

Engineering Solutions & Electromagnetic Compatibility Services

**Certification Application Report
FCC Part 15.247 & Industry Canada RSS-210**

Test Lab:		Applicant:	
Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 E-Mail: atcbinfo@rheintech.com	Phone: 703-689-0368 Fax: 703-689-2056 www.rheintech.com	Vocollect, Inc. 703 Rodi Road Pittsburgh, PA 15235 Contact: Joe Lesik	Phone: 412-349-2580 Fax: 412-829-1063
FCC/IC ID	MQO-TAP900-01 2570A-TAP90001	Test Report Date	August 1, 2013
Platform	N/A	RTL Work Order #	2013095
Model #'s	TAP910-01, TAP920-01, TAP930-01	RTL Quote #	QRTL13-095A
American National Standard Institute:	ANSI C63.4-2003 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz		
FCC Classification:	DSS – Part 15 Spread Spectrum Transmitter		
FCC Rule Part(s):	FCC Rules Part 15.247: Operation within the bands 920-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz Direct Sequence System (10-01-12)		
Industry Canada:	RSS-210 Issue 8: Low Power License-Exempt Communications Devices RSS-Gen Issue 3: General Requirements and Information for the Certification of Radio Apparatus		
Digital Interface Information	Digital Interface was found to be compliant		
Frequency Range (MHz)	Output Power (W)	Frequency Tolerance	Emission Designator
2402-2480	0.003	N/A	1M12FXD

I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this test report. No modifications were made to the equipment during testing in order to achieve compliance with these standards. Furthermore, there was no deviation from, additions to, or exclusions from, the applicable parts of FCC Part 2, FCC Part 15, ANSI C63.4, and Industry Canada RSS-210.

Signature:

Date: August 1, 2013

Typed/Printed Name: Desmond A. Fraser

Position: President

These tests are accredited and meet the requirements of ISO/IEC 17025 as verified by ANSI-ASQ National Accreditation Board/ACCLASS. Refer to certificate and scope of accreditation AT-1445.

This report may not be reproduced, except in full, without the written approval of Rhein Tech Laboratories, Inc. and Vocollect, Inc. The test results relate only to the item(s) tested.

Table of Contents

1	General Information	5
1.1	Scope	5
1.2	Description of EUT	5
1.3	Test Facility	5
1.4	Related Submittal(s)/Grant(s)	5
1.5	Modifications	5
2	Test Information	6
2.1	Description of Test Modes	6
2.2	Exercising the EUT	6
2.3	Test Result Summary	6
2.4	Test System Details	7
2.5	Configuration of Tested System	8
3	Peak Output Power – FCC 15.247(b)(1); RSS-210 A8.4(4)	9
3.1	Power Output Test Procedure	9
3.2	Power Output Test Data	9
4	Compliance with the Band Edge – FCC 15.247(d); RSS-210 2.2	10
4.1	Band Edge Test Procedure	10
4.2	Restricted Band Edge Test Results	11
4.2.1	Calculation of Lower Band Edge	11
4.2.2	Calculation of Upper Band Edge	12
5	Antenna Conducted Spurious Emissions – FCC 15.247(d); RSS-Gen	13
5.1	Antenna Conducted Spurious Emissions Test Procedures	13
5.2	Antenna Conducted Spurious Emissions Test Results	13
6	20 dB Bandwidth – FCC 15.247(a)(1)(ii); RSS-210 A8.1(a)	16
6.1	20 dB Bandwidth Test Procedure	16
6.2	20 dB Modulated Bandwidth Test Data	16
6.3	20 dB Bandwidth Plots	17
7	Carrier Frequency Separation – FCC 15.247(a)(1); IC RSS-210 A8.1(b)	20
7.1	Carrier Frequency Separation Test Procedure	20
7.2	Carrier Frequency Separation Test Data	20
8	Hopping Characteristics – FCC 15.247(a)(1)(iii); IC RSS-210 A8.1(d)	22
8.1	Hopping Characteristics Test Procedure	22
8.2	Number of Hopping Frequencies	22
8.3	Average Time of Occupancy	24
9	Conducted Emissions Measurement Limits – FCC 15.207; RSS-Gen	26
9.1	Limits of Conducted Emissions Measurement	26
9.2	Conducted Emissions Measurement Test Procedure	26
9.3	Conducted Emissions Test Results	27
9.3.1	Conducted Emissions Transmit Center Channel FHSS/DSSS	27
10	Radiated Emissions – FCC 15.209; RSS-210 A8.5 and RSS-Gen	28
10.1	Limits of Radiated Emissions Measurement	28
10.2	Radiated Emissions Measurement Test Procedure	28
10.3	Radiated Emissions Test Results	30
10.3.1	Radiated Emissions Digital/Receiver Test Data	30
10.3.2	Radiated Emissions Harmonics/Spurious Test Data – Fixed Frequency	31
10.3.3	Radiated Emissions Harmonics/Spurious Test Data – Hopping	32
11	Conclusion	32

Figure Index

Figure 2-1: Configuration of System Under Test.....	8
---	---

Table Index

Table 2-1: Channels Tested for FHSS	6
Table 2-2: Test Result Summary – FCC Part 15, Subpart C (Section 15.247) – FHSS Bluetooth.....	6
Table 2-3: Equipment Under Test	7
Table 2-4: Support Equipment.....	7
Table 3-1: Power Output Test Equipment	9
Table 3-2: Power Output Test Data – FHSS Bluetooth.....	9
Table 4-1: Band Edge Test Equipment	10
Table 5-1: Antenna Conducted Spurious Test Equipment	15
Table 6-1: 20 dB Bandwidth Test Equipment.....	16
Table 6-2: 20 dB Modulated Bandwidth Test Data	16
Table 7-1: Carrier Frequency Separation Test Equipment	20
Table 8-1: Hopping Characteristics Test Equipment.....	22
Table 8-2: Average Time of Occupancy Test Equipment	24
Table 9-1: Conducted Emissions Test Equipment	26
Table 10-1: Radiated Emissions Test Equipment	29
Table 10-2: Digital/Receiver Radiated Emissions	30
Table 10-3: Radiated Emissions Harmonics/Spurious Channel 0 (TX Frequency 2402 MHz).....	31
Table 10-4: Radiated Emissions Harmonics/Spurious Channel 39 (TX Frequency 2441 MHz).....	31
Table 10-5: Radiated Emissions Harmonics/Spurious Channel 78 (TX Frequency 2480 MHz).....	31
Table 10-6: Radiated Emissions Harmonics/Spurious Hopping Mode	32

Plot Index

Plot 4-1: Lower Band Edge: Channel 0 (TX Frequency 2402 MHz)	11
Plot 4-2: Upper Band Edge: Channel 78 (TX Frequency 2480 MHz)	12
Plot 5-1: Antenna Conducted Spurious Emissions (2402 MHz)	13
Plot 5-2: Antenna Conducted Spurious Emissions (2441 MHz)	14
Plot 5-3: Antenna Conducted Spurious Emissions (2480 MHz)	15
Plot 6-1: 20 dB Bandwidth Channel 0.....	17
Plot 6-2: 20 dB Bandwidth Channel 39.....	18
Plot 6-3: 20 dB Bandwidth Channel 78.....	19
Plot 7-1: Carrier Frequency Separation - Bluetooth	20
Plot 8-1: Number of Hopping Frequencies	22
Plot 8-2: Time of Occupancy (Dwell Time)	24
Plot 8-3: Time of Occupancy (Dwell Time 5 Second Sweep).....	25
Plot 9-1: Conducted Emissions Transmit Center Channel - Neutral Side.....	27
Plot 9-2: Conducted Emissions Transmit Center Channel - Hot Side.....	27

Appendix Index

Appendix A:	RF Exposure Compliance	33
Appendix B:	Agency Authorization Letter	34
Appendix C:	FCC Confidentiality Request Letter	35
Appendix D:	IC Letters	36
Appendix E:	IC Confidentiality Letter	37
Appendix F:	Canadian-Based Representative Attestation	38
Appendix G:	Label and Label Location	39
Appendix H:	Technical Operational Description	40
Appendix I:	Schematics	41
Appendix J:	Block Diagram	42
Appendix K:	Manual	43
Appendix L:	Test Photographs	44
Appendix M:	External Photographs	48
Appendix N:	Internal Photographs	49

Photograph Index

Photograph 1:	Unintentional Radiated Emissions Testing – Front View	44
Photograph 2:	Unintentional Radiated Emissions Testing – Back View	45
Photograph 3:	Conducted Emissions Testing – Front View	46
Photograph 4:	Conducted Emissions Testing – Back View	47

1 General Information

1.1 Scope

Applicable Standards:

- FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz.
- Industry Canada RSS-210: Low Power License-Exempt Communications Devices

1.2 Description of EUT

Equipment Under Test	A700 Series Terminal
Model #	TAP910-01, TAP920-01, TAP930-01
Power Supply	3.7VDC Lithium Ion Battery
Modulation Type	FHSS – Bluetooth
Transfer Rate	1, 2, 3 Mb/s
Frequency Range	2402–2480 MHz
Antenna Connector Type	Internal
Antenna Type	Internal

1.3 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4 2003).

1.4 Related Submittal(s)/Grant(s)

This is an original certification application for Vocollect, Inc. A700 Series Terminal, Model #'s: TAP910-01, TAP920-01, TAP930-01, FCC ID: MQO-TAP900-01, IC: 2570A-TAP90001. IC will require a family certification.

The three models are electrically identical from an intentional radiator standpoint. The differences in the three models are the end caps, and only impact digital unintentional emissions. RF exposure (SAR) has been addressed for all three models individually.

