Controltek, Inc.

Mega M.O.L.E.

April 11, 2008

Report No. CNTR0018

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2008Northwest EMC, Inc

Certificate of Test

Issue Date: April 11, 2008 Controltek, Inc.

Model: Mega M.O.L.E.

Emissions					
Test Description	Specification	Test Method	Pass/Fail		
Spurious Radiated Emissions	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Output Power	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Occupied Bandwidth	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Band Edge Compliance	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Spurious Conducted Emissions	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
Power Spectral Density	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass		
AC Powerline Conducted Emissions	FCC 15.207:2007	ANSI C63.4:2003	Pass		
Radiated Emission	FCC 15.109(g) (CISPR 22:1997):2007	ANSI C63.4:2003	Pass		

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site Filing #3496A).

Approved By:	
Then	
Ethan Schoonove	er, Sultan Lab Manager

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

NVLAP LAB CODE 200761-0

NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

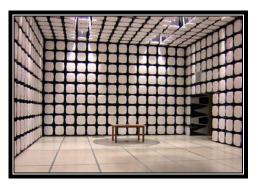
VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294*).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

MIC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (*Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157*)

SCOPE For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp



California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Rev 11/17/06

Party Requesting the Test

Company Name:	Controltek, Inc.
Address:	3905 NE 112th Avenue
City, State, Zip:	Vancouver, WA 98682
Test Requested By:	Sam Battaglia
Model:	Mega M.O.L.E.
First Date of Test:	March 26, 2008
Last Date of Test:	March 27, 2008
Receipt Date of Samples:	March 26, 2008
Equipment Design Stage:	Preproduction
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test): Digital Transmission System (DTS) radio with +4 dBm output power and operating at 2.4 GHz. Device is set up to broadcast - round robin to each channel requesting a beacon.

Testing Objective:

Seeking TCB certification under 15.247.

CONFIGURATION 1 CNTR0018

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT	Controltek, Inc.	Mega M.O.L.E	Unit 1

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
I/O module	Controltek, Inc.	I/O Pod 20	None	

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
Host PC HP Unknown Unknown					

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.0	No	EUT	Host PC
PA = Cable	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.				

CONFIGURATION 2 CNTR0018

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT	Controltek, Inc.	Mega M.O.L.E	Unit 1

Peripherals in test setup boundary				
Description Manufacturer Model/Part Number Serial Number				
I/O module	Controltek, Inc.	I/O Pod 20	None	

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
Host PC HP Unknown Unknown					

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB Power	Yes	1.0	No	EUT	AC Adapter
PA = Cable i	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.				

CONFIGURATION 3 CNTR0018

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
EUT	Controltek, Inc.	Mega M.O.L.E	Unit 1		

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
I/O module	Controltek, Inc.	I/O Pod 20	None		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.0	No	EUT	Host PC
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 4 CNTR0018

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT	Controltek, Inc.	Mega M.O.L.E	Unit 1

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
I/O module	Controltek, Inc.	I/O Pod 20	None		

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
Host PC HP Unknown Unknown					

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
USB	Yes	1.5	No	EUT	Host PC	
PA = Cable	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Configurations

CONFIGURATION 13 CNTR0019

Software/Firmware Running during test			
Description	Version		
Windows xp	5.1 build 2600xpsp_sp2		
CTEK RF Messenger	0.01		
Hyper Terminal	None		

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT - Emissions	Controltek, Inc.	Mega M.O.L.E	Unit 1

Peripherals in test setup boundary					
Description	Model/Part Number	Serial Number			
I/O module	Controltek, Inc.	I/O Pod 20	None		
Wire Whip Antenna	ECD	E47-6342-11	Lot 9546		
Host Computer	Dell	Dimension 1100	H163W81		
Monitor	IBM	6558-03N	55-70151		
Keyboard	Dell	RT7D20	-07VA		
Mouse	Logitech	M-CAA42	LZA14813499		
Printer	Epson	LX-300	1YLY179968		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.0	No	EUT	Host PC
Thermocouples (x20)	No	1.0m	No	I/O Pod 20	Unterminated
Keyboard	PA	1.8m	PA	Host Computer	Keyboard
Mouse	PA	1.8m	PA	Host Computer	Mouse
Video	Yes	1.8m	Yes	Host Computer	Monitor
Parallel	Yes	1.8m	No	Host Computer	Printer
AC Power	No	1.8m	No	Host Computer	AC Mains
AC Power	No	1.8m	No	Monitor	AC Mains
AC Power	PA	1.8m	PA	Printer	AC Mains
PA = Cable is perman	ently attached	to the device. Shi	elding and/or	presence of ferrite may	be unknown.

Modifications

	Equipment modifications					
Item	Date	Test	Modification	Note	Disposition of EUT	
1	3/26/2008	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
2	3/26/2008	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
3	3/26/2008	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
4	3/26/2008	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
5	3/26/2008	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
6	3/27/2008	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
7	3/27/2008	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
8	4/10/2008	Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.	

