.01 \text{ mho/m}$; $\epsilon_r = 50.3$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1590; ConvF(4.4, 4.4, 4.4); Calibrated: 15/05/2003

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

- Phantom: SAM front; Type: SAM 4.0; Serial: 1033

- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

Bottom Side of DUT - 0.0 cm Separation Distance - Mid Channel/Area Scan (6x13x1):

Measurement grid: dx=15mm, dy=15mm

Bottom Side of DUT - 0.0 cm Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.111 W/kg

SAR(1 g) = 0.058 mW/g; SAR(10 g) = 0.036 mW/g

Bottom Side of DUT - 0.0 cm Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 1:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.101 W/kg

SAR(1 g) = 0.048 mW/g; SAR(10 g) = 0.028 mW/g

Bottom Side of DUT - 0.0 cm Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 2:

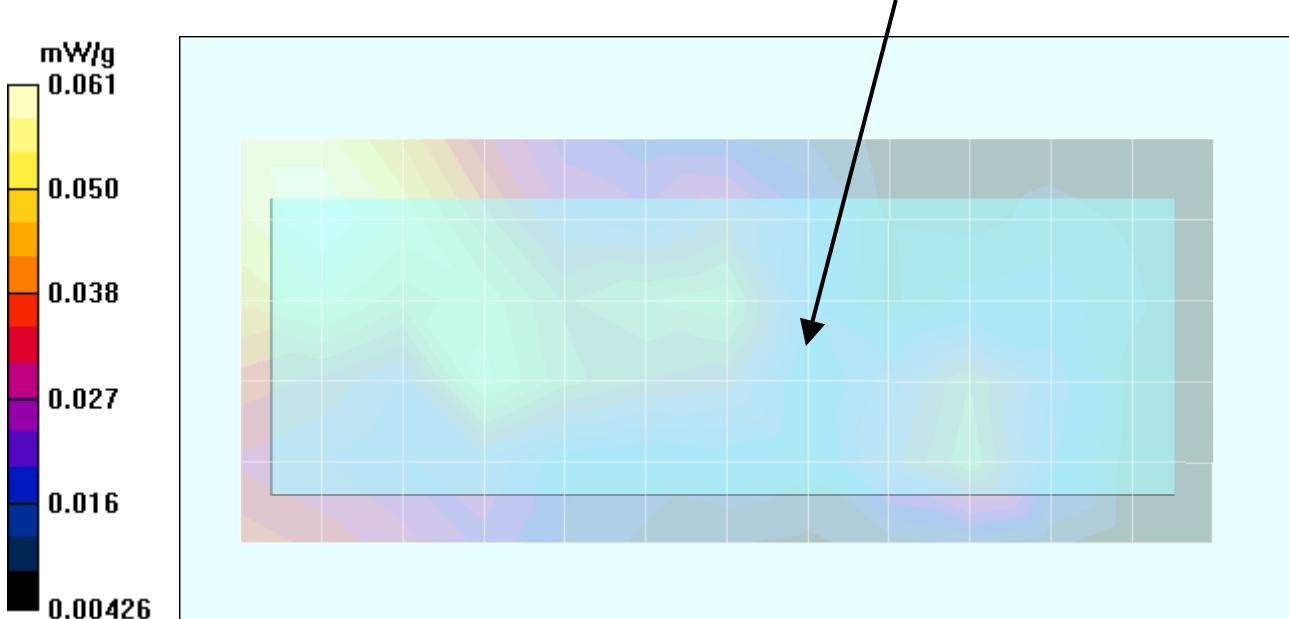
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.084 W/kg

SAR(1 g) = 0.045 mW/g; SAR(10 g) = 0.025 mW/g

Bottom Side of DUT - 0.0 cm Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 3:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.069 W/kg

SAR(1 g) = 0.038 mW/g; SAR(10 g) = 0.023 mW/g

Reference Value = 4.07 V/m

Power Drift = -0.818 dB

DUT Bottom Side

Body-Worn SAR - Bottom Side of DUT - 7.2V 3300mAh Li-ion Battery Pack

Date Tested: 02/20/04

DUT: Vocollect Inc. Model: Talkman T2; Type: Waist-Worn Terminal with 2.4 GHz DSSS WLAN; Serial: 63143020

Ambient Temp: 25.0 °C; Fluid Temp: 23.8 °C; Barometric Pressure: 109.3 kPa; Humidity: 31%

Body-Worn Accessories: Slim Belt-Clip, Belt, Headset-Microphone, Scanner

Communication System: DSSS WLAN

RF Output Power: 19.9 dBm (Conducted)

7.2 V Li-ion Battery Pack 3300 mAh (P/N: 370017)

Frequency: 2437 MHz; Channel 6; Duty Cycle: 1:3.33

Medium: M2450 ($\sigma = 2.01 \text{ mho/m}$; $\epsilon_r = 50.3$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1590; ConvF(4.4, 4.4, 4.4); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: SAM front; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

Bottom Side of DUT - 0.0 cm Separation Distance - Mid Channel/Area Scan (7x13x1):

Measurement grid: dx=15mm, dy=15mm

Bottom Side of DUT - 0.0 cm Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

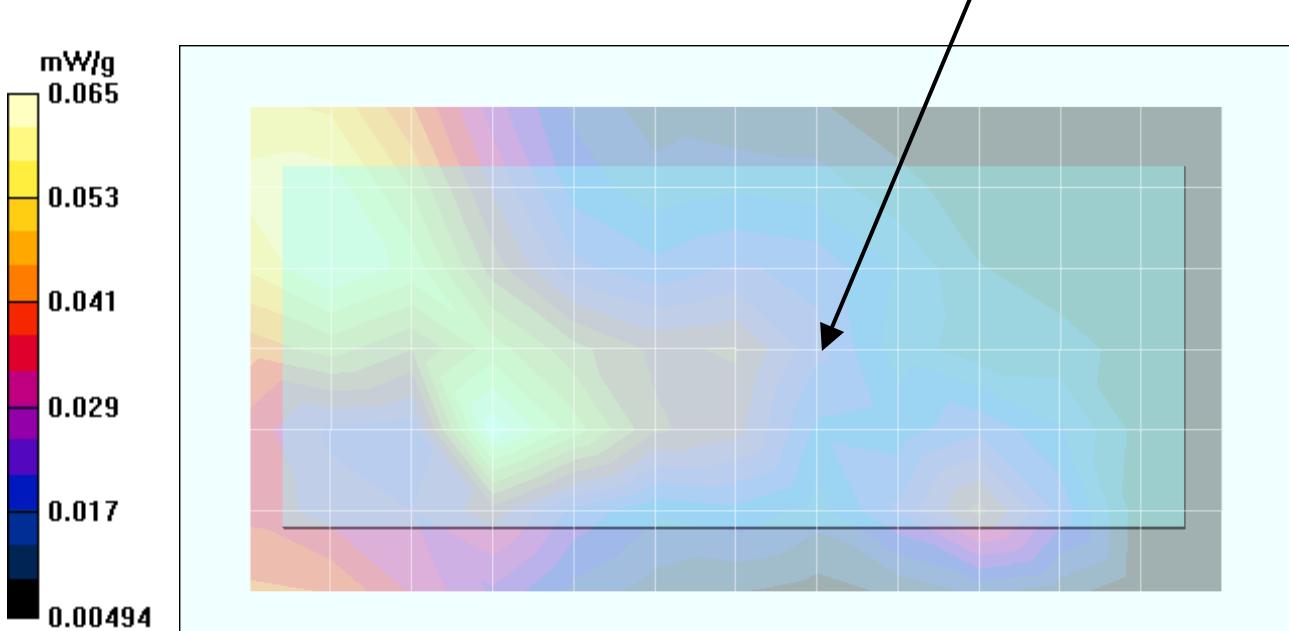
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 0.121 W/kg

SAR(1 g) = 0.060 mW/g; SAR(10 g) = 0.033 mW/g

Bottom Side of DUT - 0.0 cm Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 1:

Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 0.110 W/kg

SAR(1 g) = 0.054 mW/g; SAR(10 g) = 0.034 mW/g

Reference Value = 4.71 V/m

Power Drift = -0.724 dB

DUT Bottom Side

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

System Performance Check - 2450 MHz Dipole

Date Tested: 02/20/04

DUT: Dipole 2450 MHz; Model: D2450V2; Type: System Performance Check; Serial: 150

Ambient Temp: 25.0 °C; Fluid Temp: 23.9 °C; Barometric Pressure: 109.2 kPa; Humidity: 31%

Communication System: CW

Forward Conducted Power: 250 mw

Frequency: 2450 MHz; Duty Cycle: 1:1

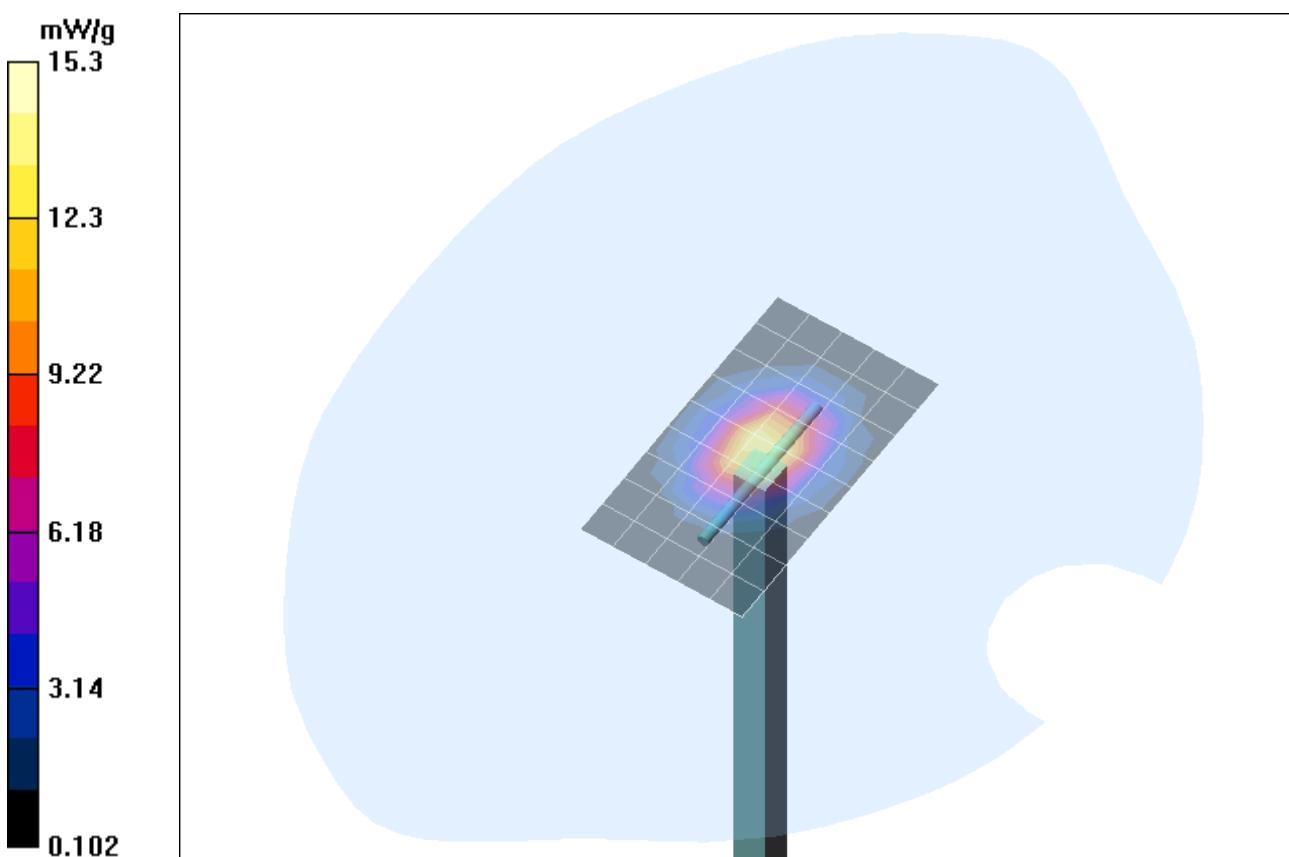
Medium: HSL2450 ($\sigma = 1.89$ mho/m; $\epsilon_r = 37.5$; $\rho = 1000$ kg/m³)