1.5 Modifications

No modifications were required for compliance.

2 Test Information

2.1 Description of Test Modes

In accordance with FCC 15.31(m), and because the EUT utilizes an operating band greater than 10 MHz, the following frequencies were tested:

Table 2-1: Channels Tested for FHSS

Channel	Frequency (MHz)
0	2402
39	2441
78	2480

2.2 Exercising the EUT

The EUT was tested in all three orthogonal planes in order to determine worst-case emissions. The EUT was provided with software to continuously transmit during testing. The carrier was also checked to verify that information was being transmitted. There were no deviations from the test standard(s) and/or methods. The test results reported relate only to the item tested.

2.3 Test Result Summary

Table 2-2: Test Result Summary – FCC Part 15, Subpart C (Section 15.247) – FHSS Bluetooth

Standard	Test	Pass/Fail or N/A
FCC 15.207	AC Power Conducted Emissions	Pass
FCC 15.209	Radiated Emissions	Pass
FCC 15.247(b)	Maximum Peak Power Output	Pass
FCC 15.247(d)	Antenna Conducted Spurious Emissions	Pass
FCC 15.247(d)	Band Edge Measurement	Pass
FCC 15.247(a)(1)	Carrier Frequency Separation	Pass
FCC 15.247(a)(1)(ii)	20 dB Bandwidth	Pass
FCC 15.247(a)(1)(iii)	Hopping Characteristics	Pass
FCC 15.247(a)(1)(iii)	Average Time of Occupancy	Pass

Rhein Tech Laboratories, Inc.
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

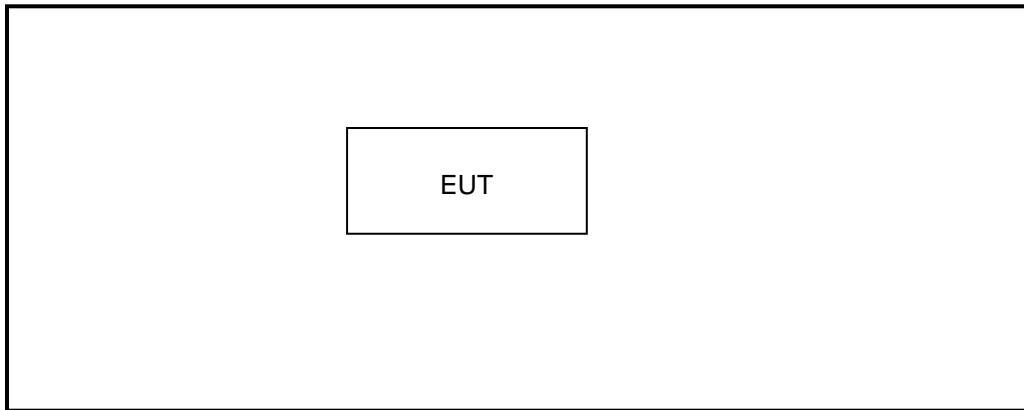
Client: Vocollect, Inc.
 Model #'s: TAP910-01, TAP920-01, TAP930-01
 Standards: FCC 15.247/IC RSS-210
 ID's: MQO-TAP900-01/ 2570A-TAP90001
 Report #: 2013095DSS

2.4 Test System Details

The test sample was received on June 17, 2013. The FCC identifiers for all applicable equipment, plus descriptions of all cables used in the tested system, are identified in the following tables.

Table 2-3: Equipment Under Test

Part	Manufacturer	Model	Serial Number	FCC ID	Cable Description	RTL Bar Code
A700 Series Terminal	Vocollect, Inc.	TAP-920-01	6213234004	MQO-TAP900-01	N/A	21212
A700 Series Terminal	Vocollect, Inc.	TAP-910-01	6213270002	MQO-TAP900-01	N/A	21214
A700 Series Terminal	Vocollect, Inc.	TAP-930-01	5913224022	MQO-TAP900-01	N/A	21222
3.7VDC Lithium Ion Battery	Vocollect, Inc.	BT-902 (730044)	351309002900	N/A	N/A	21213
3.7VDC Lithium Ion Battery	Vocollect, Inc.	BT-902 (730044)	351309005500	N/A	N/A	21239
3.7VDC Lithium Ion Battery	Vocollect, Inc.	BT-902 (730044)	351228002500	N/A	N/A	21236


Table 2-4: Support Equipment

Part	Manufacturer	Model	Serial Number	FCC ID	Cable Description	RTL Bar Code
Headset	Vocollect, Inc.	N/A	N/A	N/A	N/A	20904

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Vocollect, Inc.
Model #'s: TAP910-01, TAP920-01, TAP930-01
Standards: FCC 15.247/IC RSS-210
ID's: MQO-TAP900-01/ 2570A-TAP90001
Report #: 2013095DSS

2.5 Configuration of Tested System

Figure 2-1: Configuration of System Under Test

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Vocollect, Inc.
Model #'s: TAP910-01, TAP920-01, TAP930-01
Standards: FCC 15.247/IC RSS-210
ID's: MQO-TAP900-01/ 2570A-TAP90001
Report #: 2013095DSS

3 Peak Output Power – FCC 15.247(b)(1); RSS-210 A8.4(4)

3.1 Power Output Test Procedure

A conducted power measurement of the EUT was taken using an Agilent N9010A EXA Signal Analyzer with a 50 ohm attenuator.

Table 3-1: Power Output Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz-26.5 GHz)	MY51250846	4/16/14
900948	Weinschel Corporation	47-10-43	Attenuator DC-18 GHz 10 dB 50W	BH1487	3/18/14

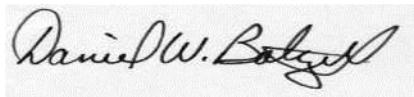

3.2 Power Output Test Data

Table 3-2: Power Output Test Data – FHSS Bluetooth

Channel	Frequency (MHz)	Peak Power Conducted Output (dBm)
0	2402	4.0
39	2441	4.0
78	2480	3.5

Test Personnel:

Daniel W. Baltzell
Test Engineer

Signature

July 26, 2013
Date of Test

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Vocollect, Inc.
Model #'s: TAP910-01, TAP920-01, TAP930-01
Standards: FCC 15.247/IC RSS-210
ID's: MQO-TAP900-01/ 2570A-TAP90001
Report #: 2013095DSS

4 Compliance with the Band Edge – FCC 15.247(d); RSS-210 2.2

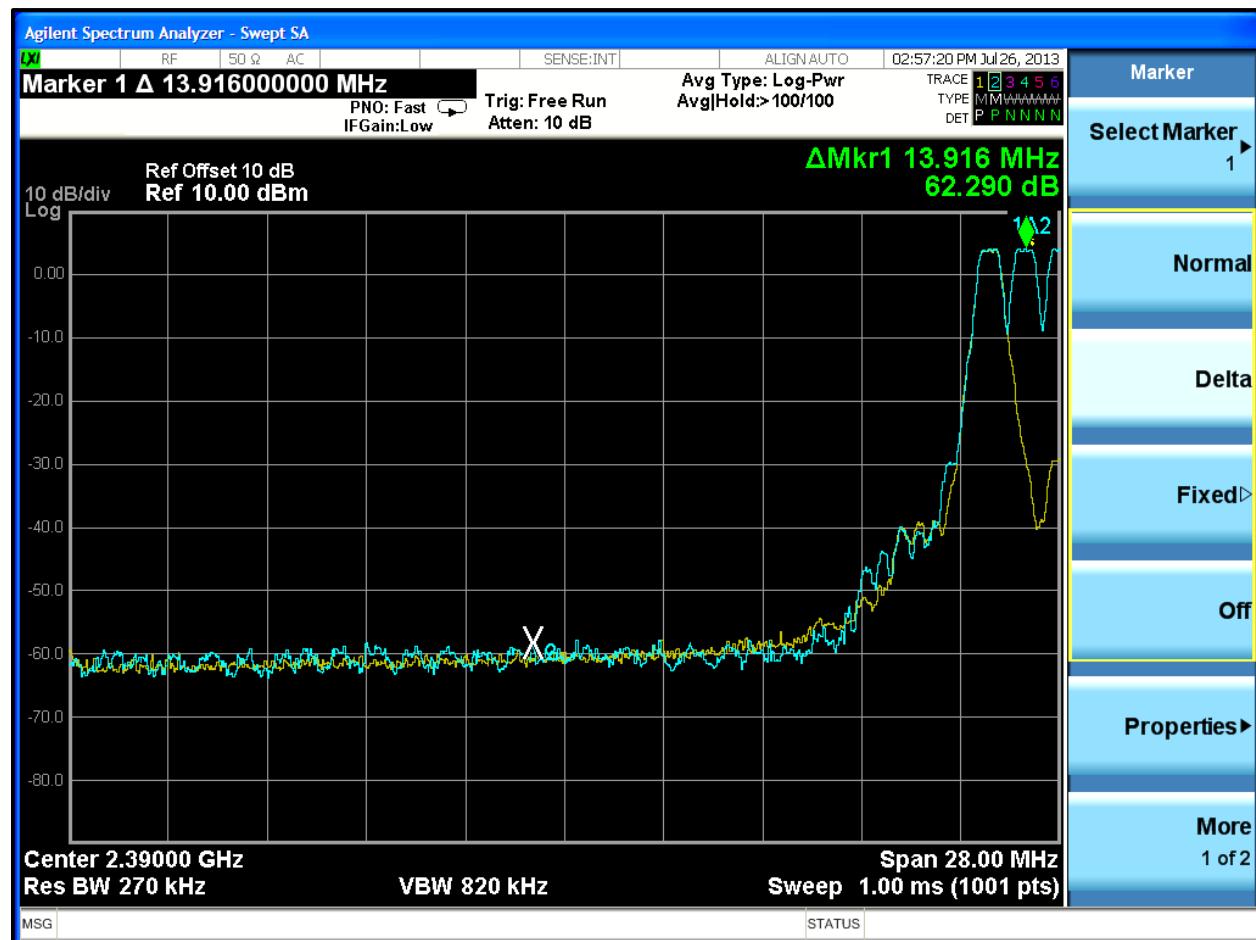
4.1 Band Edge Test Procedure

The transmitter output was connected to its appropriate antenna. Peak (1 MHz RBW/VBW) and average (1 MHz RBW/10 Hz VBW) radiated measurements were taken with a suitable span to encompass the peak of the fundamental. A delta measurement was performed from the highest peak in the restricted band to the peak of the fundamental, and subtracted from the field strength; the result was compared to the limit in the restricted band (54 dBuV/m).