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Tx & Rx radio ch.11, Record data streaming to wireless software and USB hyperterminal

POWER SETTINGS INVESTIGATED

230V/50Hz 120V/60Hz

CONFIGURATIONS INVESTIGATED

CNTR0019 - 13) Basic Configuration with PC Host

FREQUENCY RANGE INV	'ESTIGATED		
Start Frequency	30 MHz	Stop Frequency	1000 MHz

CLOCKS AND OSCILLATORS

None Provided

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Biconilog	EMCO	3142	AXB	1/15/2008	24 mo
EV11 Cables		10m Test Distance Cables	EVL	5/1/2007	13 mo
Pre-Amplifier	Miteq	AM-1551	AOY	5/1/2007	13 mo
Spectrum Analyzer	Agilent	E4443A	AAS	12/7/2007	13 mo

MEASUREMENT BANDWIDTHS

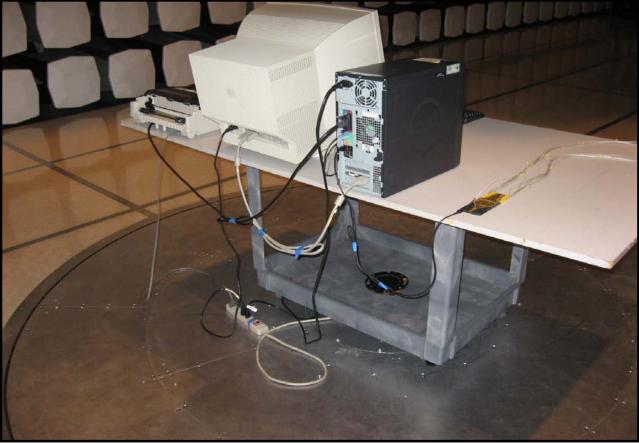
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
ſ	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION


Using the mode of operation and configuration noted within this report, a final radiated emissions test was performed. The frequency range investigated (scanned), is also noted in this report. Radiated emissions measurements were made at the EUT azimuth and antenna height such that the maximum radiated emissions level will be detected. This requires the use of a turntable and an antenna positioner. The preferred method of a continuous azimuth search is utilized for frequency scans of the EUT field strength with both polarities of the measuring antenna. A calibrated, linearly polarized antenna was positioned at the specified distance from the periphery of the EUT.


Tests were made with the antenna positioned in both the horizontal and vertical planes of polarization. The antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Though specified in the report, the measurement distance shall be 3 meters or 10 meters. At any measurement distance, the antenna height was varied from 1 meter to 4 meters. These height scans apply for both horizontal and vertical polarization, except that for vertical polarization the minimum height of the center of the antenna shall be increased so that the lowest point of the bottom of the antenna clears the ground surface by at least 25 cm.