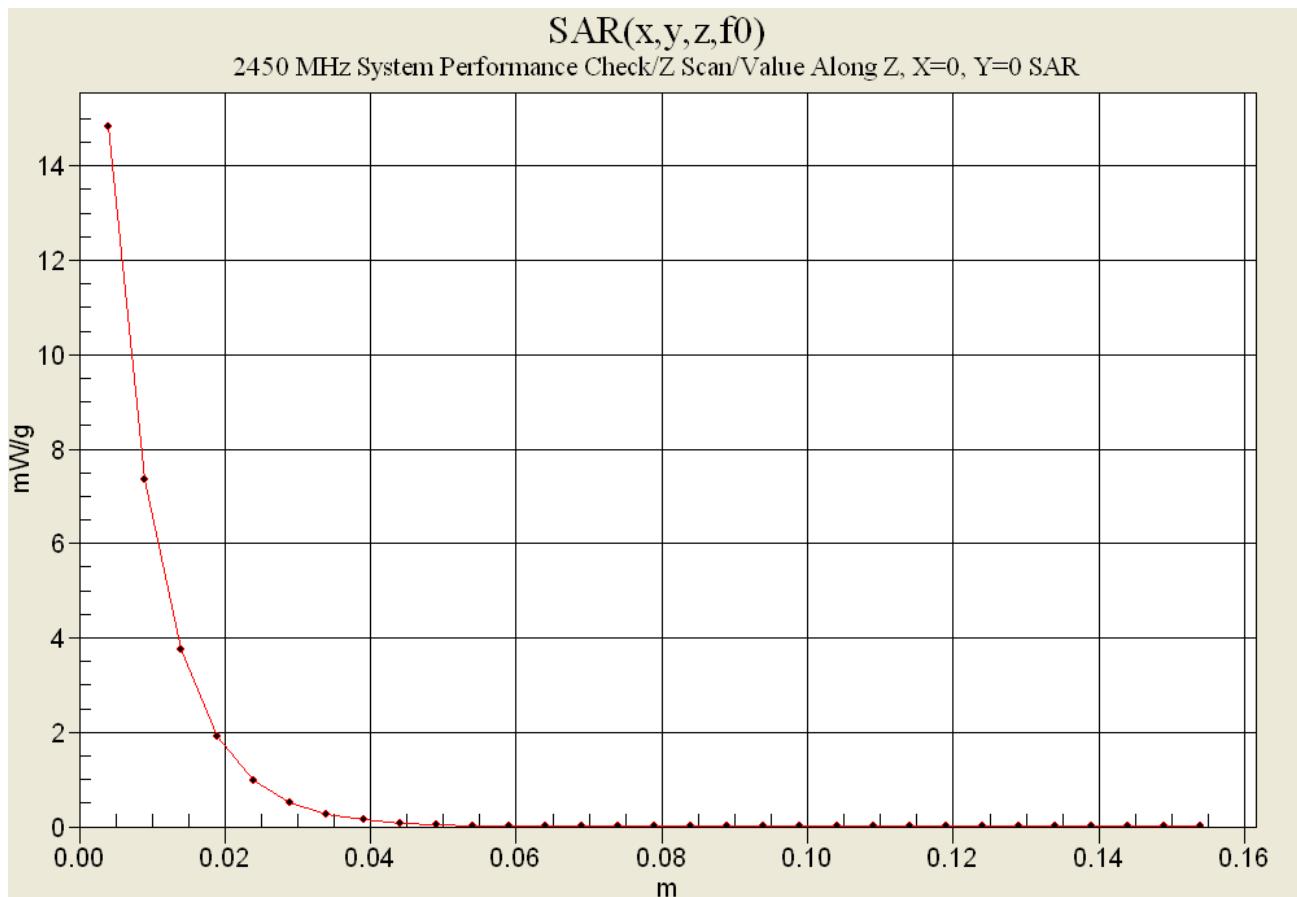
- Probe: ET3DV6 - SN1590; ConvF(5, 5, 5); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 12; Postprocessing SW: SEMCAD, V1.8 Build 94

2450 MHz System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

2450 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.24 mW/g

Reference Value = 94.8 V/m

Power Drift = -0.0 dB

Z-Axis Scan

APPENDIX C - SYSTEM VALIDATION

2450MHz SYSTEM VALIDATION DIPOLE

Type:

2450MHz Validation Dipole

Serial Number:

150

Place of Calibration:

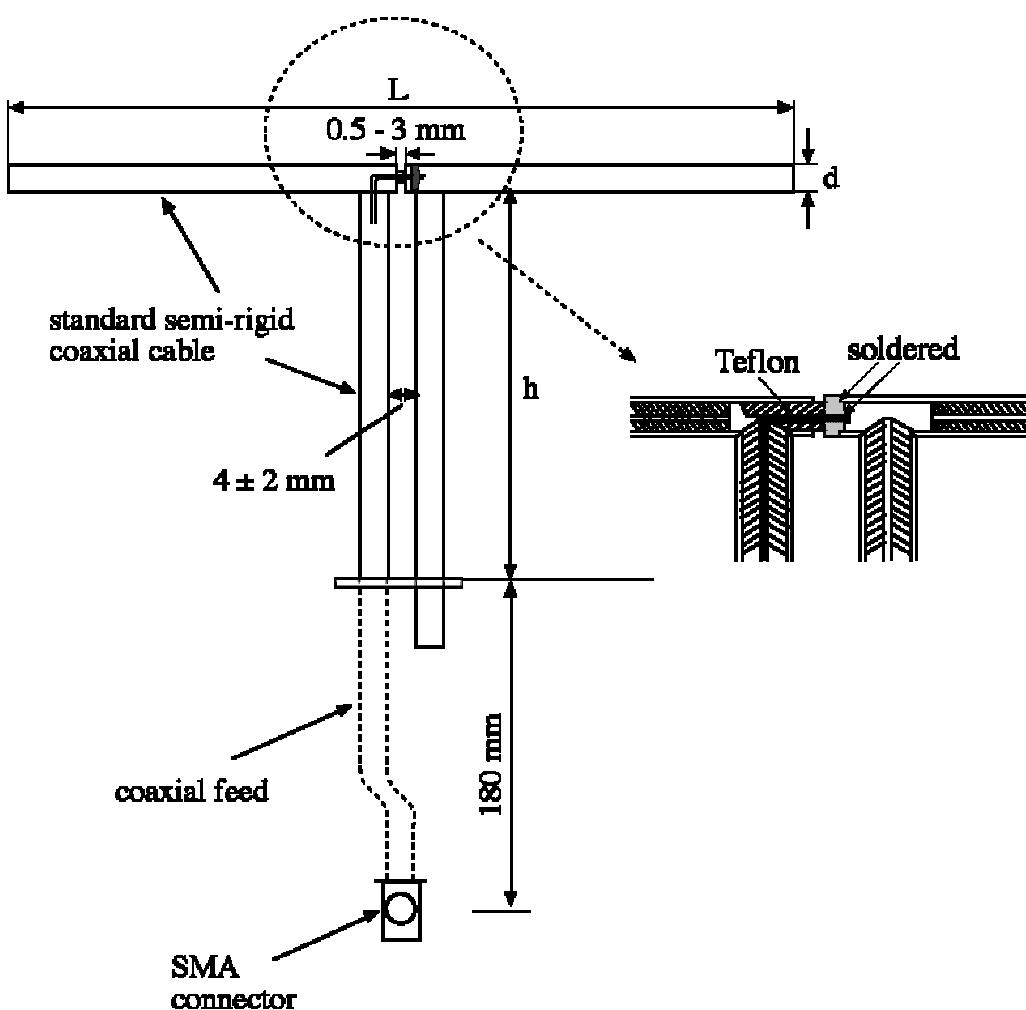
Celltech Labs Inc.

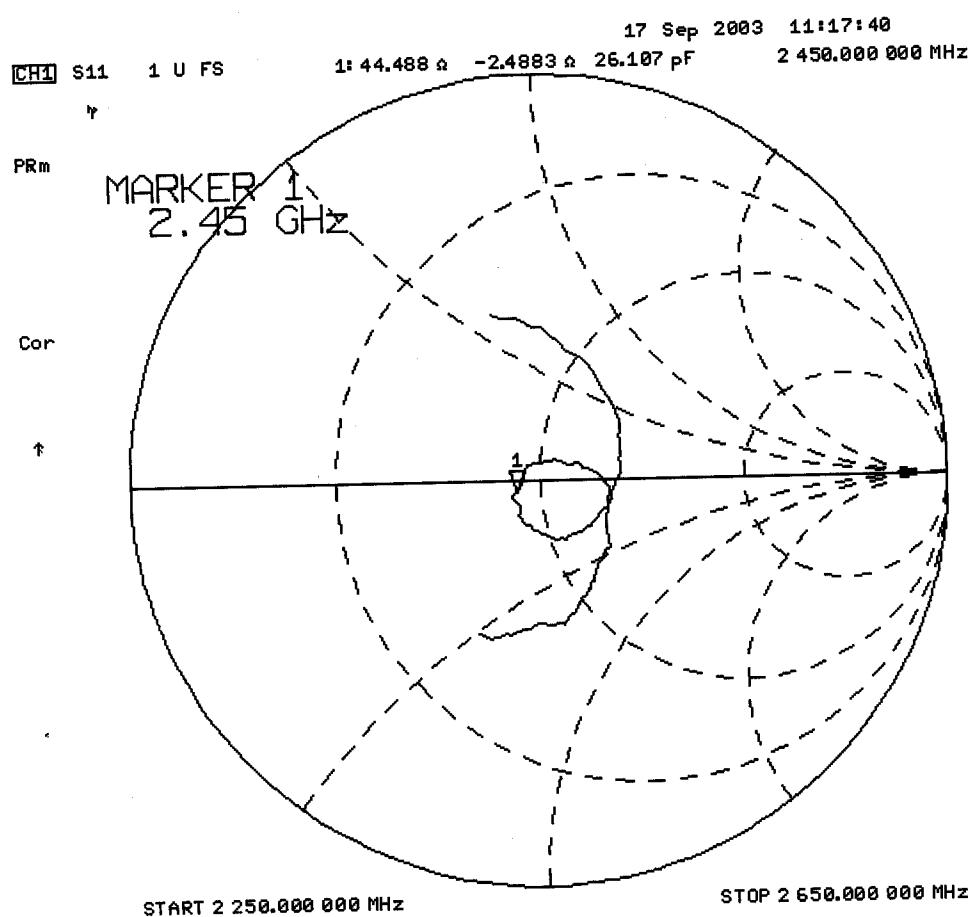
Date of Calibration:

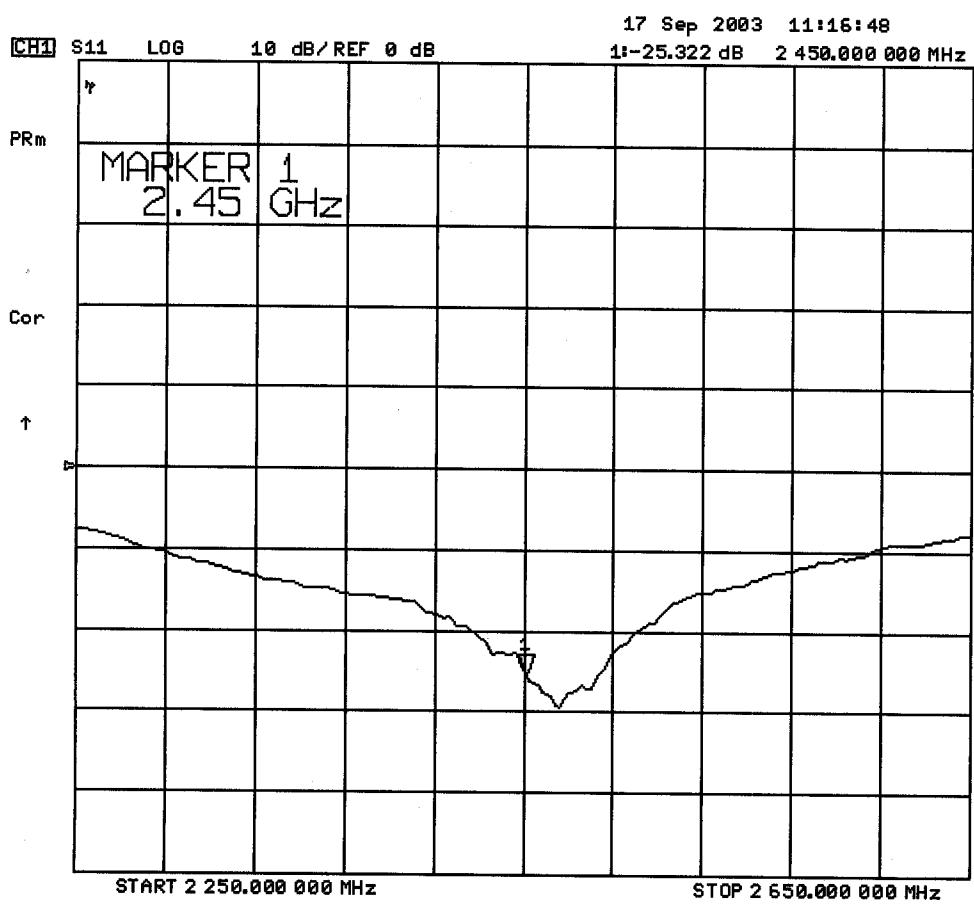
September 17, 2003

Celltech Labs Inc. hereby certifies that this device has been calibrated on the date indicated above.

Calibrated by:


Approved by:




1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std “Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques”. The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 2450MHz	$\text{Re}\{Z\} = 44.488\Omega$
	$\text{Im}\{Z\} = -2.4883\Omega$
Return Loss at 2450MHz	-25.322 dB

Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

2. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

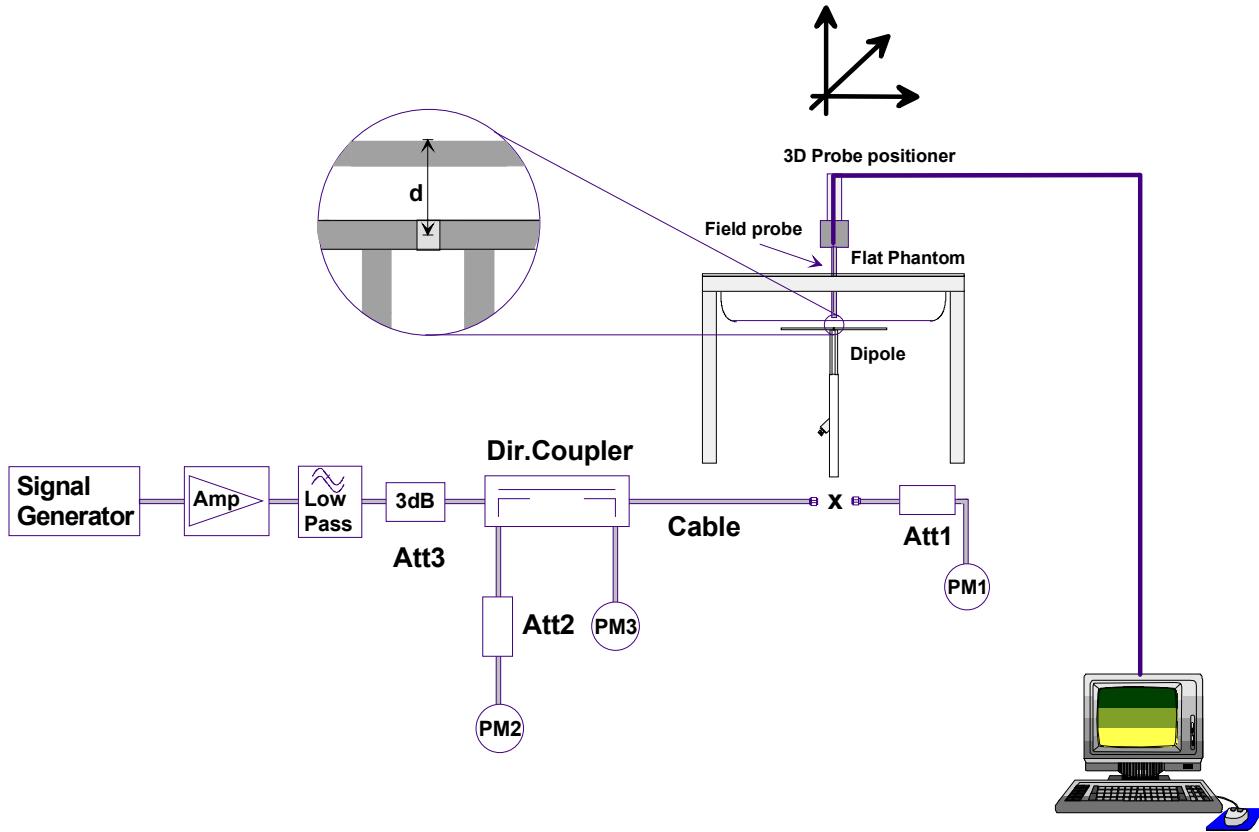
Shell Thickness: 2.0 ± 0.1 mm
Filling Volume: Approx. 20 liters
Dimensions: 50 cm (W) x 100 cm (L)

2450MHz Dipole Calibration

2450MHz Dipole Calibration

3. Measurement Conditions

The planar phantom was filled with brain simulating tissue having the following electrical parameters at 2450MHz:


Relative Permittivity:	37.3
Conductivity:	1.88 mho/m
Ambient Temperature:	21.6°C
Fluid Temperature:	23.9°C
Fluid Depth:	≥ 15cm

The 2450MHz simulating tissue consists of the following ingredients:

Ingredient	Percentage by weight
Water	52.00%
Glycol Monobutyl	48.00%
Target Dielectric Parameters at 22°C	$\epsilon_r = 39.2$ (+/-5%) $\sigma = 1.80$ S/m (+/-5%)

4. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First, the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Dipole SAR Test Results

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	13.9	55.6	6.27	25.08	29.5
Test 2	13.9	55.6	6.25	25.00	29.1
Test 3	13.9	55.6	6.24	24.96	28.9
Test 4	14.0	56.0	6.31	25.24	29.1
Test 5	14.0	56.0	6.27	25.08	29.7
Test 6	13.8	55.2	6.25	25.00	29.3
Test 7	13.9	55.6	6.22	24.88	29.3
Test 8	13.9	55.6	6.24	24.96	29.4
Test 9	14.0	56.0	6.29	25.16	30.0
Test10	13.8	55.2	6.17	24.68	29.3
Average Value	13.91	55.64	6.251	25.00	29.36

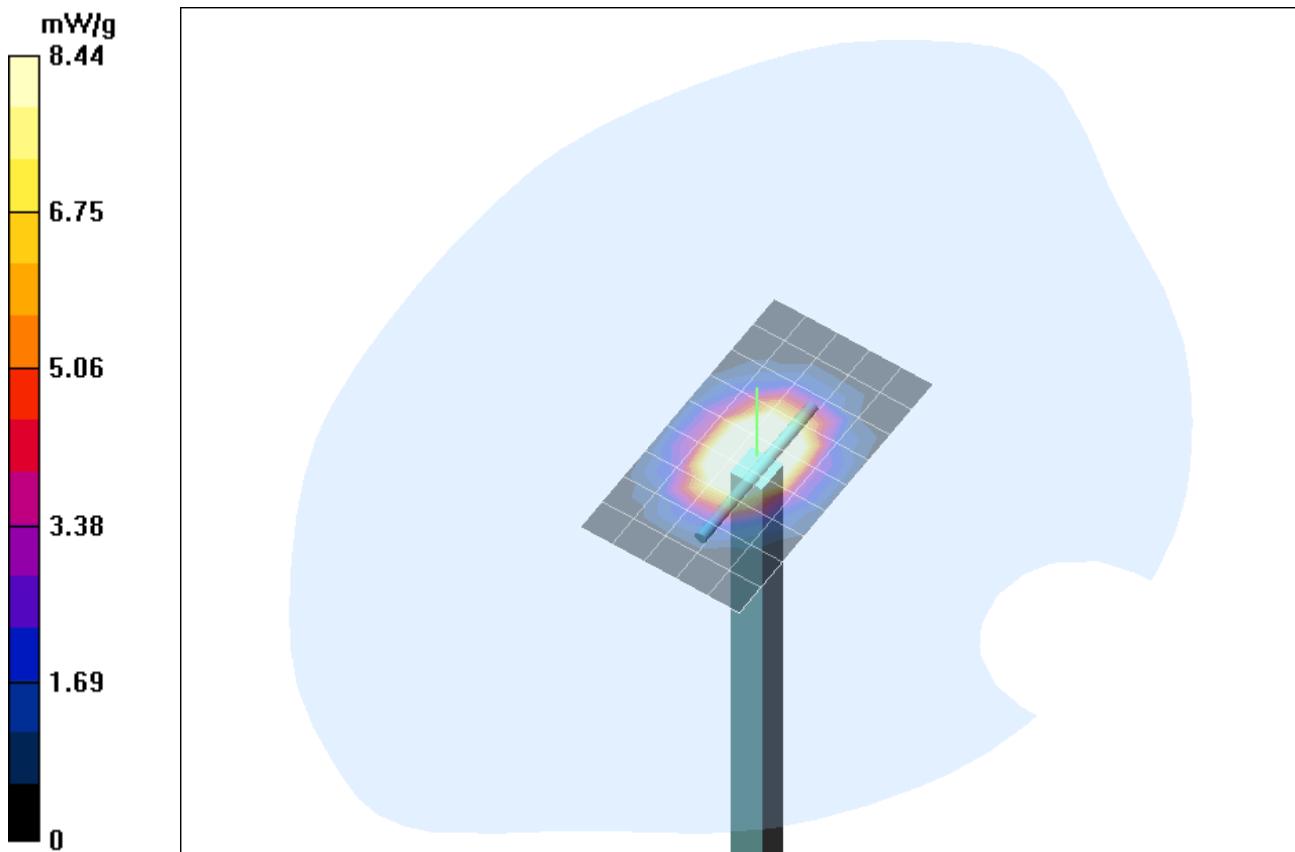
The results have been normalized to 1W (forward power) into the dipole.