Table 4-1: Band Edge Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
900878	Rhein Tech Laboratories, Inc.	AM3-1197-0005	3 meter antenna mast, polarizing	Outdoor Range 1	Not Required
901594	Insulated Wire Inc.	KPS-1503-360-KPR	SMK RF Cables 36"	NA	8/16/13
901242	Rhein Tech Laboratories, Inc.	WRT-000-0003	Wood rotating table	N/A	Not Required
900772	EMCO	3161-02	Horn Antenna (2-4 GHz)	9804-1044	4/19/14
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz-26.5 GHz)	MY51250846	4/16/14
900948	Weinschel Corporation	47-10-43	Attenuator DC-18 GHz 10 dB 50W	BH1487	3/18/14

4.2 Restricted Band Edge Test Results


4.2.1 Calculation of Lower Band Edge

95.4 dBuV/m is the peak field strength measurement, from which the delta measurement of 62.3 dB is subtracted (reference plots), resulting in a level of 33.1 dB. This level has a margin 20.9 dB below the limit of 54 dBuV/m.

Calculation: 95.4 dBuV/m – 62.3 dB – 54 dBuV/m = -20.9 dB

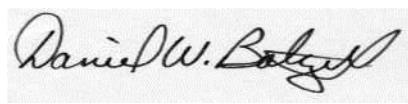
Peak Field Strength of Upper Band Edge (1 MHz RBW/1 MHz VBW) = 95.5 dBuV/m
Average Field Strength of Upper Band Edge (1 MHz RBW/10 Hz VBW) = 95.4 dBuV/m
Delta measurement = 62.3 dB (note that hopping mode produced worst-case delta)

Plot 4-1: Lower Band Edge: Channel 0 (TX Frequency 2402 MHz)

4.2.2 Calculation of Upper Band Edge

94.7 dBuV/m is the peak field strength measurement, from which the delta measurement of 57 dB is subtracted (reference plots), resulting in a level 37.7 dB. This level has a margin of 16.3 dB below the limit of 54 dBuV/m.

Calculation: $94.1 \text{ dBuV/m} - 57 \text{ dB} - 54 \text{ dBuV/m} = -16.3 \text{ dB}$


Peak Field Strength of Upper Band Edge (1 MHz RBW/1 MHz VBW) = 94.9 dBuV/m
 Average Field Strength of Upper Band Edge (1 MHz RBW/10 Hz VBW) = 94.7 dBuV/m
 Delta measurement = 57 dB (note that fixed frequency mode produced worst-case delta)

Plot 4-2: Upper Band Edge: Channel 78 (TX Frequency 2480 MHz)

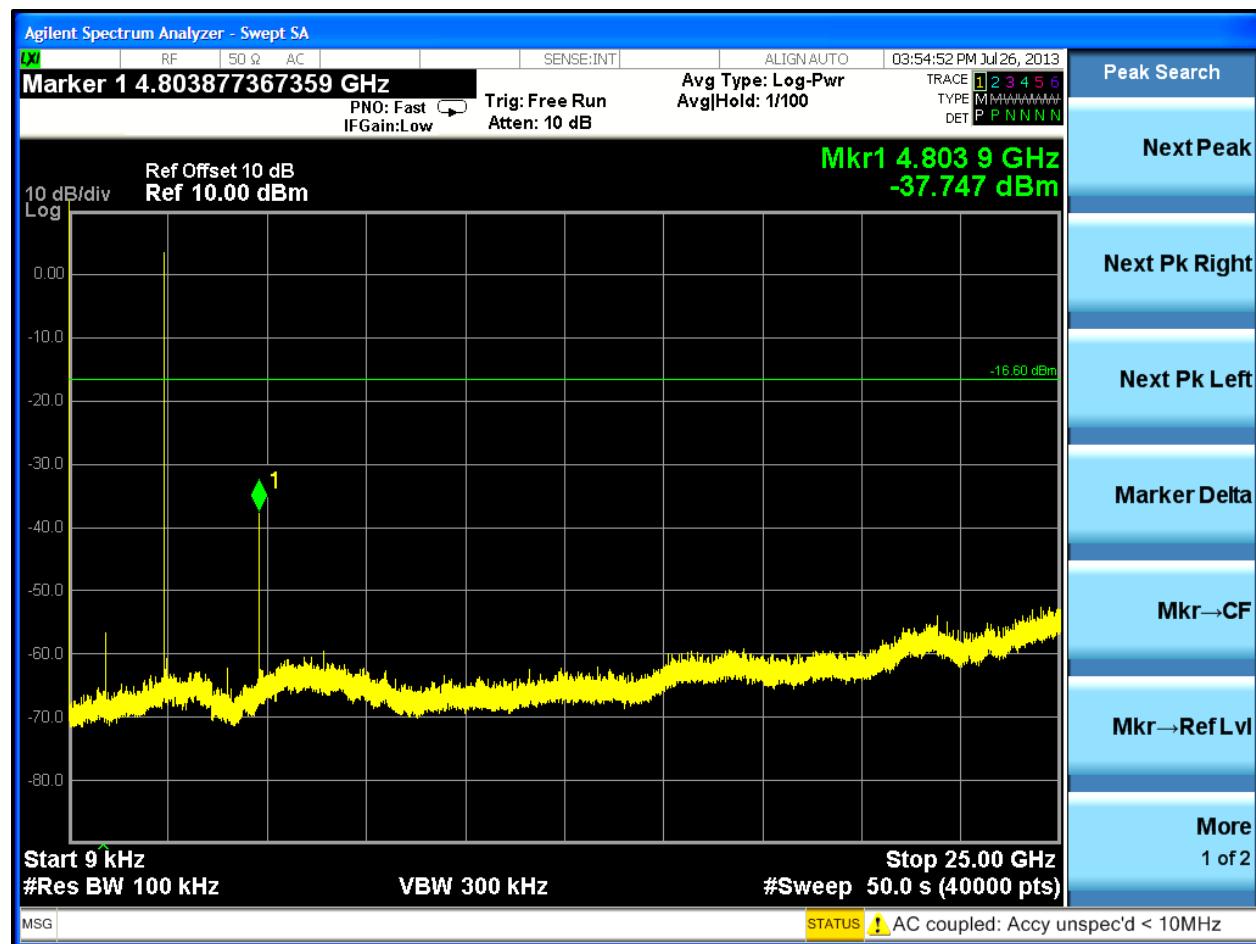
Test Personnel:

Daniel W. Baltzell
 Test Engineer

Signature

July 26, 2013

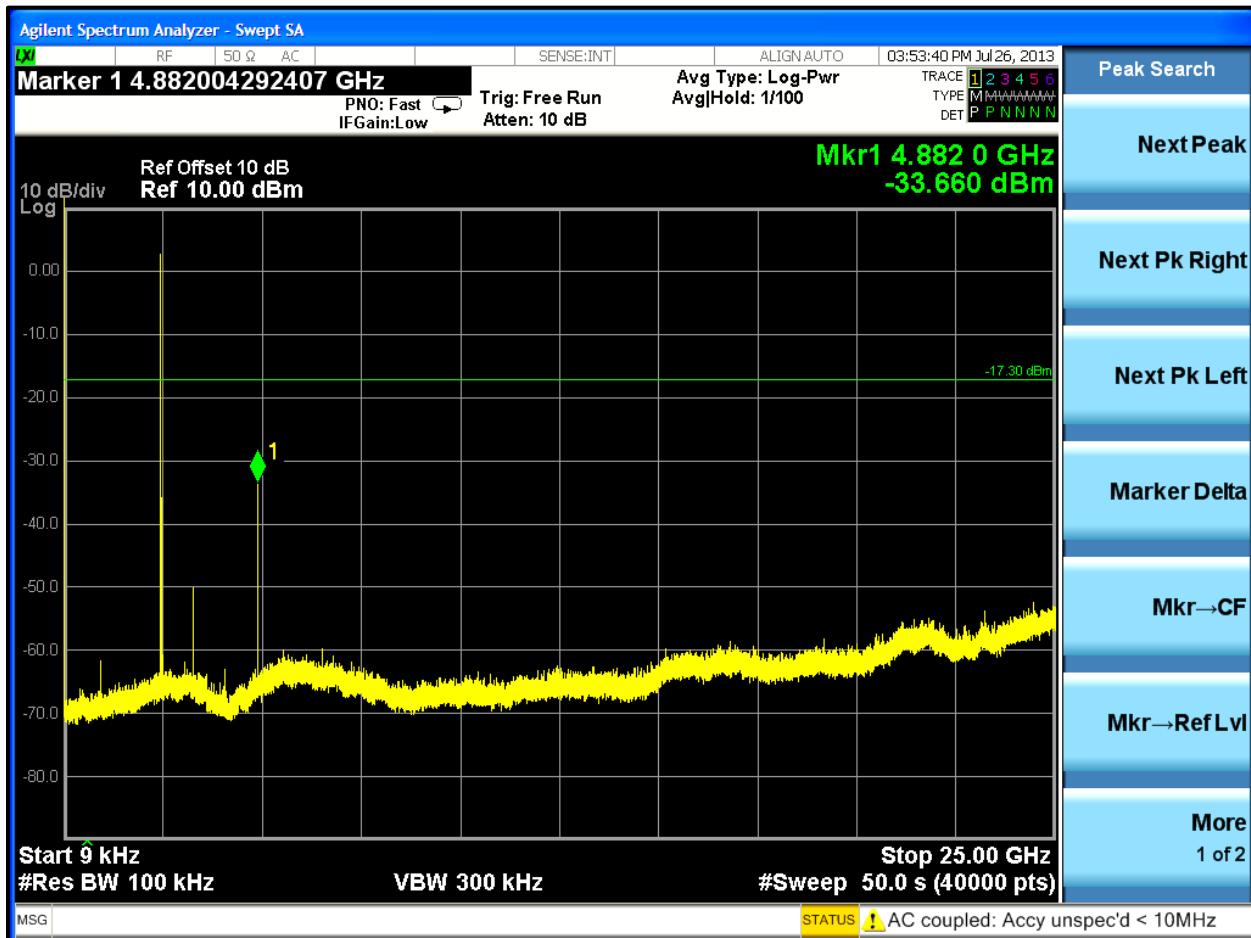
Date of Test


5 Antenna Conducted Spurious Emissions – FCC 15.247(d); RSS-Gen

5.1 Antenna Conducted Spurious Emissions Test Procedures

Antenna spurious emissions per FCC 15.247(d) were measured from the EUT antenna port using a 50 ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 300 kHz. The modulated carrier was identified at the following frequencies: 2402 MHz, 2441 MHz and 2480 MHz.

5.2 Antenna Conducted Spurious Emissions Test Results


Plot 5-1: Antenna Conducted Spurious Emissions (2402 MHz)

Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Vocollect, Inc.
Model #'s: TAP910-01, TAP920-01, TAP930-01
Standards: FCC 15.247/IC RSS-210
ID's: MQO-TAP900-01/ 2570A-TAP90001
Report #: 2013095DS

Plot 5-2: Antenna Conducted Spurious Emissions (2441 MHz)

Plot 5-3: Antenna Conducted Spurious Emissions (2480 MHz)

Table 5-1: Antenna Conducted Spurious Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz-26.5 GHz)	MY51250846	4/16/14
900948	Weinschel Corporation	47-10-43	Attenuator DC-18 GHz 10 dB 50W	BH1487	3/18/14

Test Personnel:

Daniel W. Baltzell
 Test Engineer

Signature

July 26, 2013
 Date of Test

6 20 dB Bandwidth – FCC 15.247(a)(1)(ii); RSS-210 A8.1(a)

6.1 20 dB Bandwidth Test Procedure

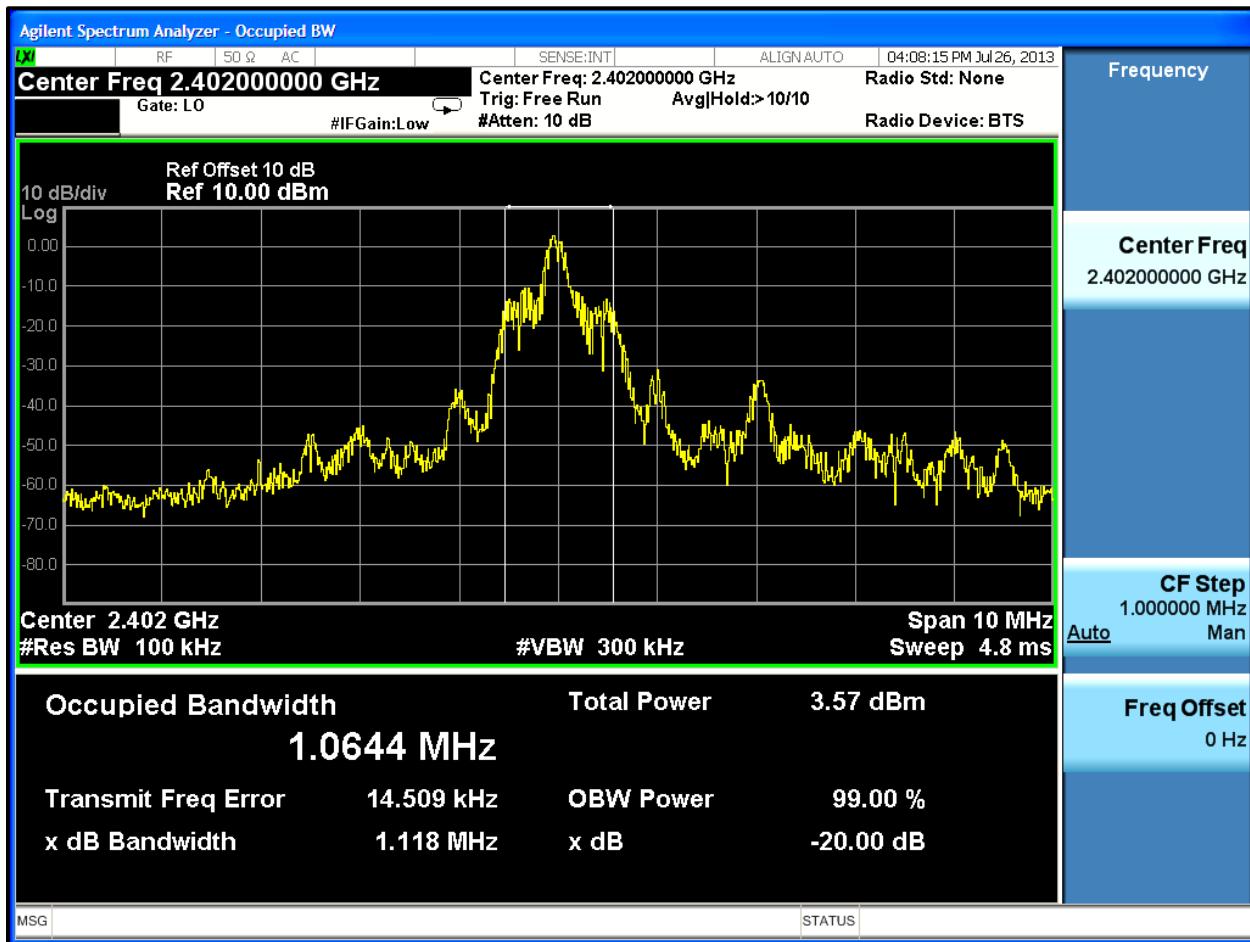
The minimum 20 dB bandwidths per RSS-210 were measured using a 50 ohm spectrum analyzer. The carrier was adjusted on the analyzer so that it was displayed entirely on the spectrum analyzer. The sweep time was set to auto and allowed through several sweeps with the max hold function used in peak detector mode. The resolution bandwidth was set to 100 kHz, and the video bandwidth set at 300 kHz. The minimum 20 dB bandwidths were measured using the spectrum analyzer delta marker set 20 dB down from the peak of the carrier and modulated using DM1. The table below contains the bandwidth measurement results.

Table 6-1: 20 dB Bandwidth Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz-26.5 GHz)	MY51250846	4/16/14
900948	Weinschel Corporation	47-10-43	Attenuator DC-18 GHz 10 dB 50W	BH1487	3/18/14