NORTH				RA	DIA	١	ΕI) E	ΞN	IISSI	ONS			PSA-	ESCI 2008.01.
	ork Order:	CNT	R0019			Dat	e:		04/1	0/08			0/	<u> </u>	
	Project:		lone	٦	Tempe					°C		A	n Sala	<u> </u>	
	Job Site:		V11	_		midit				6.5					
Seria	I Number:		nit 1	Baro	metric	; Pres	3.:		1018	8.0mb		Tested by:	David Dive	rgigelis	
Conf		Mega M.C	Configurat	ion with P	C Hos	t									
			Controltek, Inc.												
	ttendees:														
EL	JT Power:														
Operati	ing Mode:	Tx & Rx ra	Rx radio ch.11, Record data streaming to wireless software and USB hyperterminal												
	eviations:	No deviat	No deviations.												
C	omments:	None													
est Speci N 55022: : CC 15.109		R 22:1997)):2007		C	Class	Α			Test Metho CISPR 22:2 ANSI C63.4	2005 (Ame	nded by A1:	:2005 and A	\2:2006)	
Run #	8	Test	istance (m) 10		Anten	nal	Joigh			1-4m		Results		ass
Kull #	0	Test D	istance (in	10	,	Anten	na r	leigi	11(5)		1-4111		Results	Fa	455
80 _T															
70 -															
10															
60 -															
50 -															
_														+	
ш/ЛпВр															
ng 40 +				•											
σ													•		
30 -													•		
				•••	•				•						
20 -															•
										•					
10 -										•					
0 +															
10)								100 /IHz						1000
								Extor	mal	Polarity/ Transducer		Distance			Compared to
				1		st Distan	ce	Extern Attenua		Туре	Detector	Distance Adjustment	Adjusted	Spec. Limit	Spec. (dB)
Freq	Amplitude	Factor	Antenna Heigl	ht Azimuth (degrees)										-2.6
33.054	54.4	-17.0	1.0	(degrees		10.0		0.0		Vert	QP	0.0	37.4	40.0	
33.054 35.887	54.4 45.1	-17.0 -18.4	1.0 1.0	(degrees 17.0 308.0		10.0		0.0)	Vert	QP	0.0	26.7	40.0	-13.3
33.054 35.887 33.197	54.4	-17.0	1.0	(degrees)						
33.054 35.887 33.197 492.058 95.962	54.4 45.1 43.6 47.9 53.3	-17.0 -18.4 -17.1 -14.6 -27.0	1.0 1.0 2.1 1.7 4.0	(degrees 17.0 308.0 0.0 317.0 104.0		10.0 10.0 10.0 10.0		0.0 0.0 0.0)))	Vert Horz Horz Horz	QP QP QP QP	0.0 0.0 0.0 0.0	26.7 26.5 33.3 26.3	40.0 40.0 47.0 40.0	-13.3 -13.5 -13.7 -13.7
33.054 35.887 33.197 492.058 95.962 48.000	54.4 45.1 43.6 47.9 53.3 49.6	-17.0 -18.4 -17.1 -14.6 -27.0 -23.3	1.0 1.0 2.1 1.7 4.0 1.2	(degrees) 17.0 308.0 0.0 317.0 104.0 233.0		10.0 10.0 10.0 10.0 10.0		0.0 0.0 0.0 0.0 0.0))))	Vert Horz Horz Horz Vert	QP QP QP QP QP	0.0 0.0 0.0 0.0 0.0	26.7 26.5 33.3 26.3 26.3	40.0 40.0 47.0 40.0 40.0	-13.3 -13.5 -13.7 -13.7 -13.7
33.054 35.887 33.197 492.058 95.962	54.4 45.1 43.6 47.9 53.3	-17.0 -18.4 -17.1 -14.6 -27.0	1.0 1.0 2.1 1.7 4.0	(degrees 17.0 308.0 0.0 317.0 104.0		10.0 10.0 10.0 10.0		0.0 0.0 0.0)))))	Vert Horz Horz Horz	QP QP QP QP QP QP	0.0 0.0 0.0 0.0	26.7 26.5 33.3 26.3	40.0 40.0 47.0 40.0	-13.3 -13.5 -13.7 -13.7
33.054 35.887 33.197 492.058 95.962 48.000 38.882 36.040 504.017	54.4 45.1 43.6 47.9 53.3 49.6 44.7 42.6 43.0	-17.0 -18.4 -17.1 -14.6 -27.0 -23.3 -19.9 -18.4 -14.4	1.0 1.0 2.1 1.7 4.0 1.2 1.0 3.9 1.6	(degrees 17.0 308.0 0.0 317.0 104.0 233.0 51.0 328.0 318.0		10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0)))))	Vert Horz Horz Vert Vert Horz Horz	QP QP QP QP QP QP QP	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.7 26.5 33.3 26.3 26.3 24.8 24.2 28.6	40.0 47.0 40.0 40.0 40.0 40.0 40.0 47.0	-13.3 -13.5 -13.7 -13.7 -13.7 -15.2 -15.8 -18.4