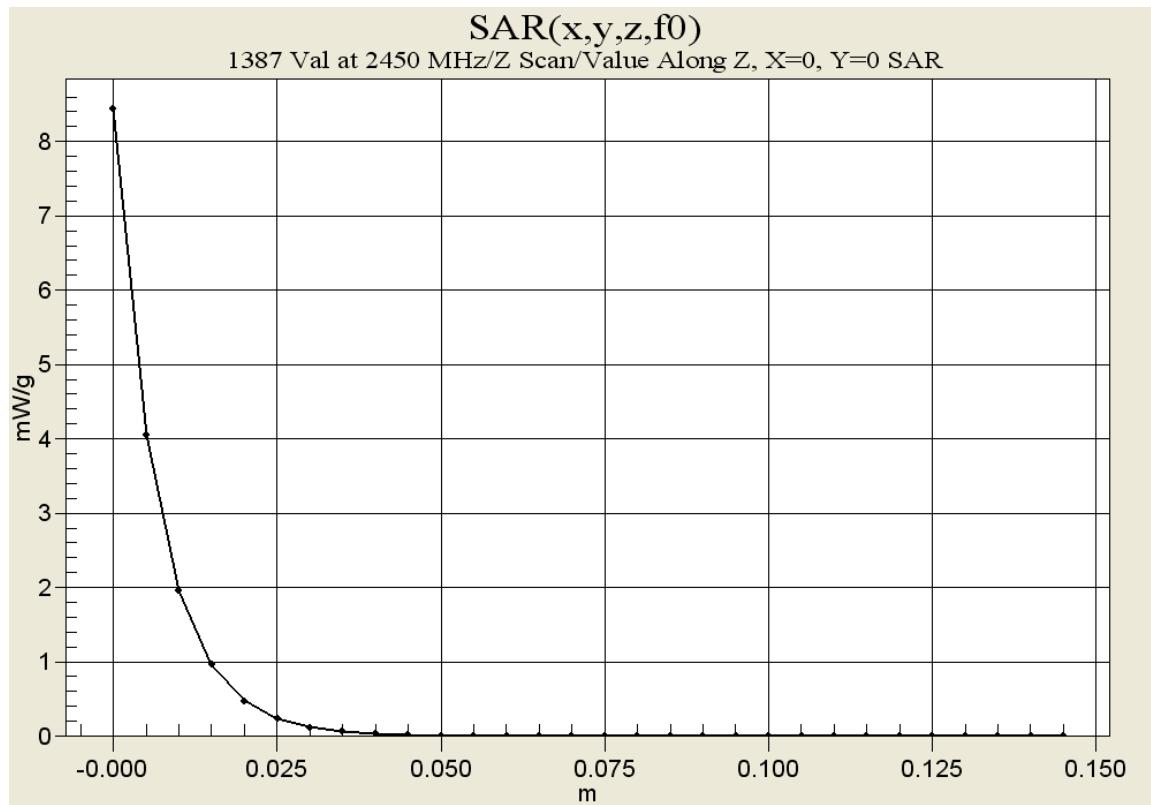
Averaged over 1cm (1g) of tissue: 55.64 mW/g

Averaged over 10cm (10g) of tissue: 25.00 mW/g

Test Date: 09/17/03

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:150


Ambient Temp: 22.2C; Fluid Temp: 23.8C
Barometric Pressure: 101.9 kPa; Humidity: 52%


Communication System: CW
Frequency: 2450 MHz; Duty Cycle: 1:1
Medium: HSL2450 ($\sigma = 1.88 \text{ mho/m}$, $\epsilon_r = 37.3$, $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 - SN1387; ConvF(5, 5, 5); Calibrated: 26/02/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 19/05/2003
- Phantom: SAM front; Type: SAM 4.0; Serial: 1033
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

Probe SN1387 Validation at 2450 MHz/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Probe SN1387 Validation at 2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Peak SAR (extrapolated) = 29.5 W/kg
SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.27 mW/g
Reference Value = 96.7 V/m
Power Drift = -0.08 dB

2450MHz System Validation

Measured Fluid Dielectric Parameters (Brain)

September 17, 2003

Frequency	e'	e"
2.350000000 GHz	37.7457	13.5170
2.360000000 GHz	37.7101	13.5534
2.370000000 GHz	37.6951	13.5903
2.380000000 GHz	37.6613	13.6228
2.390000000 GHz	37.6411	13.6368
2.400000000 GHz	37.5853	13.6598
2.410000000 GHz	37.5236	13.6742
2.420000000 GHz	37.4573	13.7091
2.430000000 GHz	37.4063	13.7484
2.440000000 GHz	37.3419	13.7798
2.450000000 GHz	37.2875	13.8226
2.460000000 GHz	37.2447	13.8618
2.470000000 GHz	37.2198	13.8951
2.480000000 GHz	37.1940	13.9293
2.490000000 GHz	37.1679	13.9423
2.500000000 GHz	37.1333	13.9571
2.510000000 GHz	37.0990	13.9745
2.520000000 GHz	37.0410	14.0116
2.530000000 GHz	36.9938	14.0375
2.540000000 GHz	36.9185	14.0546
2.550000000 GHz	36.8657	14.0912

APPENDIX D - PROBE CALIBRATION

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Celltech Labs

CALIBRATION CERTIFICATE

Object(s) ET3DV6 - SN: 1590

Calibration procedure(s) QA CAL-01.v2
Calibration procedure for dosimetric E-field probes

Calibration date: May 15, 2003

Condition of the calibrated item In Tolerance (according to the specific calibration document)

This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
RF generator HP 8884C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sensor HP 8481A	MY41062180	18-Sep-02 (Agilent, No. 20020918)	Sep-03
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04
Network Analyzer HP 8753E	US38432426	3-May-00 (Agilent, No. 8702K054602)	In house check: May 03
Fluke Process Calibrator Type 702	SN: 6295803	3-Sep-01 (ELCAL, No.2360)	Sep-03

Calibrated by: Name: Nico Verberk Function: Technician Signature:

Approved by: Name: Katica Polovic Function: Laboratory Director Signature:

Date issued: May 15, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Probe ET3DV6

SN:1590

Manufactured:	March 19, 2001
Last calibration:	April 26, 2002
Recalibrated:	May 15, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1590

Sensitivity in Free Space

NormX	1.76 $\mu\text{V}/(\text{V}/\text{m})^2$
NormY	1.91 $\mu\text{V}/(\text{V}/\text{m})^2$
NormZ	1.66 $\mu\text{V}/(\text{V}/\text{m})^2$

Diode Compression

DCP X	92	mV
DCP Y	92	mV
DCP Z	92	mV

Sensitivity in Tissue Simulating Liquid

Head 900 MHz $\epsilon_r = 41.5 \pm 5\%$ $\sigma = 0.97 \pm 5\% \text{ mho}/\text{m}$

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X	7.0 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	7.0 $\pm 9.5\%$ (k=2)	Alpha 0.33
ConvF Z	7.0 $\pm 9.5\%$ (k=2)	Depth 2.56

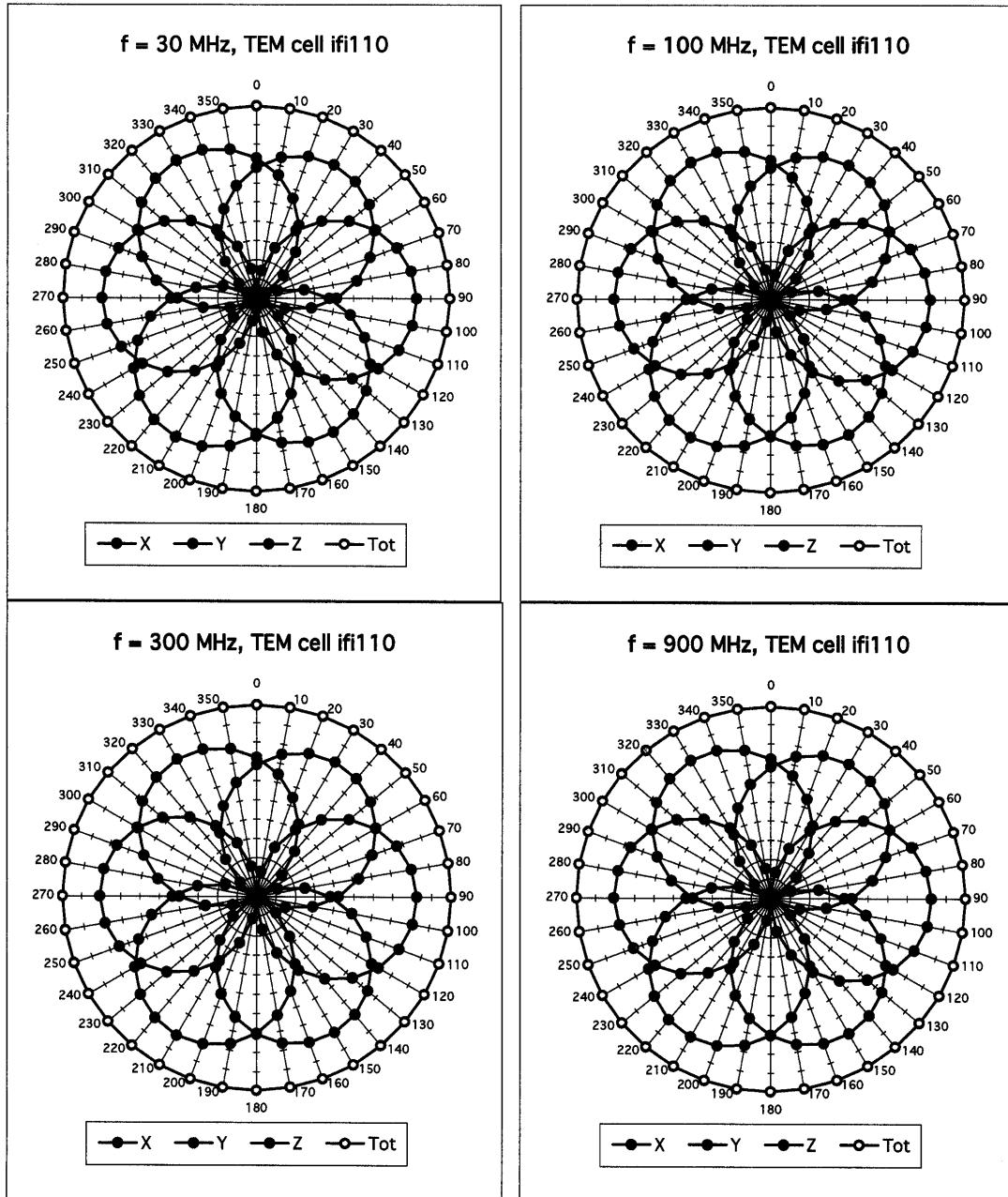
Head 1800 MHz $\epsilon_r = 40.0 \pm 5\%$ $\sigma = 1.40 \pm 5\% \text{ mho}/\text{m}$

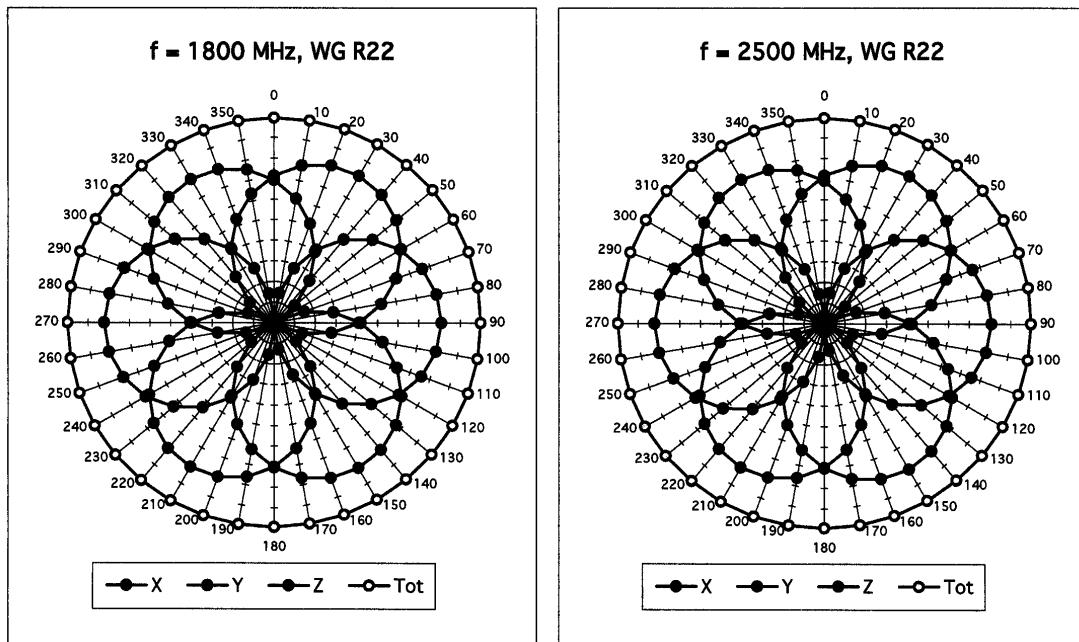
Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X	5.5 $\pm 9.5\%$ (k=2)	Boundary effect:
ConvF Y	5.5 $\pm 9.5\%$ (k=2)	Alpha 0.44
ConvF Z	5.5 $\pm 9.5\%$ (k=2)	Depth 2.69