6.2 20 dB Modulated Bandwidth Test Data

Table 6-2: 20 dB Modulated Bandwidth Test Data

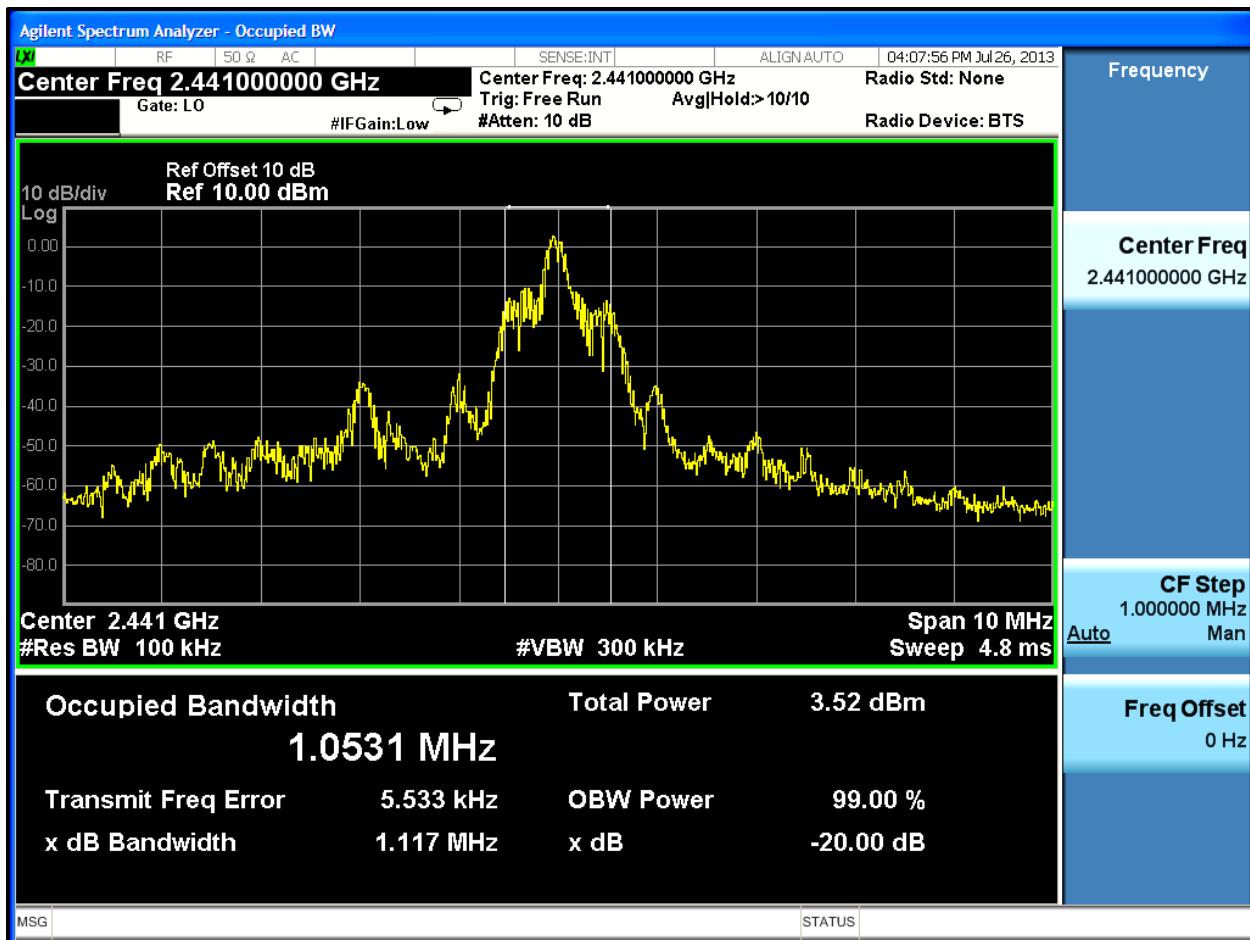

Minimum 20 dB bandwidths

Channel	20 dB Bandwidth (MHz)
0	1.12
39	1.12
78	1.12

6.3 20 dB Bandwidth Plots

Channel: 0
Channel Frequency (MHz): 2402
Resolution Bandwidth (kHz): 100
Video Bandwidth (kHz): 300

Plot 6-1: 20 dB Bandwidth Channel 0

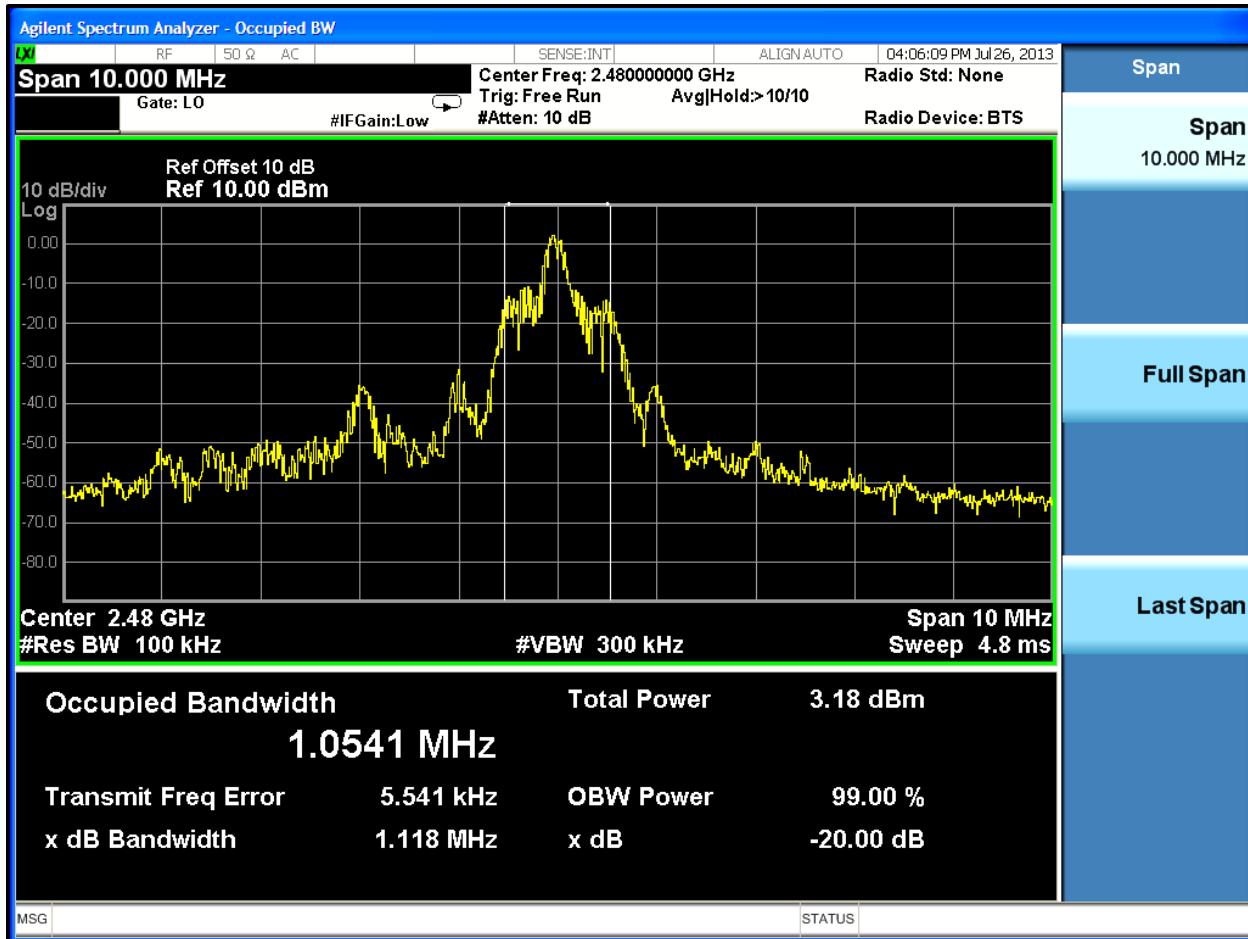


Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Vocollect, Inc.
Model #'s: TAP910-01, TAP920-01, TAP930-01
Standards: FCC 15.247/IC RSS-210
ID's: MQO-TAP900-01/ 2570A-TAP90001
Report #: 2013095DSS

Channel: 39
Channel Frequency (MHz): 2441
Resolution Bandwidth (kHz): 100
Video Bandwidth (kHz): 300

Plot 6-2: 20 dB Bandwidth Channel 39



Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Vocollect, Inc.
Model #'s: TAP910-01, TAP920-01, TAP930-01
Standards: FCC 15.247/IC RSS-210
ID's: MQO-TAP900-01/ 2570A-TAP90001
Report #: 2013095DSS

Channel: 78
Channel Frequency (MHz): 2480
Resolution Bandwidth (kHz): 100
Video Bandwidth (kHz): 300

Plot 6-3: 20 dB Bandwidth Channel 78

Test Personnel:

Daniel W. Baltzell
Test Engineer

Signature

July 26, 2013
Date of Test

7 Carrier Frequency Separation – FCC 15.247(a)(1); IC RSS-210 A8.1(b)

7.1 Carrier Frequency Separation Test Procedure

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

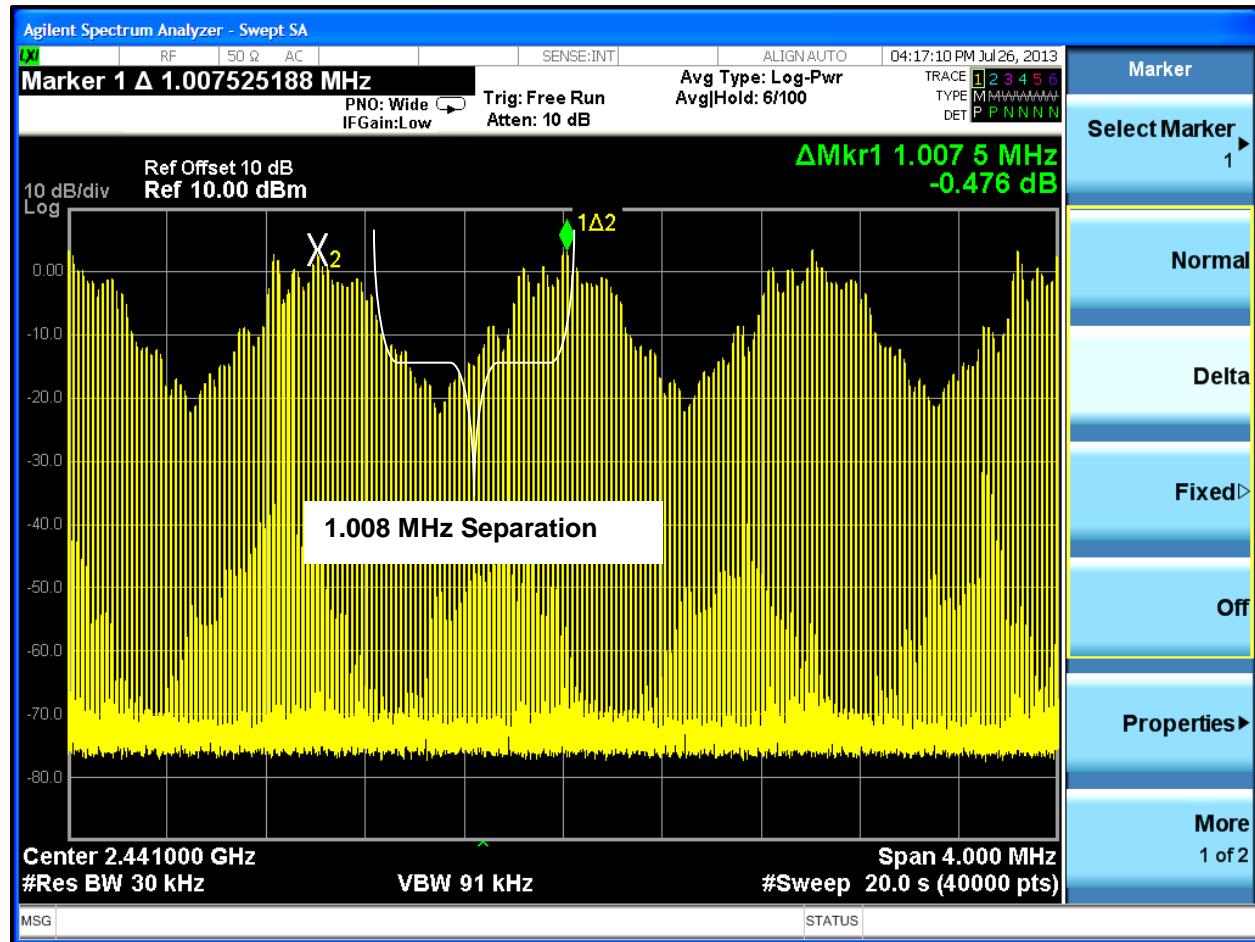
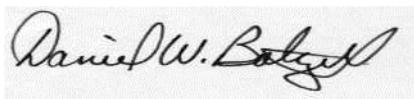