33.054 35.887 33.197 492.058 95.962 48.000 38.882 36.040	54.4 45.1 43.6 47.9 53.3 49.6 44.7 42.6	-17.0 -18.4 -17.1 -14.6 -27.0 -23.3 -19.9 -18.4	1.0 1.0 2.1 1.7 4.0 1.2 1.0 3.9	(degrees 17.0 308.0 0.0 317.0 104.0 233.0 51.0 328.0		10.0 10.0 10.0 10.0 10.0 10.0 10.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0))))))	Vert Horz Horz Vert Vert Horz	QP QP QP QP QP QP	0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.7 26.5 33.3 26.3 26.3 24.8 24.2	40.0 40.0 47.0 40.0 40.0 40.0 40.0	-13.3 -13.5 -13.7 -13.7 -13.7 -15.2 -15.8
33.054 35.887 33.197 492.058 95.962 48.000 38.882 36.040 504.017 66.000 156.358	54.4 45.1 43.6 47.9 53.3 49.6 44.7 42.6 43.0 46.4 44.4 41.5	-17.0 -18.4 -17.1 -14.6 -27.0 -23.3 -19.9 -18.4 -14.4 -27.1 -27.1 -25.0	1.0 1.0 2.1 1.7 4.0 1.2 1.0 3.9 1.6 1.5 3.3 1.0	(degrees) 17.0 308.0 0.0 317.0 104.0 233.0 51.0 328.0 318.0 318.0 219.0 207.0		10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0))))))))	Vert Horz Horz Vert Vert Horz Vert Horz Vert Horz Vert	QP QP QP QP QP QP QP QP QP QP QP	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.7 26.5 33.3 26.3 26.3 24.8 24.2 28.6 19.3 17.3 16.5	40.0 40.0 47.0 40.0 40.0 40.0 40.0 47.0 40.0 40	-13.3 -13.5 -13.7 -13.7 -15.2 -15.8 -18.4 -20.7 -22.7 -23.5
33.054 35.887 33.197 492.058 95.962 48.000 38.882 36.040 504.017 66.000 66.000 156.358 947.693	54.4 45.1 43.6 47.9 53.3 49.6 44.7 42.6 43.0 46.4 44.4 41.5 30.8	-17.0 -18.4 -17.1 -14.6 -27.0 -23.3 -19.9 -18.4 -14.4 -27.1 -25.0 -8.2	1.0 1.0 2.1 1.7 4.0 1.2 1.0 3.9 1.6 1.5 3.3 1.0 1.0	(degrees) 17.0 308.0 0.0 317.0 104.0 233.0 51.0 328.0 318.0 318.0 219.0 207.0 82.0		10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0)))))))))	Vert Horz Horz Vert Vert Horz Vert Horz Vert Horz Vert Horz	QP QP QP QP QP QP QP QP QP QP QP QP	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.7 26.5 33.3 26.3 24.8 24.2 28.6 19.3 17.3 16.5 22.6	40.0 40.0 47.0 40.0 40.0 40.0 40.0 40.0	-13.3 -13.5 -13.7 -13.7 -15.2 -15.8 -18.4 -20.7 -22.7 -23.5 -24.4
33.054 33.197 492.058 95.962 48.000 38.882 36.040 504.017 66.000 66.000 66.000 66.000 947.693 194.846	54.4 45.1 43.6 47.9 53.3 49.6 44.7 42.6 43.0 46.4 44.4 41.5	-17.0 -18.4 -17.1 -14.6 -27.0 -23.3 -19.9 -18.4 -14.4 -27.1 -27.1 -25.0	1.0 1.0 2.1 1.7 4.0 1.2 1.0 3.9 1.6 1.5 3.3 1.0	(degrees) 17.0 308.0 0.0 317.0 104.0 233.0 51.0 328.0 318.0 318.0 219.0 207.0		10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		Vert Horz Horz Vert Vert Horz Vert Horz Vert Horz Vert	QP QP QP QP QP QP QP QP QP QP QP	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.7 26.5 33.3 26.3 26.3 24.8 24.2 28.6 19.3 17.3 16.5	40.0 40.0 47.0 40.0 40.0 40.0 40.0 47.0 40.0 40	-13.3 -13.5 -13.7 -13.7 -15.2 -15.8 -18.4 -20.7 -22.7 -23.5
33.054 35.887 33.197 492.058 95.962 48.000 38.882 36.040 504.017 66.000 66.000	54.4 45.1 43.6 47.9 53.3 49.6 44.7 42.6 43.0 46.4 44.4 41.5 30.8 38.6	-17.0 -18.4 -17.1 -14.6 -27.0 -23.3 -19.9 -18.4 -18.4 -14.4 -27.1 -27.1 -27.1 -27.1 -25.0 -8.2 -23.5	1.0 1.0 2.1 1.7 4.0 1.2 1.0 3.9 1.6 1.5 3.3 1.0 1.0 3.0	(degrees 17.0 308.0 0.0 317.0 104.0 233.0 51.0 328.0 318.0 318.0 318.0 219.0 207.0 82.0 179.0		10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		Vert Horz Horz Vert Vert Horz Vert Horz Vert Horz Vert Horz Horz	QP QP QP QP QP QP QP QP QP QP QP QP QP	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.7 26.5 33.3 26.3 26.3 24.8 24.2 28.6 19.3 17.3 16.5 22.6 15.1	40.0 40.0 47.0 40.0 40.0 40.0 40.0 40.0	-13.3 -13.5 -13.7 -13.7 -15.2 -15.8 -18.4 -20.7 -22.7 -23.5 -24.4 -24.9