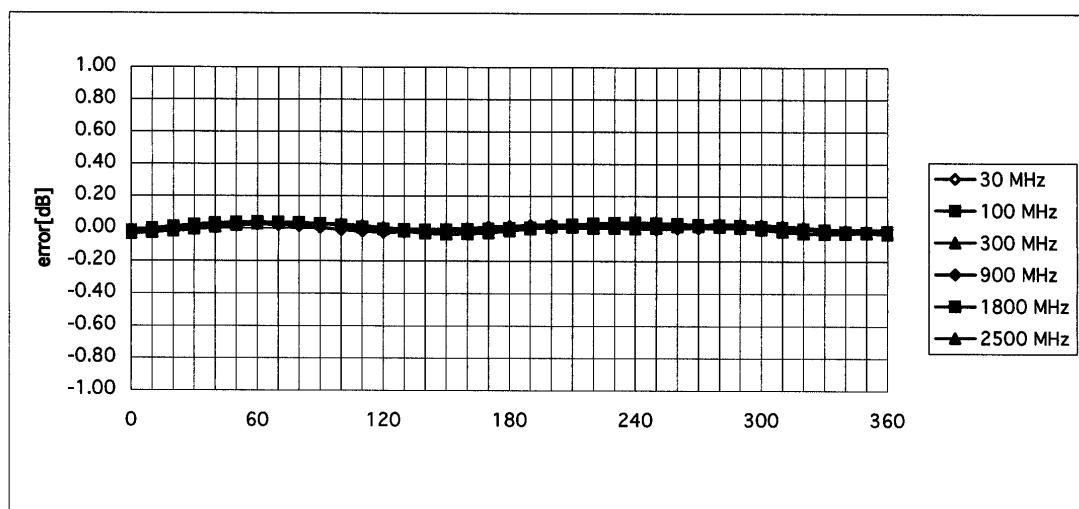
Boundary Effect

Head 900 MHz Typical SAR gradient: 5 % per mm


Probe Tip to Boundary	1 mm	2 mm
SAR _{be} [%] Without Correction Algorithm	8.7	5.0
SAR _{be} [%] With Correction Algorithm	0.3	0.5

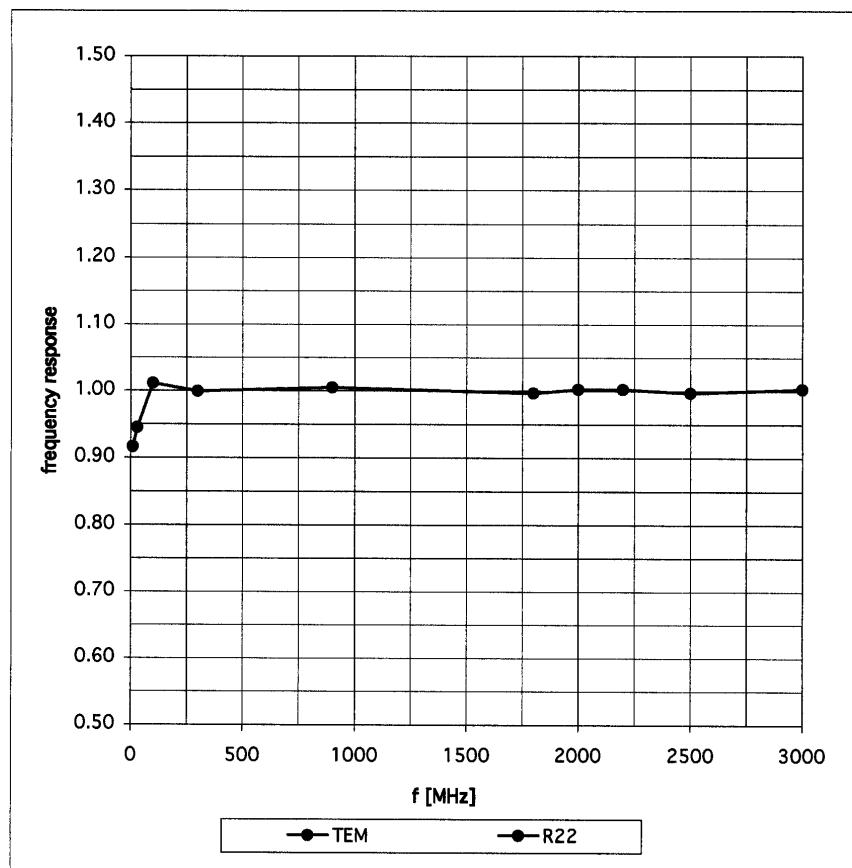

Head 1800 MHz Typical SAR gradient: 10 % per mm

Probe Tip to Boundary	1 mm	2 mm
SAR _{be} [%] Without Correction Algorithm	12.3	8.5
SAR _{be} [%] With Correction Algorithm	0.2	0.1

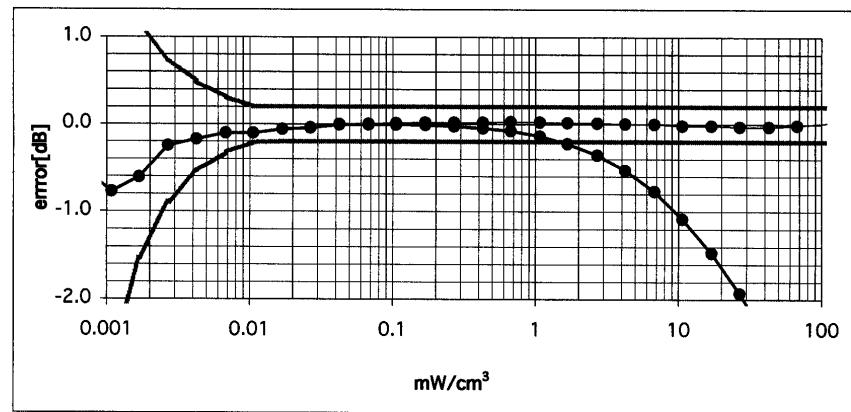
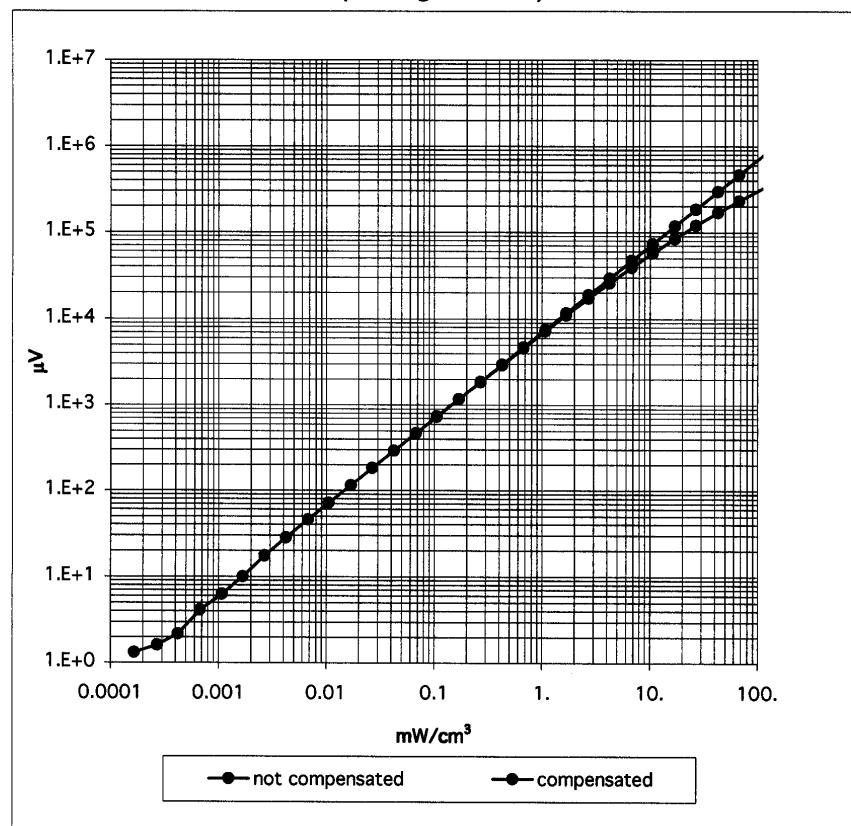

Sensor Offset

Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.4 \pm 0.2	mm

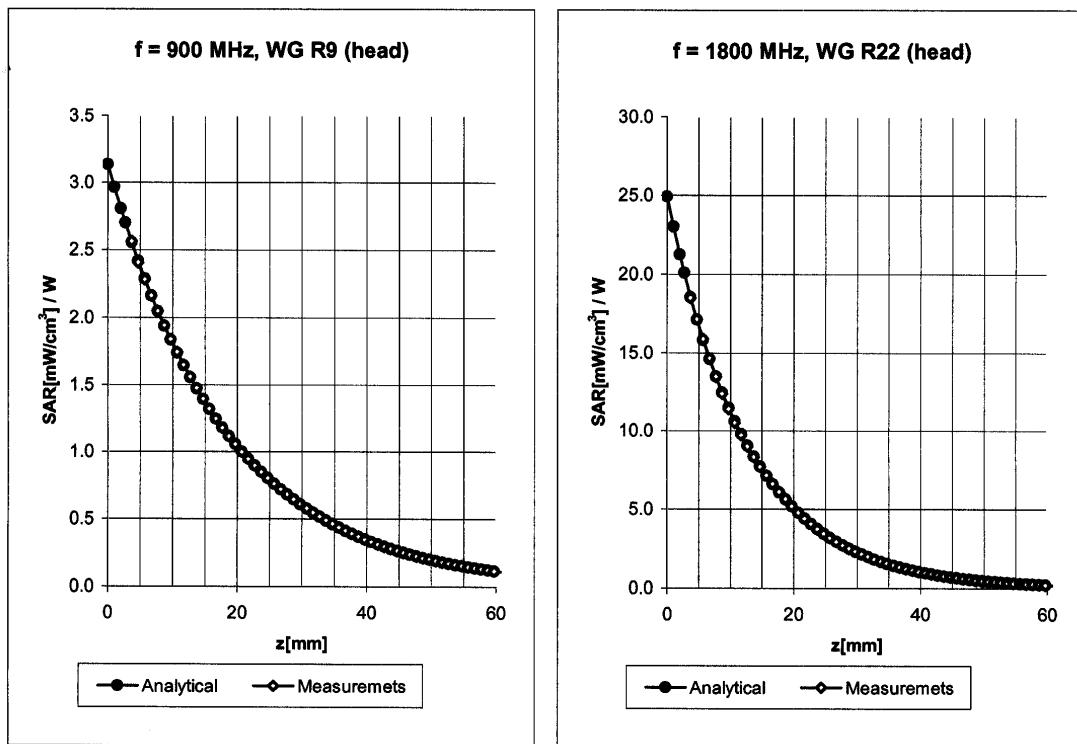
Receiving Pattern (ϕ), $\theta = 0^\circ$



Isotropy Error (ϕ), $\theta = 0^\circ$



Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)