Measured frequency separation = 1.003 MHz

Table 7-1: Carrier Frequency Separation Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz-26.5 GHz)	MY51250846	4/16/14
900948	Weinschel Corporation	47-10-43	Attenuator DC-18 GHz 10 dB 50W	BH1487	3/18/14

7.2 Carrier Frequency Separation Test Data

Plot 7-1: Carrier Frequency Separation - Bluetooth


Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Vocollect, Inc.
Model #'s: TAP910-01, TAP920-01, TAP930-01
Standards: FCC 15.247/IC RSS-210
ID's: MQO-TAP900-01/ 2570A-TAP90001
Report #: 2013095DSS

Test Personnel:

Daniel W. Baltzell
Test Engineer

Signature

July 26, 2013
Date of Test

8 Hopping Characteristics – FCC 15.247(a)(1)(iii); IC RSS-210 A8.1(d)

8.1 Hopping Characteristics Test Procedure

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be > 0.4 seconds within a period of 0.4 seconds times the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels is used.

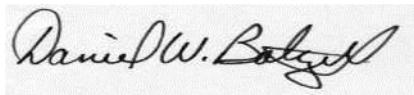
Table 8-1: Hopping Characteristics Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz-26.5 GHz)	MY51250846	4/16/14
900948	Weinschel Corporation	47-10-43	Attenuator DC-18 GHz 10 dB 50W	BH1487	3/18/14

8.2 Number of Hopping Frequencies

Measured number of hopping frequencies = 79

Plot 8-1: Number of Hopping Frequencies


Rhein Tech Laboratories, Inc.
360 Herndon Parkway
Suite 1400
Herndon, VA 20170
<http://www.rheintech.com>

Client: Vocollect, Inc.
Model #'s: TAP910-01, TAP920-01, TAP930-01
Standards: FCC 15.247/IC RSS-210
ID's: MQO-TAP900-01/ 2570A-TAP90001
Report #: 2013095DSS

Test Personnel:

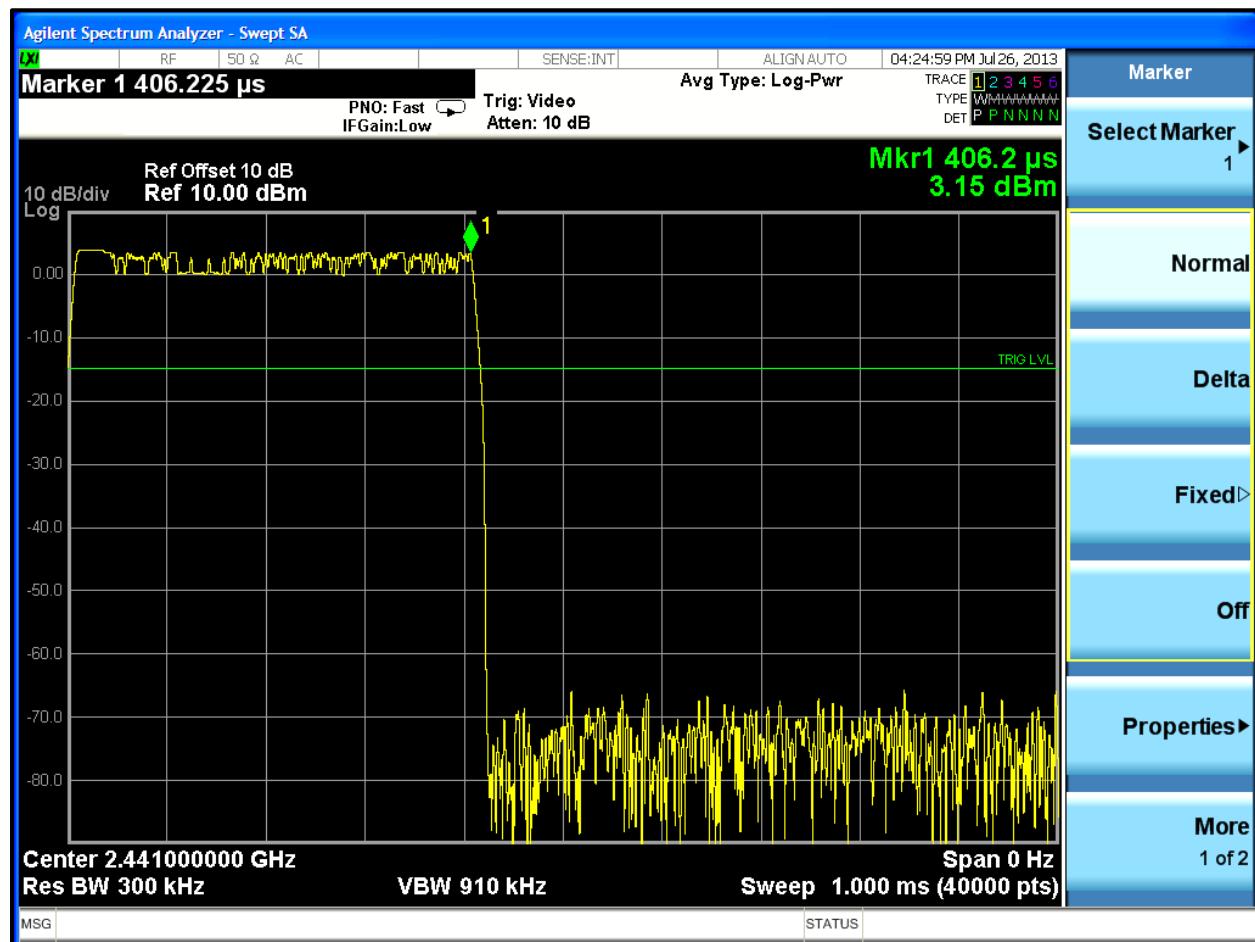
Daniel W. Baltzell
Test Engineer

Signature

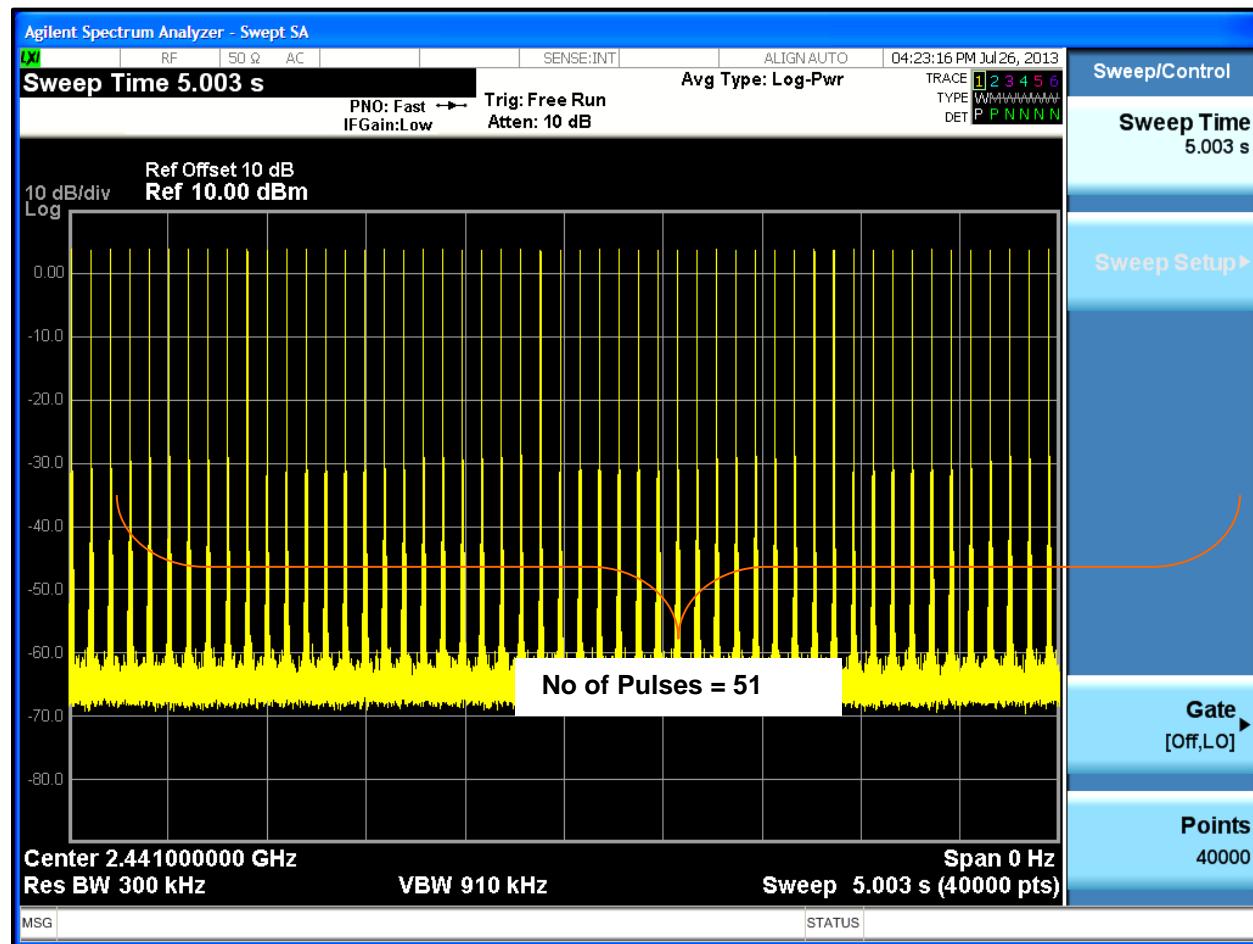
July 26, 2013
Date of Test

8.3 Average Time of Occupancy

The spectrum analyzer sweep was set to capture using zero span and video trigger a pulse from the device under test. A marker delta was used to measure the dwell time for this pulse. The sweep was then set to single sweep for 5 s (it was not possible to get a suitable display with a sweep time of 31.6 s).


The number of pulses in 5 s was 51. Therefore, the number of pulses in a period of 0.4 seconds x 79 hopping channels (31.6 s) would be 322 pulses.

The average time of occupancy in the above period (31.6 s) is equal to 322 pulses x 0.4062 ms = 131 ms, which meets the limit as defined by 15.247(a)(1)(iii) of 0.4 seconds.


Table 8-2: Average Time of Occupancy Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz-26.5 GHz)	MY51250846	4/16/14
900948	Weinschel Corporation	47-10-43	Attenuator DC-18 GHz 10 dB 50W	BH1487	3/18/14

Plot 8-2: Time of Occupancy (Dwell Time)

Plot 8-3: Time of Occupancy (Dwell Time 5 Second Sweep)

Number of pulses in 5 seconds: 51

Therefore, the number of pulses in the period of 0.4 s x 79 channels is 322 pulses.

Test Personnel:

Daniel W. Baltzell
 Test Engineer

Signature

July 26, 2013
 Date of Tests

9 Conducted Emissions Measurement Limits – FCC 15.207; RSS-Gen

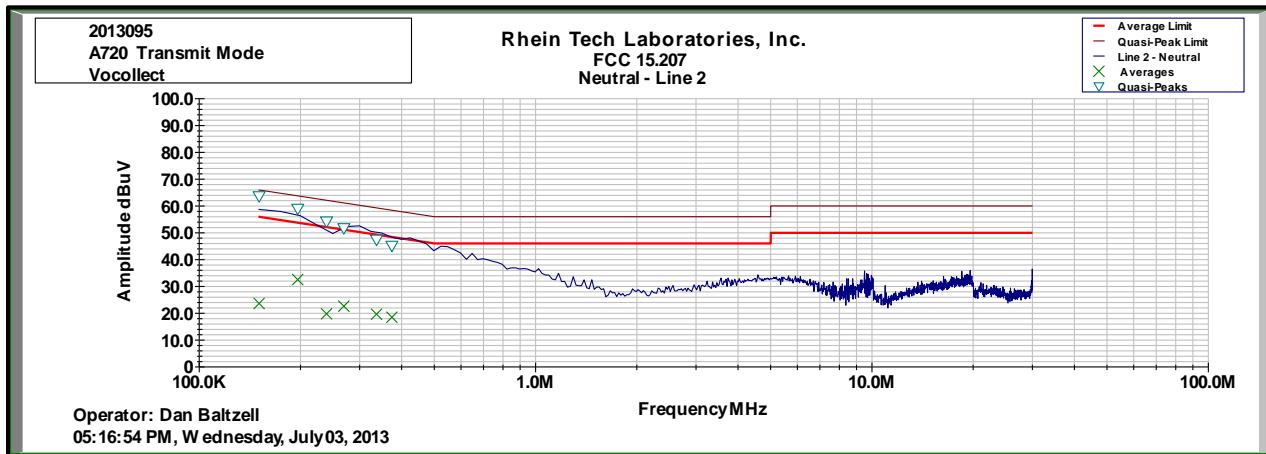
9.1 Limits of Conducted Emissions Measurement

Frequency of Emission (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

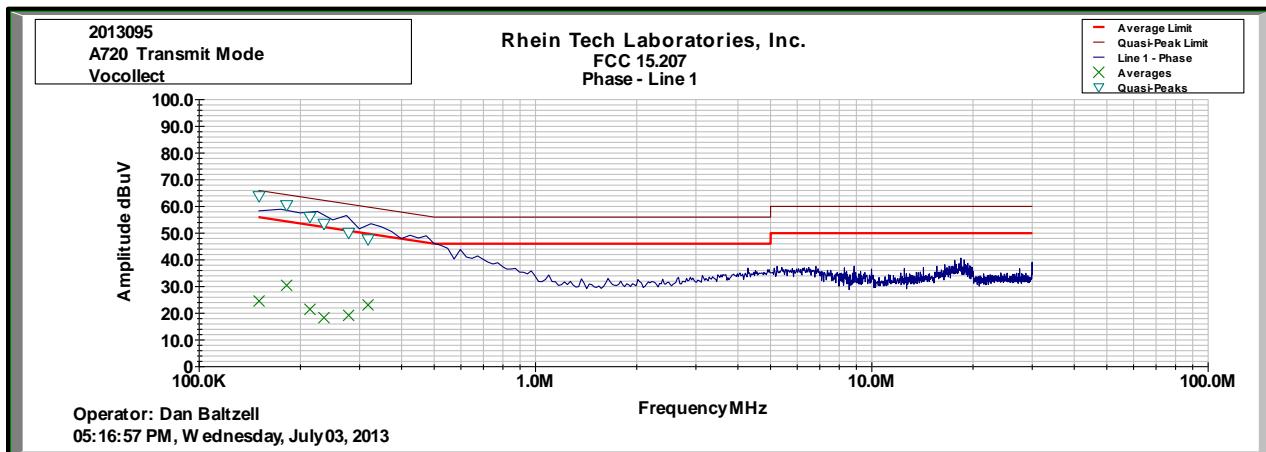
9.2 Conducted Emissions Measurement Test Procedure

The conducted emissions measurements were performed in a Series 81 type shielded enclosure manufactured by Rayproof. The EUT was assembled on a wooden table 0.8 meters high. Power was fed to the EUT through a $50\ \Omega/50\ \mu\text{H}$ Line Impedance Stabilization Network (LISN). The EUT LISN was fed power through an AC filter box on the outside of the shielded enclosure. The filter box and EUT LISN housing are bonded to the ground plane of the shielded enclosure. A second LISN, the peripheral LISN, provides isolation for the EUT test peripherals. This peripheral LISN was also fed AC power. A metal power outlet box, which is bonded to the ground plane and electrically connected to the peripheral LISN, powers the EUT host peripherals.

The spectrum analyzer was connected to the AC line through an isolation transformer. The $50\ \text{ohm}$ output of the EUT LISN was connected to the spectrum analyzer input through a Solar 7 kHz high-pass filter. The filter was used to prevent overload of the spectrum analyzer from noise below 7 kHz. Conducted emission levels were measured on each current-carrying line with the spectrum analyzer operating in the CISPR quasi-peak mode (or average mode if applicable). The analyzer's 6 dB bandwidth was set to 9 kHz. No video filter less than 10 times the resolution bandwidth was used. Average measurements were performed in a linear mode using a 10 kHz resolution bandwidth, a 1 Hz video bandwidth, and by decreasing the sweep time in order to obtain a calibrated measurement. The highest emissions amplitudes relative to the appropriate limits were measured and have been recorded in this report.


Table 9-1: Conducted Emissions Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
900968	Hewlett Packard	8567A	Spectrum Analyzer (10 kHz-1.5 GHz)	2602A00160	2/7/14
900969	Hewlett Packard	85650A	Quasi-Peak Adapter	2412A00414	2/7/14
900970	Hewlett Packard	85662A	Spectrum Analyzer Display	2542A11239	2/7/14
N/A	Rhein Tech Laboratories, Inc.	Automated Emission Tester	Emissions testing software Rev. 14.0.2	N/A	N/A


9.3 Conducted Emissions Test Results

9.3.1 Conducted Emissions Transmit Center Channel FHSS/DSSS

Plot 9-1: Conducted Emissions Transmit Center Channel - Neutral Side

Plot 9-2: Conducted Emissions Transmit Center Channel - Hot Side

Test Personnel:

Daniel W. Baltzell
 Test Engineer

Signature

July 3, 2013
 Date of Test

10 Radiated Emissions – FCC 15.209; RSS-210 A8.5 and RSS-Gen

10.1 Limits of Radiated Emissions Measurement

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009-0.490	2400/f (kHz)	300
0.490-1.705	2400/f (kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

As shown in 15.35(b), for frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any circumstances of modulation.