Radiated Emissions

RADIATED SPURIOUS EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION	
Transmitting low channel	
Transmitting mid channel	
Transmitting high channel	

POWER SETTINGS INVESTIGATED

3.7 VDC battery via USB power

FREQUENCY RANGE INVESTIGATED									
Start Frequency	30 MHz	Stop Frequency	25 GHz						

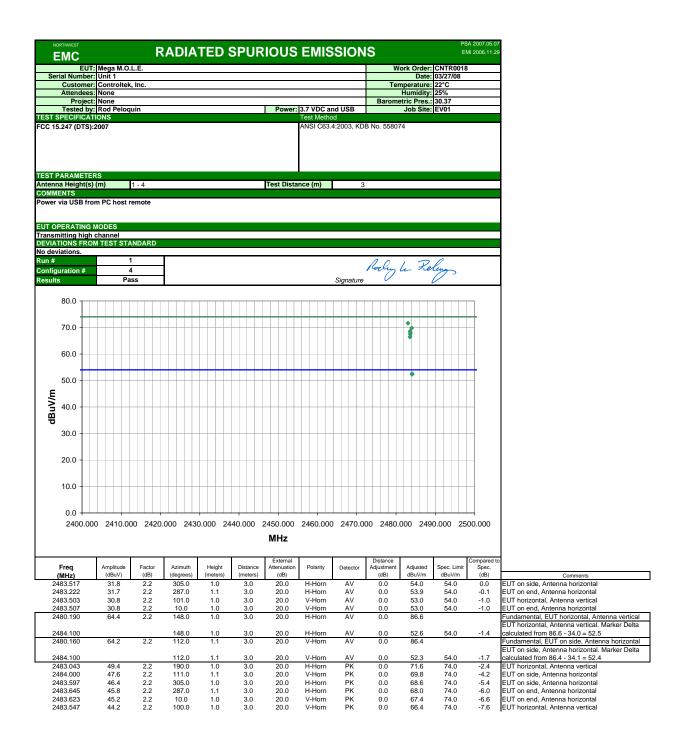
SAMPLE CALCULATIONS

NORTHWEST

EMC

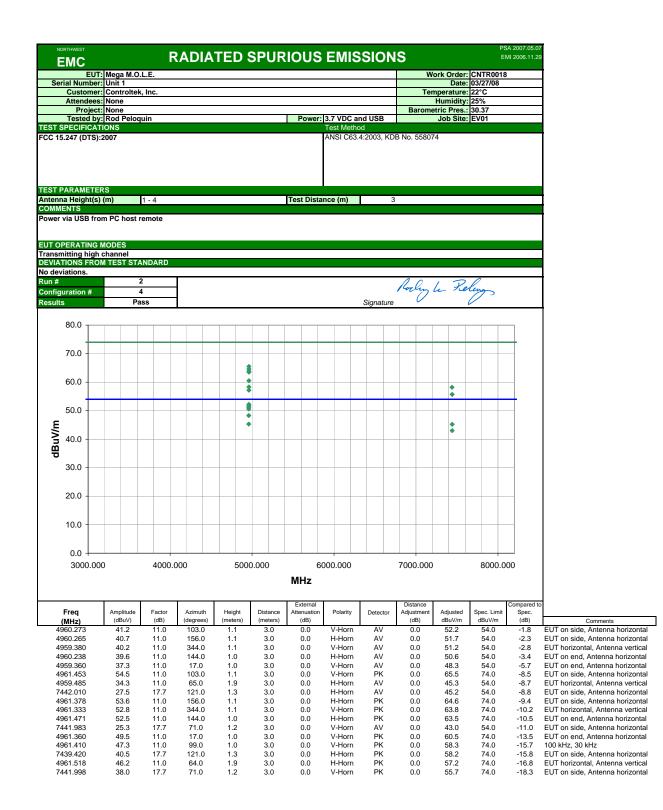
Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2007	13
High Pass Filter	Micro-Tronics	HPM50111	HFO	1/16/2008	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	12/29/2006	16
Antenna, Biconilog	EMCO	3141	AXE	1/15/2008	24
EV01 Cables		Bilog Cables	EVA	10/23/2007	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	1/3/2008	13
Antenna, Horn	EMCO	3115	AHC	8/24/2006	24
EV01 Cables		Double Ridge Horn Cables	EVB	1/3/2008	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	6/22/2007	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
EV01 Cables		Standard Gain Horns Cables	EVF	10/23/2007	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	6/22/2007	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
EV01 Cables		Standard Gain Horns Cables	EVF	10/23/2007	13
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	7/25/2007	13
Antenna, Horn	EMCO	3160-09	AHG	NCR	0
EV01 Cables		18-26GHz Standard Gain Horn Cable	EVD	7/25/2007	13

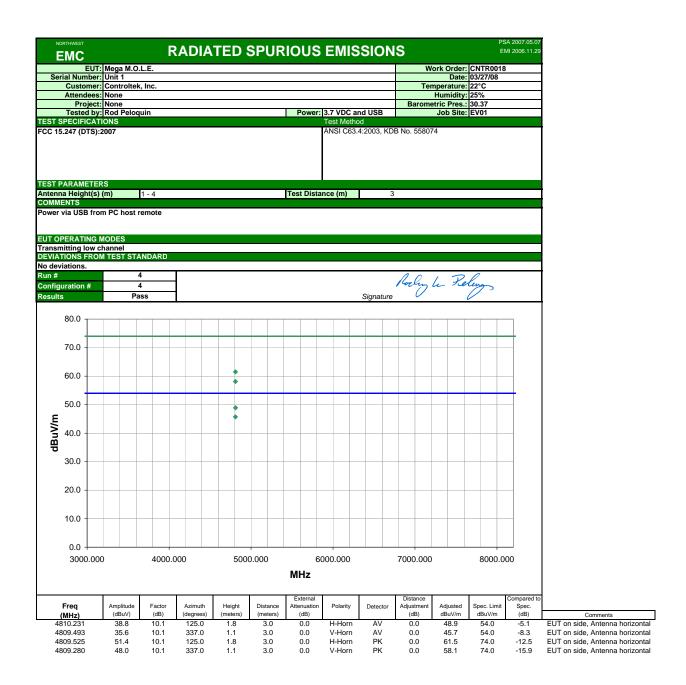

	Frequency Range	Peak Data	Quasi-Peak Data	Average Data	
	(MHz)	(kHz)	(kHz)	(kHz)	
	0.01 - 0.15	1.0	0.2	0.2	
	0.15 - 30.0	10.0	9.0	9.0	
	30.0 - 1000	100.0	120.0	120.0	
-	Above 1000	1000.0	N/A	1000.0	

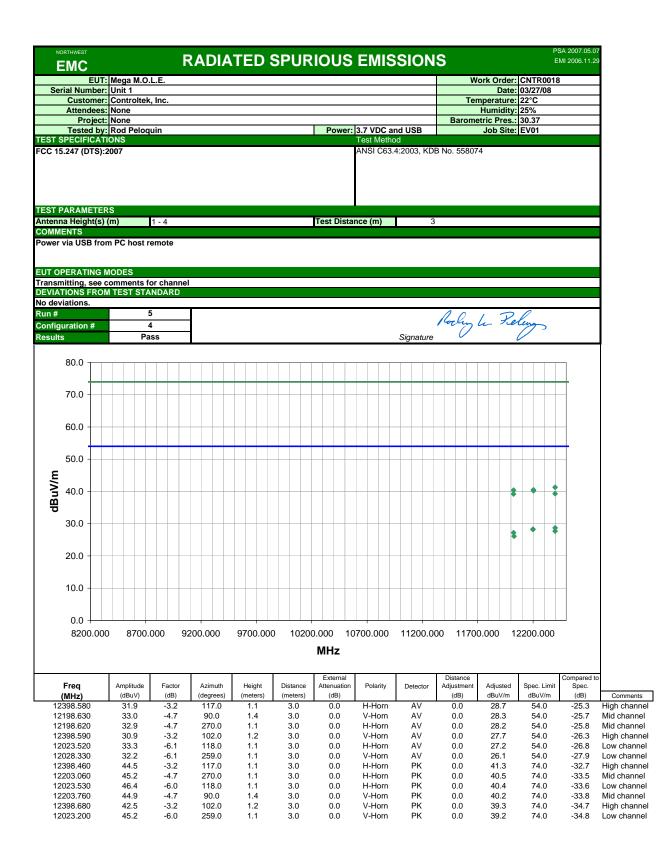
MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.