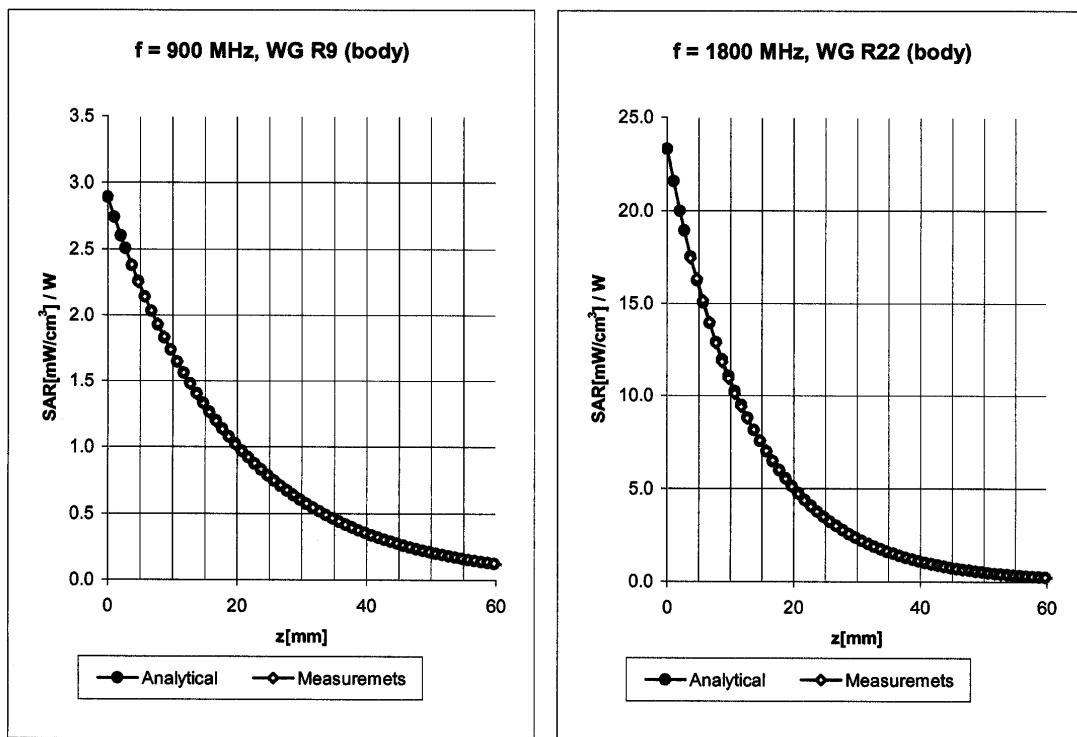
Dynamic Range f(SAR_{brain})

(Waveguide R22)

Conversion Factor Assessment

Head 900 MHz $\epsilon_r = 41.5 \pm 5\%$ $\sigma = 0.97 \pm 5\% \text{ mho/m}$

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X


ConvF X	7.0 ± 9.5% (k=2)	Boundary effect:	
ConvF Y	7.0 ± 9.5% (k=2)	Alpha	0.33
ConvF Z	7.0 ± 9.5% (k=2)	Depth	2.56

Head 1800 MHz $\epsilon_r = 40.0 \pm 5\%$ $\sigma = 1.40 \pm 5\% \text{ mho/m}$

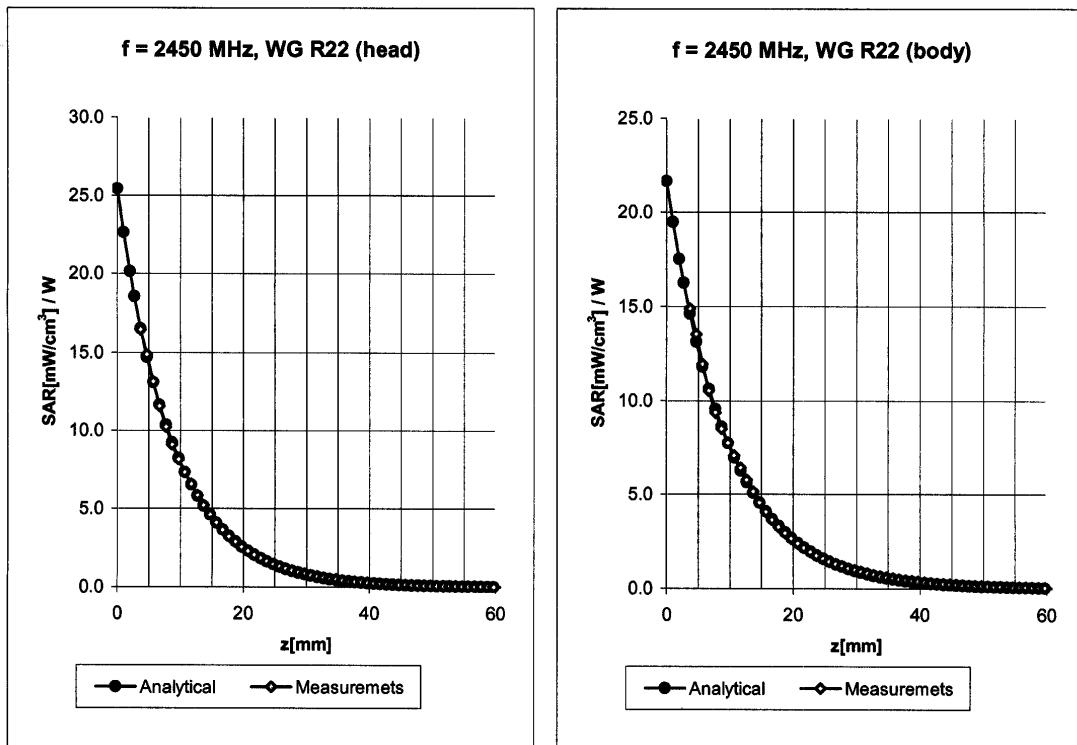
Valid for f=1710-1910 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X	5.5 \pm 9.5% (k=2)	Boundary effect:	
ConvF Y	5.5 \pm 9.5% (k=2)	Alpha	0.44
ConvF Z	5.5 \pm 9.5% (k=2)	Depth	2.69

Conversion Factor Assessment

Body 900 MHz $\epsilon_r = 55.0 \pm 5\%$ $\sigma = 1.05 \pm 5\% \text{ mho/m}$

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C


ConvF X	6.8 \pm 9.5% (k=2)	Boundary effect:	
ConvF Y	6.8 \pm 9.5% (k=2)	Alpha	0.34
ConvF Z	6.8 \pm 9.5% (k=2)	Depth	2.61

$$\text{Body} \quad 1800 \text{ MHz} \quad \epsilon_r = 53.3 \pm 5\% \quad \sigma = 1.52 \pm 5\% \text{ mho/m}$$

Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

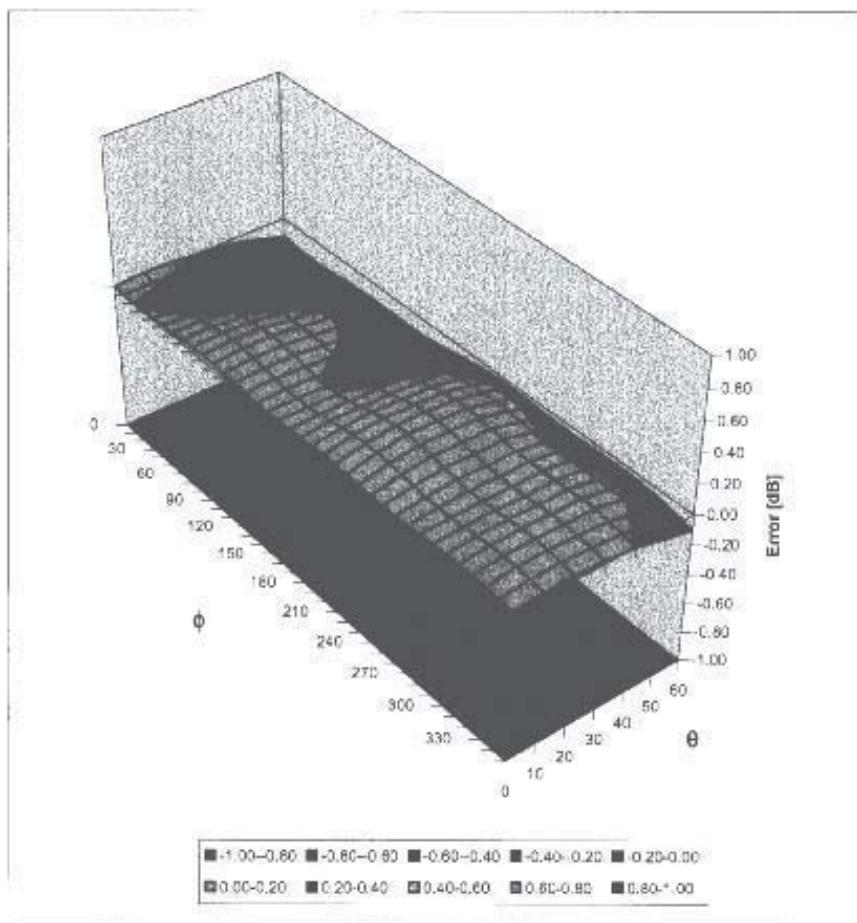
ConvF X	5.0 \pm 9.5% (k=2)	Boundary effect:	
ConvF Y	5.0 \pm 9.5% (k=2)	Alpha	0.52
ConvF Z	5.0 \pm 9.5% (k=2)	Depth	2.69

Conversion Factor Assessment

Head 2450 MHz $\epsilon_r = 39.2 \pm 5\%$ $\sigma = 1.80 \pm 5\% \text{ mho/m}$

Valid for $f=2400-2500 \text{ MHz}$ with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X	$5.0 \pm 8.9\% \text{ (k=2)}$	Boundary effect:	
ConvF Y	$5.0 \pm 8.9\% \text{ (k=2)}$	Alpha	0.88
ConvF Z	$5.0 \pm 8.9\% \text{ (k=2)}$	Depth	1.92


Body 2450 MHz $\epsilon_r = 52.7 \pm 5\%$ $\sigma = 1.95 \pm 5\% \text{ mho/m}$

Valid for $f=2400-2500 \text{ MHz}$ with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X	$4.4 \pm 8.9\% \text{ (k=2)}$	Boundary effect:	
ConvF Y	$4.4 \pm 8.9\% \text{ (k=2)}$	Alpha	0.90
ConvF Z	$4.4 \pm 8.9\% \text{ (k=2)}$	Depth	1.87

Deviation from Isotropy in HSL

Error (θ, ϕ), $f = 900$ MHz

Additional Conversion Factors for Dosimetric E-Field Probe

Type:

ET3DV6

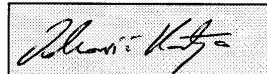
Serial Number:

1590

Place of Assessment:

Zurich

Date of Assessment:


May 19, 2003

Probe Calibration Date:

May 15, 2003

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ET3DV6 SN:1590Conversion factor (\pm standard deviation)

150 MHz	ConvF	9.6 \pm 8%	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\%$ mho/m (head tissue)
300 MHz	ConvF	8.3 \pm 8%	$\epsilon_r = 45.3 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
450 MHz	ConvF	7.9 \pm 8%	$\epsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
150 MHz	ConvF	9.2 \pm 8%	$\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\%$ mho/m (body tissue)
450 MHz	ConvF	8.1 \pm 8%	$\epsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\%$ mho/m (body tissue)

APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS

2450 MHz System Performance Check

Measured Fluid Dielectric Parameters (Brain)