10.2 Radiated Emissions Measurement Test Procedure

Before final measurements of radiated emissions were made on the open-field three/ten meter range, the EUT was scanned indoors at one and three meter distances. This was done in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to ensure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three/ten-meter, open-field test site. The EUT was placed on a nonconductive turntable 0.8 meters above the ground plane. The spectrum was examined from 9 kHz to the 10th harmonic of the highest fundamental transmitter frequency (24.8 GHz).

At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the emission's maximum level. Measurements were taken using both horizontal and vertical antenna polarizations. For frequencies between 30 and 1000 MHz, the spectrum analyzer's 6 dB bandwidth was set to 120 kHz, and the analyzer was operated in the CISPR quasi-peak detection mode. For emissions above 1000 MHz, emissions are measured using the average detector function with a minimum resolution bandwidth of 1 MHz. No video filter less than 10 times the resolution bandwidth was used. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

Rhein Tech Laboratories, Inc.
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

Client: Vocollect, Inc.
 Model #'s: TAP910-01, TAP920-01, TAP930-01
 Standards: FCC 15.247/IC RSS-210
 ID's: MQO-TAP900-01/ 2570A-TAP90001
 Report #: 2013095DSS

Table 10-1: Radiated Emissions Test Equipment

RTL Asset #	Manufacturer	Model	Part Type	Serial Number	Calibration Due Date
900932	Hewlett Packard	8449B OPT H02	Preamplifier (1-26.5 GHz)	3008A00505	8/10/13
901592	Insulated Wire Inc.	KPS-1503-3600-KPR	SMK RF Cables 20'	NA	8/16/13
901593	Insulated Wire Inc.	KPS-1503-360-KPR	SMK RF Cables 36"	NA	8/16/13
900772	EMCO	3161-02	Horn Antenna (2-4 GHz)	9804-1044	4/20/15
900321	EMCO	3161-03	Horn Antennas (4-8,2 GHz)	9508-1020	4/20/15
900323	EMCO	3160-7	Horn Antennas (8,2-12,4 GHz)	9605-1054	4/20/15
900356	EMCO	3160-08	Horn Antenna (12.4-18 GHz)	9607-1044	4/20/15
900325	EMCO	3160-9	Horn Antennas (18-26.5 GHz)	9605-1051	4/19/14
901583	Agilent Technologies	N9010A	EXA Signal Analyzer (10 Hz-26.5 GHz)	MY51250846	4/16/14
900151	Rohde and Schwarz	HFH2-Z2	Loop Antenna (9 kHz-30 MHz)	827525/019	10/1/13
900905	Rhein Tech Laboratories, Inc.	PR-1040	OATS 1 Preamplifier 40dB (30 MHz-2 GHz)	1006	8/20/13
900878	Rhein Tech Laboratories, Inc.	AM3-1197-0005	3 meter antenna mast, polarizing	Outdoor Range 1	Not Required
901242	Rhein Tech Laboratories, Inc.	WRT-000-0003	Wood rotating table	N/A	Not Required
900791	Chase	CBL6111B	Bilog Antenna (30 MHz-2000 MHz)	N/A	2/2/14
900913	Hewlett Packard	85462A	EMI Receiver RF Section (9 kHz-6.5 GHz)	3325A00159	9/20/13
900914	Hewlett Packard	8546OA	RF Filter Section, (100 kHz-6.5 GHz)	3330A00107	9/20/13

Rhein Tech Laboratories, Inc.
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

Client: Vocollect, Inc.
 Model #'s: TAP910-01, TAP920-01, TAP930-01
 Standards: FCC 15.247/IC RSS-210
 ID's: MQO-TAP900-01/ 2570A-TAP90001
 Report #: 2013095DSS

10.3 Radiated Emissions Test Results

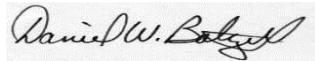

10.3.1 Radiated Emissions Digital/Receiver Test Data

Table 10-2: Digital/Receiver Radiated Emissions

Temperature: 87°F Humidity: 87%										
Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pass/Fail
30.307	Qp	H	0	1	30.4	-24.0	6.4	40.0	-33.6	Pass
32.941	Qp	H	0	1	30.1	-25.3	4.8	40.0	-35.2	Pass
35.574	Qp	V	0	1	35.0	-26.6	8.4	40.0	-31.6	Pass
55.330	Qp	H	0	1	40.2	-33.6	6.6	40.0	-33.4	Pass
81.670	Qp	H	0	1	34.8	-33.4	1.4	40.0	-38.6	Pass
141.600	Qp	H	0	1	34.5	-30.1	4.4	43.5	-39.1	Pass
144.000	Qp	V	0	1	40.4	-30.2	10.2	43.5	-33.3	Pass
499.200	Qp	V	0	1	37.6	-21.5	16.1	46.0	-29.9	Pass

Test Personnel:

Daniel W. Baltzell
 Test Engineer

Signature

July 18-26, 2013

Dates of Test

Rhein Tech Laboratories, Inc.
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

Client: Vocollect, Inc.
 Model #'s: TAP910-01, TAP920-01, TAP930-01
 Standards: FCC 15.247/IC RSS-210
 ID's: MQO-TAP900-01/ 2570A-TAP90001
 Report #: 2013095DSS

10.3.2 Radiated Emissions Harmonics/Spurious Test Data – Fixed Frequency

Table 10-3: Radiated Emissions Harmonics/Spurious Channel 0 (TX Frequency 2402 MHz)

Emission Frequency (MHz)	Peak Analyzer Reading (dBuV) (1 MHz RBW/VBW)	Average Analyzer Reading (dBuV) (1 MHz RBW/10 Hz VBW)	Site Correction Factor (dB/m)	Average Emission Level (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dB)
4804.0	58.0	38.2	-1.5	36.7	54.0	-17.3
12010.0	33.9	30.6	9.8	40.4	54.0	-13.6
19216.0	33.4	19.7	20.6	40.3	54.0	-13.7

Table 10-4: Radiated Emissions Harmonics/Spurious Channel 39 (TX Frequency 2441 MHz)

Emission Frequency (MHz)	Peak Analyzer Reading (dBuV) (1 MHz RBW/VBW)	Average Analyzer Reading (dBuV) (1 MHz RBW/10 Hz VBW)	Site Correction Factor (dB/m)	Average Emission Level (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dB)
4882.0	60.8	38.0	-1.4	36.6	54.0	-17.4
7323.0	42.3	42.2	0.9	43.1	54.0	-10.9
12205.0	31.0	12.5	11.2	23.7	54.0	-30.3
19528.0	42.3	19.9	20.2	40.1	54.0	-13.9

Table 10-5: Radiated Emissions Harmonics/Spurious Channel 78 (TX Frequency 2480 MHz)

Emission Frequency (MHz)	Peak Analyzer Reading (dBuV) (1 MHz RBW/VBW)	Average Analyzer Reading (dBuV) (1 MHz RBW/10 Hz VBW)	Site Correction Factor (dB/m)	Average Emission Level (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dB)
4960.0	58.4	36.5	-1.1	35.4	54.0	-18.6
7440.0	43.2	29.1	1.1	30.2	54.0	-23.8
12400.0	32.2	21.3	12.6	33.9	54.0	-20.1
19840.0	31.6	19.3	20.6	39.9	54.0	-14.1
22320.0	32.7	19.6	21.8	41.4	54.0	-12.6

Rhein Tech Laboratories, Inc.
 360 Herndon Parkway
 Suite 1400
 Herndon, VA 20170
<http://www.rheintech.com>

Client: Vocollect, Inc.
 Model #'s: TAP910-01, TAP920-01, TAP930-01
 Standards: FCC 15.247/IC RSS-210
 ID's: MQO-TAP900-01/ 2570A-TAP90001
 Report #: 2013095DSS

10.3.3 Radiated Emissions Harmonics/Spurious Test Data – Hopping

Table 10-6: Radiated Emissions Harmonics/Spurious Hopping Mode

Emission Frequency (MHz)	Peak Analyzer Reading (dBuV) (1 MHz RBW/ VBW)	Average Analyzer Reading (dBuV) (1 MHz RBW/ 10 Hz VBW)	Site Correction Factor (dB/m)	Average Emission Level (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dB)
4820.068	64.2	30.4	-1.1	29.3	54.0	-24.7
4825.996	64.3	30.5	-1.1	29.4	54.0	-24.6
4854.388	64.8	30.5	-1.1	29.4	54.0	-24.6
4885.744	65.7	30.4	-1.0	29.4	54.0	-24.6
4887.928	66.0	30.4	-1.0	29.4	54.0	-24.6
4900.252	66.0	30.3	-1.0	29.3	54.0	-24.7
4901.968	66.2	30.0	-1.0	29.0	54.0	-25.0
4911.952	66.3	30.3	-1.0	29.3	54.0	-24.7
7285.720	15.6	28.9	0.9	29.8	54.0	-24.2

Test Personnel:

Daniel W. Baltzell
 Test Engineer

Signature

July 26, 2013
 Date of Test

11 Conclusion

The data in this measurement report shows that the EUT as tested, Vocollect, Inc. A700 Series Terminal, Model #'s TAP910-01, TAP920-01, TAP930-01, FCC ID: MQO-TAP900-01, IC: 2570A-TAP90001, comply with all the applicable requirements of Parts 2 and 15 of the FCC Rules and Regulations, and IC RSS-210 and RSS-Gen.