NORTHWEST EMC	RADIA	TED SPURIOUS EMISS	SIONS	PSA 2007.05.07 EMI 2006.11.29
	Mega M.O.L.E.		Work Order:	CNTR0018
Serial Number:			Date:	03/27/08
	Controltek, Inc.		Temperature:	
Attendees:			Humidity:	
Project:	None Rod Peloquin	Bower: 2.7 VDC and	Barometric Pres.:	
TEST SPECIFICATI		Power: 3.7 VDC and Test Method		EVUI
FCC 15.247 (DTS):2	2007	ANSI C63.4:	2003, KDB No. 558074	
TEST PARAMETER				
Antenna Height(s) COMMENTS	(m) 1 - 4	Test Distance (m)	3	
Power via USB from EUT OPERATING M Transmitting high o	IODES	tal, EUT Antenna vertical, Measurement Anter	nna Horizontal	
DEVIATIONS FROM				
No deviations.				
Run #	1		ROIP.	0
Configuration #	4		Tooling he set	eng
Results	NA	5	Signature Rocky le Pier	
🔆 🔆 Agilent 1	l1:56:46 Mar 27, 20	08	RT	
Ref 72 dB µ V	#f	Atten 0 dB	∆ MI	kr1 4.09 MHz –34.02 dB
#Peak	\$			
Log 5	MARY MA			*
dB/	J. I M			
	$\int_{-\infty}^{\infty}$			
^	<u>и</u> – М			
	\ \			
LgAv				
VI 5271 S3 FC				
£ (f): f>50k				
Śwp		Y Y YY	MA ~	
			M W M	MA WA
			N	
Center 2.483				Span 10 MHz
#Res BW 100	kHz	#VBW 100 kHz		s (5000 pts)

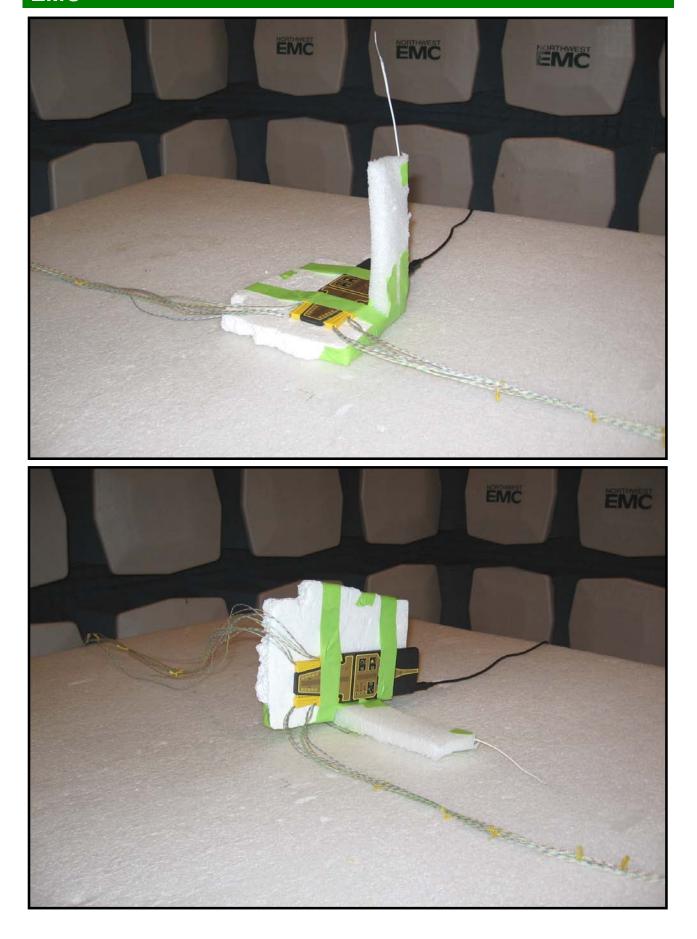
NORTHWEST EMC	RADIA	ATED SPURIOUS E	MISSION	S	PSA 2007.05.07 EMI 2006.11.29
	Mega M.O.L.E.			Work Order:	CNTR0018
Serial Number:				Date:	03/27/08
	Controltek, Inc.			Temperature:	
Attendees:				Humidity:	
Project:		Bowers 2.7)	DC and USB	Barometric Pres.:	
TEST SPECIFICATI	Rod Peloquin		/DC and USB Method	Job Site:	EV01
FCC 15.247 (DTS):2			I C63.4:2003, KDE	3 No. 558074	
TEST PARAMETER Antenna Height(s) (Test Distance (m) 2		
COMMENTS	(m) 1 - 4	Test Distance (m) 3		
Power via USB from EUT OPERATING M Transmitting high c	IODES	, EUT Antenna Horizontal, Measureme	nt Antenna Vertic	al	
DEVIATIONS FROM	TEST STANDARD				
No deviations.					
Run #	1			Portug la Re	0
Configuration #	4			oun the set	ing
Results	NA		Signature	<u> </u>	
🔆 🔆 Agilent 1	10:59:21 Mar 27, 20	08		RT	
Ref 72 dB µ V	#1	Atten 0 dB		Δ M	kr1 4.12 MHz –34.09 dB
#Peak				1 1	-04.00 GD
Log 5	WAR WAA				
dB/					
A -					
	<u> </u>				
\$3 FC		₩ [,] , , , , , , , , , , , , , , , , , ,			
£ (f): f>50k		hr My the	Λ.		
Śwp			m wh	MA	<u>مەل</u> ە
			V	W May	W MAR
Center 2.483	50 GHz				Span 10 MHz
#Res BW 100		#VBW 100 kHz	5	Sweep 1.333 m	