February 20, 2004

Frequency	e'	e"
2.350000000 GHz	37.9564	13.5733
2.360000000 GHz	37.9293	13.6133
2.370000000 GHz	37.8968	13.6522
2.380000000 GHz	37.8587	13.6654
2.390000000 GHz	37.8176	13.6840
2.400000000 GHz	37.7743	13.6883
2.410000000 GHz	37.7078	13.7141
2.420000000 GHz	37.6747	13.7464
2.430000000 GHz	37.6123	13.7887
2.440000000 GHz	37.5883	13.8333
2.450000000 GHz	37.5385	13.8853
2.460000000 GHz	37.5020	13.9323
2.470000000 GHz	37.4748	13.9828
2.480000000 GHz	37.4492	14.0105
2.490000000 GHz	37.4232	14.0334
2.500000000 GHz	37.3801	14.0377
2.510000000 GHz	37.3234	14.0509
2.520000000 GHz	37.2695	14.0731
2.530000000 GHz	37.1892	14.0984
2.540000000 GHz	37.1465	14.1419
2.550000000 GHz	37.1045	14.1851

2450 MHz DUT Evaluation (Body)

Measured Fluid Dielectric Parameters (Muscle)

February 20, 2004

Frequency	e'	e"
2.350000000 GHz	50.6288	14.2799
2.360000000 GHz	50.5667	14.2824
2.370000000 GHz	50.5367	14.3236
2.380000000 GHz	50.5015	14.3715
2.390000000 GHz	50.4489	14.4584
2.400000000 GHz	50.4192	14.5479
2.410000000 GHz	50.3932	14.6267
2.420000000 GHz	50.3725	14.6962
2.430000000 GHz	50.3675	14.7440
2.440000000 GHz	50.3494	14.7644
2.450000000 GHz	50.3064	14.7718
2.460000000 GHz	50.2771	14.7596
2.470000000 GHz	50.2380	14.7564
2.480000000 GHz	50.2044	14.7834
2.490000000 GHz	50.1382	14.8037
2.500000000 GHz	50.0656	14.8620
2.510000000 GHz	50.0280	14.9179
2.520000000 GHz	49.9706	14.9919
2.530000000 GHz	49.9360	15.0859
2.540000000 GHz	49.9046	15.1401
2.550000000 GHz	49.8885	15.1760

APPENDIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9

(*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

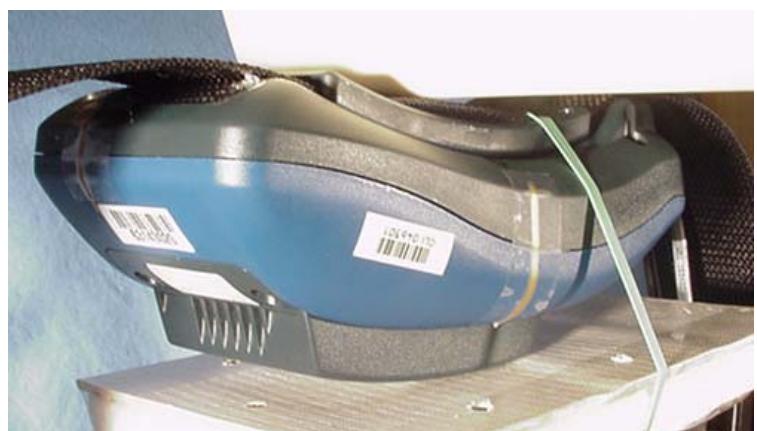
Date 18.11.2001

Signature / Stamp

Schmid & Partner
Engineering AG

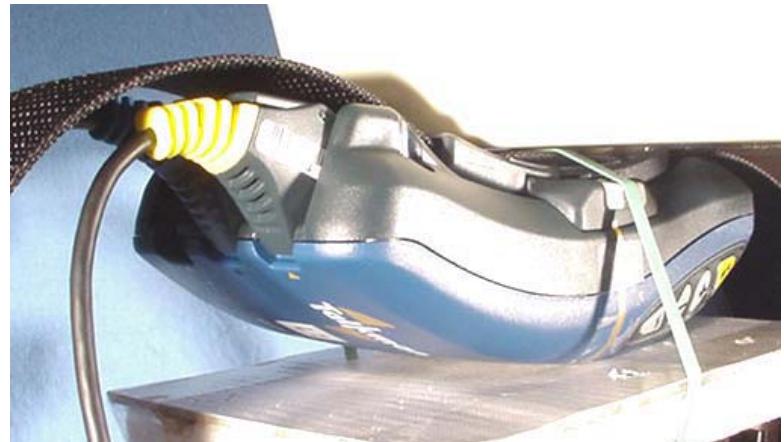
Zeughausstrasse 43, CH-8004 Zurich
Tel. +41 1 245 97 00, Fax +41 1 245 97 79

APPENDIX G - SAR TEST SETUP PHOTOGRAPHS

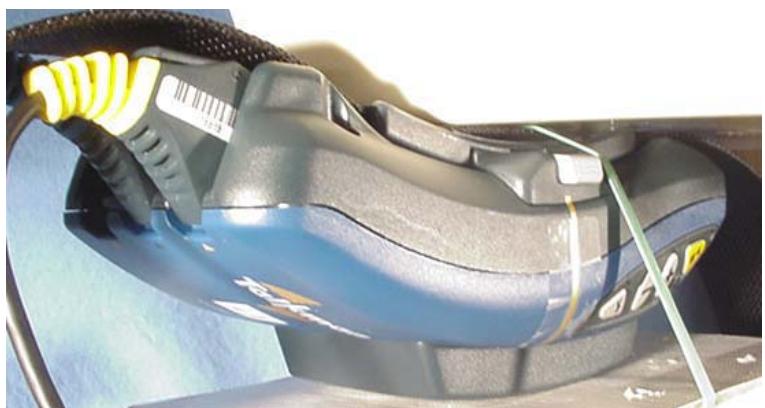


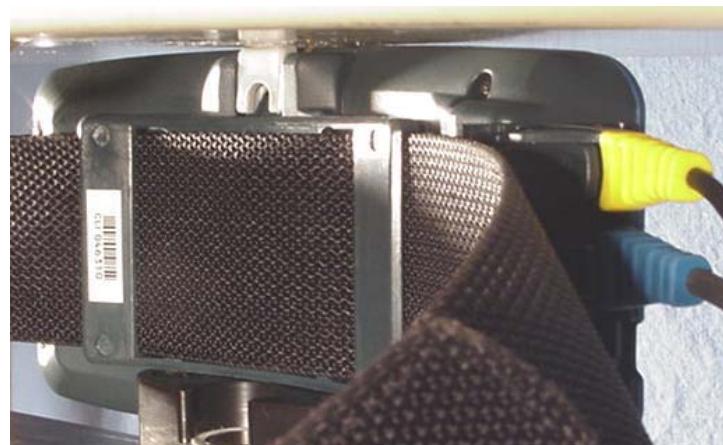
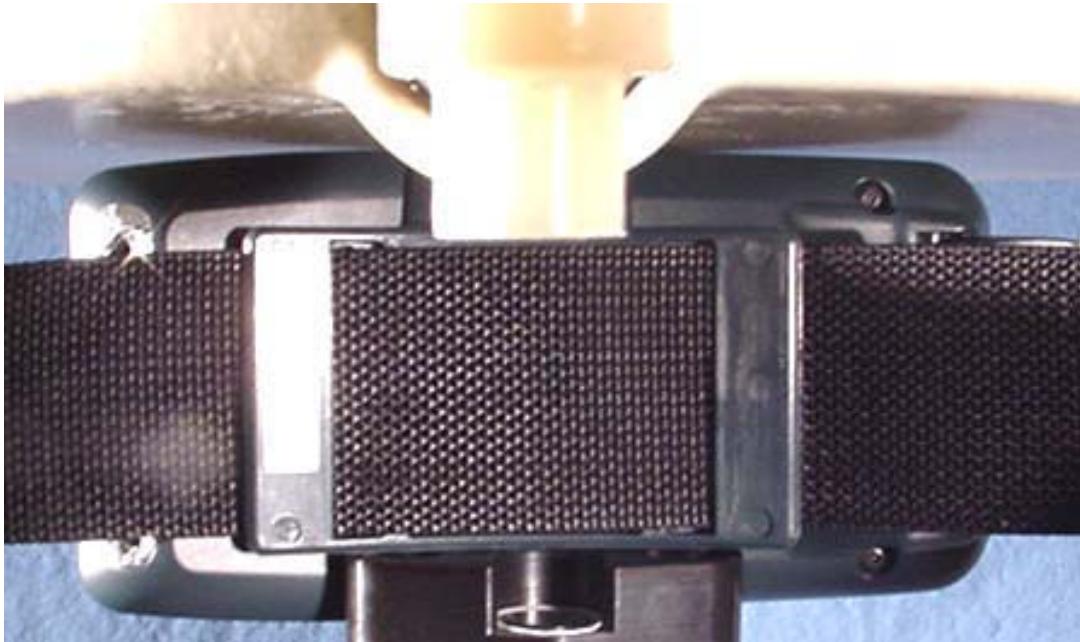
SAR TEST SETUP PHOTOGRAPHS

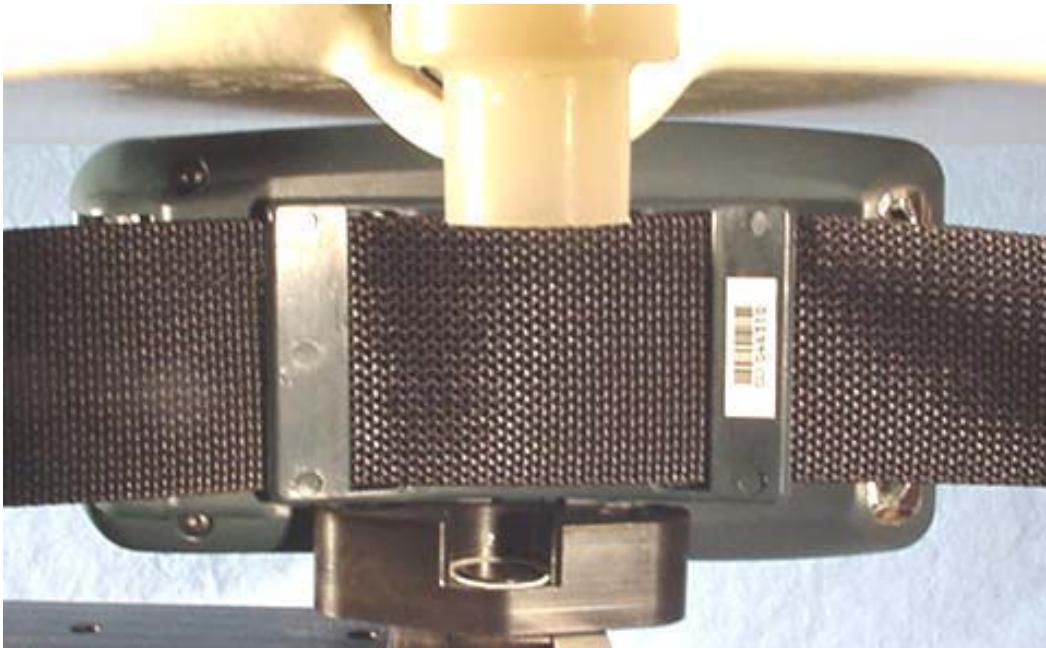
Belt-Clip Side of DUT with 1650mAh Li-ion Battery (P/N: 370016)
Right Section (Accessory Plug-in/Antenna Side) Touching Planar Phantom