	RTHWEST			R	RADIA	TED	SPUR	IOUS	FMIS	SIO	IS			SA 2007.05.0 MI 2006.11.2
	MC		loga M C			TED		1000	Enne			ork Orde		
Ser	ial Num		/lega M.O. Jnit 1	L.E.							VV	Date:	CNTR001	8
	Custor	ner: C	Controltek	, Inc.							Ter	nperature:	22°C	
	Attende	ees: N ject: N									Barome	Humidity: etric Pres.:		
	Tested	by: F	one Rod Peloq	uin				Power:	3.7 VDC a	nd USB	Baronie	Job Site:	EV01	
	PECIFIC	CATIO	NS						Test Metho	d				
C 15	5.247 (D1	rs):20	07						ANSI C63.	4:2003, K	DB No. 55807	'4		
ntenn OMM		t(s) (n	n)	1 - 4				Test Distar	nce (m)		3			
ower	via USB	from	PC host r	emote										
	PERATIN													
EVIA.		nid cha ROM	annel TEST STA	NDARD										
	iations.	_		3							1		0	
un # onfia	uration #	ŧ		4							Rochy	he Re	leng	
esult			Pa							Signatur	. /		\mathcal{U}°	
	00.0													
	80.0													
	70.0 -													1
	60.0 -													
	-									•		•		4
-	50.0 -									•				_
//														
dBuV/m	40.0 -											•		-
•	30.0 -													_
	20.0 -													_
	10.0 -													
	0.0 +													
	1000	.000											100	000.000
								MHz						
	Freq (MHz)		Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	External Attenuation (dB)	Polarity	Detector	Distance Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Compared 1 Spec. (dB)
48	379.480	L	38.6	10.5	95.0	1.0	3.0	0.0	V-Horn	AV	0.0	49.1	54.0	-4.9
	379.445		36.6	10.5	165.0	1.1	3.0	0.0	H-Horn	AV	0.0	47.1	54.0	-6.9
	319.297 379.467		25.2 51.1	17.1 10.5	318.0 95.0	1.0 1.0	3.0 3.0	0.0 0.0	H-Horn V-Horn	AV PK	0.0 0.0	42.3 61.6	54.0 74.0	-11.7 -12.4
	322.028		24.4	10.5	343.0	1.0	3.0	0.0	V-Horn	AV	0.0	41.5	74.0 54.0	-12.4
48	381.425		49.4	10.5	165.0	1.1	3.0	0.0	H-Horn	PK	0.0	59.9	74.0	-14.1
	321.850		38.2	17.1	318.0	1.0	3.0	0.0	H-Horn	PK	0.0	55.3	74.0	-18.7
73	322.008		37.9	17.1	343.0	1.1	3.0	0.0	V-Horn	PK	0.0	55.0	74.0	-19.0

NORTHWEST

RADIATED SPURIOUS EMISSIONS

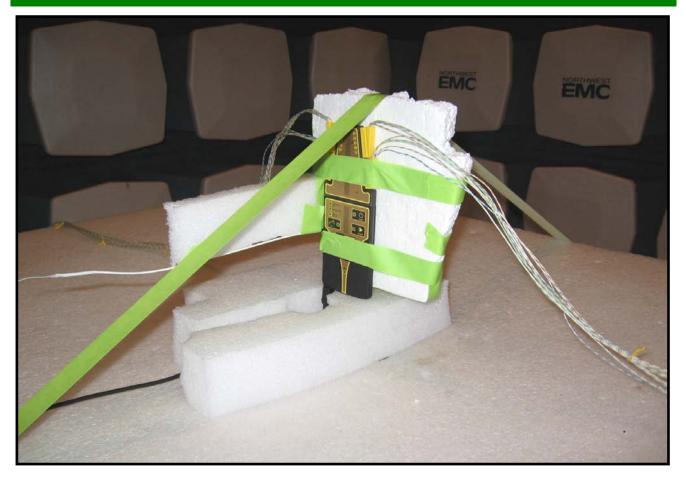
PSA 2007.05.07


9

0

00

NORTHWEST EMC


RADIATED SPURIOUS EMISSIONS

NORTHWEST

RADIATED SPURIOUS EMISSIONS

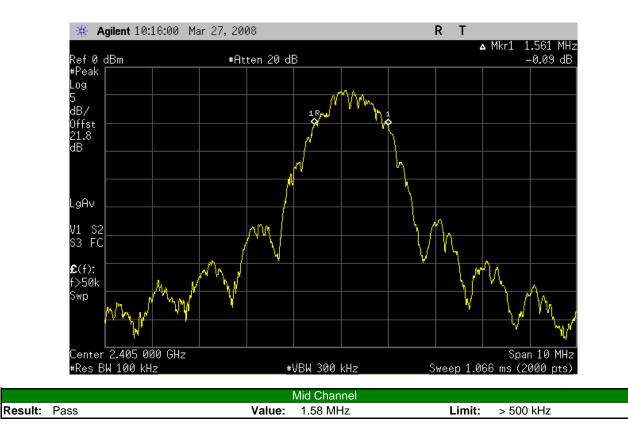
PSA 2007.05.07

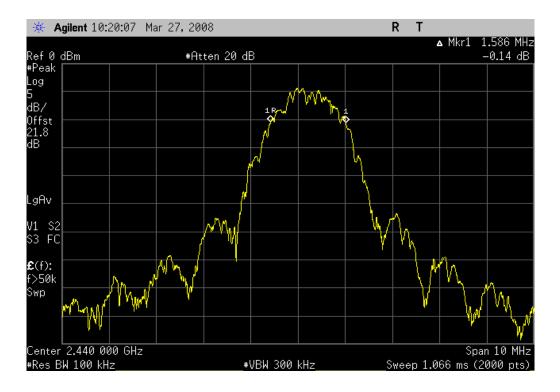
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13