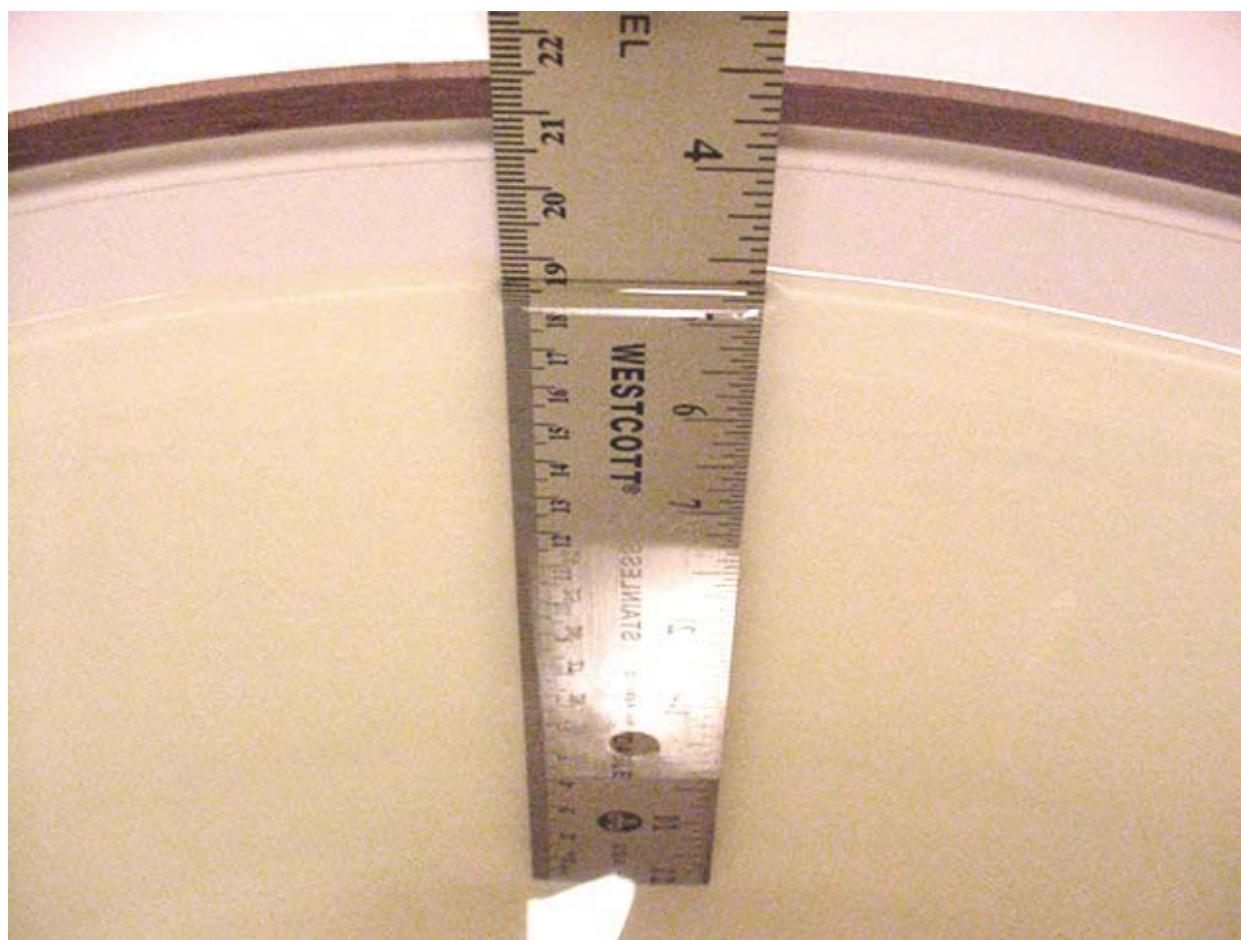
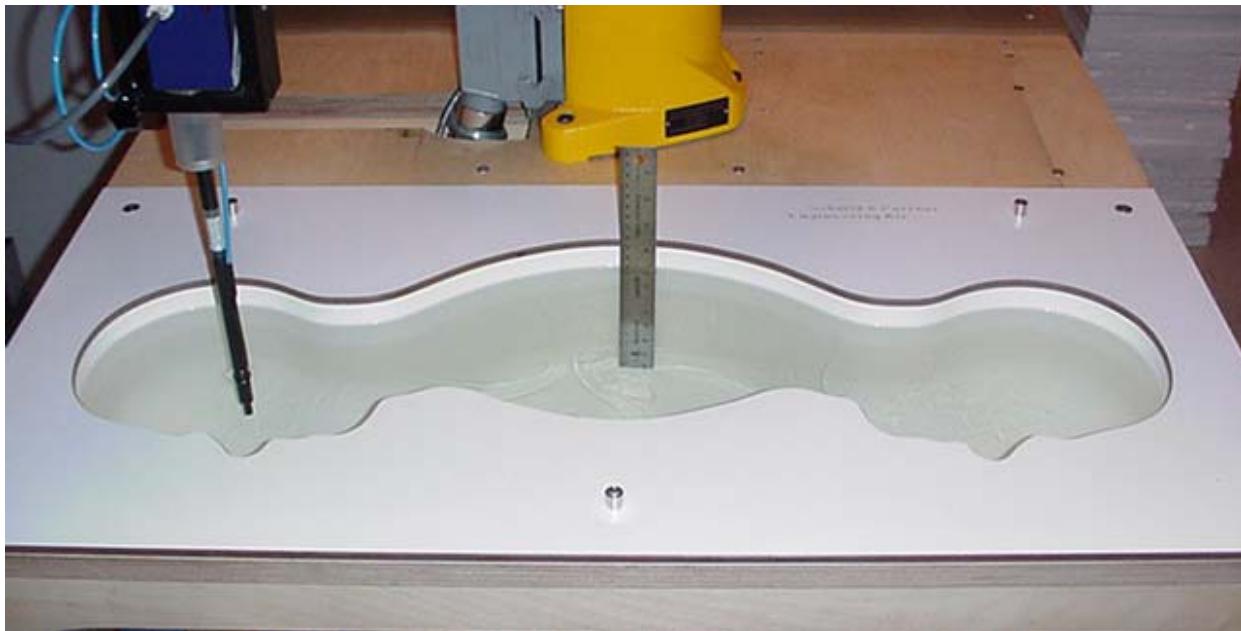
SAR TEST SETUP PHOTOGRAPHS


Belt-Clip Side of DUT with 3300mAh Li-ion Battery P/N: 370017
Right Section (Accessory Plug-in/Antenna Side) Touching Planar Phantom



SAR TEST SETUP PHOTOGRAPHS
Belt-Clip Side of DUT with 1650mAh Li-ion Battery (P/N: 370016)
Left Section (Battery Latch end) Touching Planar Phantom


SAR TEST SETUP PHOTOGRAPHS
Belt-Clip Side of DUT with 3300mAh Li-ion Battery (P/N: 370017)
Left Section (Battery Latch end) Touching Planar Phantom

SAR TEST SETUP PHOTOGRAPHS
Top Side of DUT (Function Button side) Touching Planar Phantom

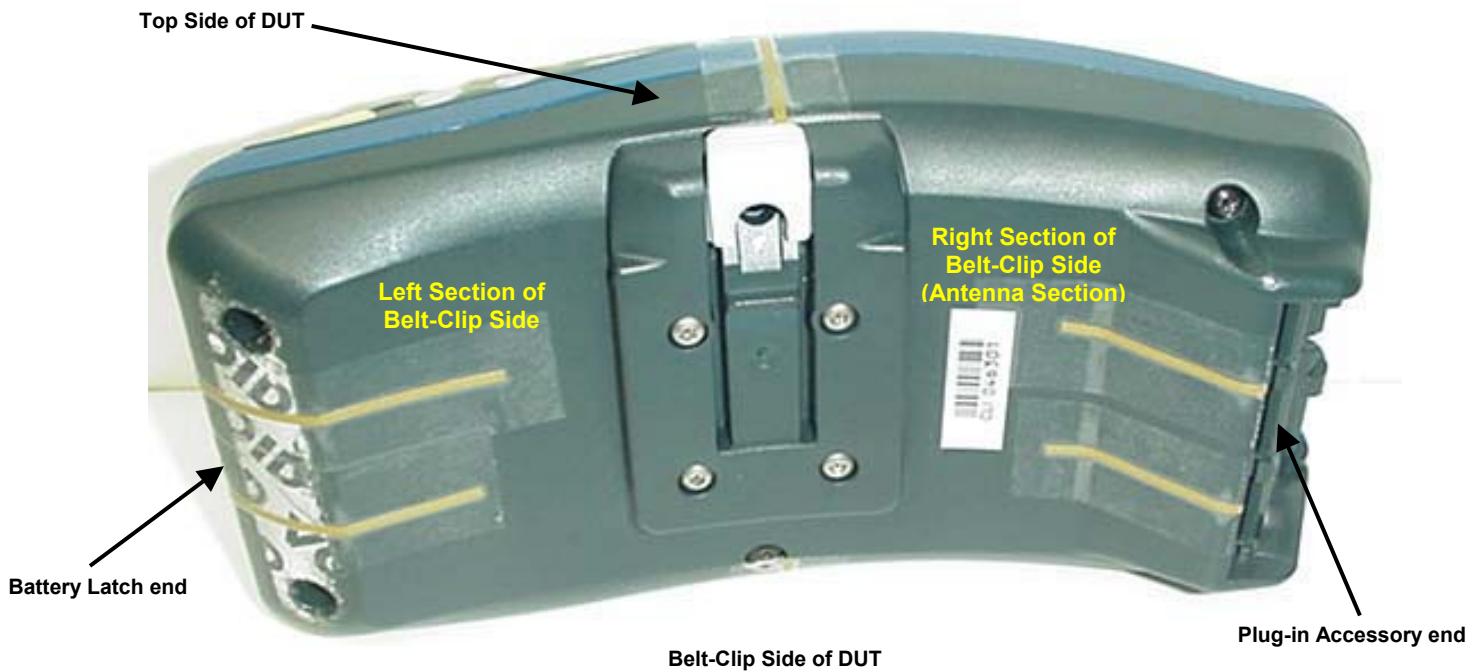


SAR TEST SETUP PHOTOGRAPHS
Bottom Side of DUT Touching Planar Phantom

SAR TEST SETUP PHOTOGRAPHS
Comparison SAR Test using Head Section of Phantom (Right Head Section)

SAR TEST SETUP PHOTOGRAPHS
Fluid Depth (≥ 15 cm)

DUT PHOTOGRAPHS

Front Side of DUT without Battery


Battery Latch end

Front Side of DUT with 7.2V Lithium-Ion Battery (1650mAh)

Front Side of DUT with 7.2V Lithium-Ion Battery (3300mAh)

DUT PHOTOGRAPHS

DUT PHOTOGRAPHS

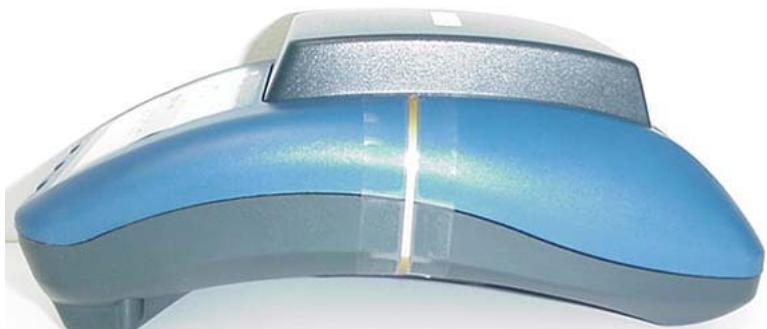
DUT with Belt Accessory

DUT with Belt Accessory

Front of Terminal Cover Accessory

Front of Terminal Cover Accessory

DUT PHOTOGRAPHS


Top Side of DUT with 7.2V 1650mAh Lithium-ion Battery

Top Side of DUT with 7.2V 3300mAh Lithium-Ion Battery

Bottom Side of DUT with 7.2V 1650mAh Lithium-ion Battery

Bottom Side of DUT with 7.2V 3300mAh Lithium-Ion Battery

DUT PHOTOGRAPHS

DUT with Headset-Microphone & Scanner Accessories