MEASUREMENT UNCERTAINTY

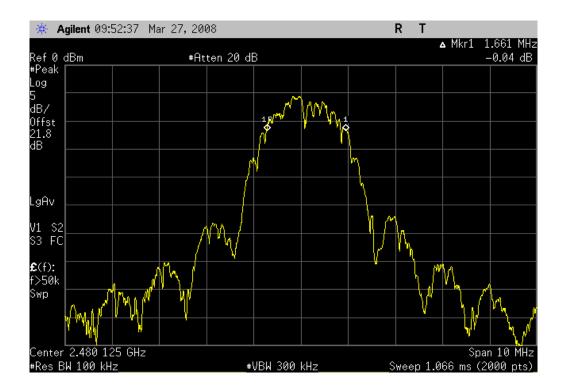
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

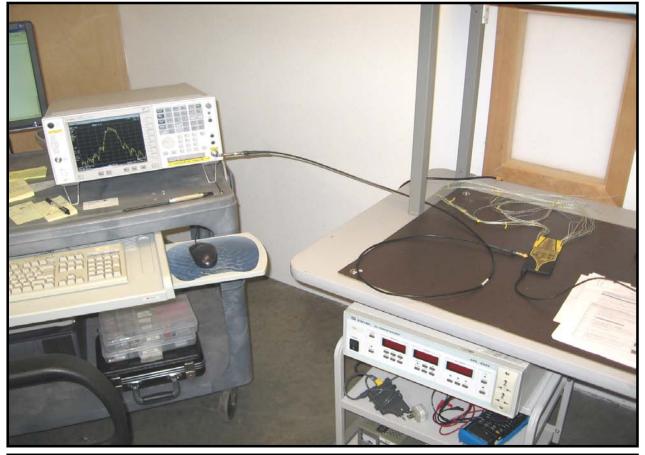

TEST DESCRIPTION


The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

NORTHWEST EMC		OCCUPIED E	BANDWIDTH		XMit 2007.06.13
EUT:	Mega M.O.L.E.			Work Order:	CNTR0018
Serial Number:	Unit 1			Date:	03/26/08
Customer:	Controltek, Inc.			Temperature:	23°C
Attendees:	Sean Scott, Paul			Humidity:	25%
Project:	None			Barometric Pres.:	29.95
	Rod Peloquin		Power: 3.7 V DC nominal	Job Site:	EV06
TEST SPECIFICATI	IONS		Test Method		
FCC 15.247 (DTS):2	2007		ANSI C63.4:2003 KDB N	o. 558074	
COMMENTS					
None					
DEVIATIONS FROM	I TEST STANDARD				
None					
Configuration #	1	Signature Rocky Le	Reling		
			v	alue Li	mit Results
Low Channel					0 kHz Pass
Mid Channel			1.5	8 MHz > 50	0 kHz Pass
High Channel			1.6	6 MHz > 50	0 kHz Pass

OCCUPIED BANDWIDTH


	Low Channel					
Result:	Pass	Value:	1.56 MHz	Limit:	> 500 kHz	


OCCUPIED BANDWIDTH

	High Channel					
Result:	Pass	Value:	1.66 MHz	Limit:	> 500 kHz	

OCCUPIED BANDWIDTH

EMC

OUTPUT POWER

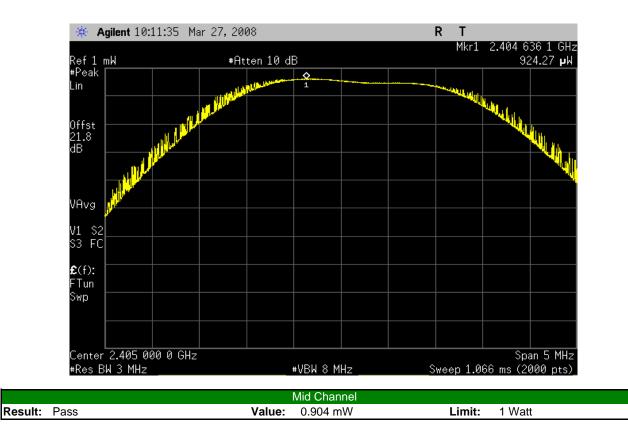
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

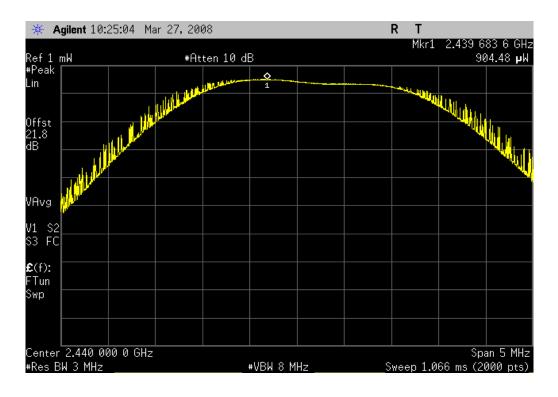
TEST EQUIPMENT								
Description	Manufacturer	Model	ID	Last Cal.	Interval			
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12			
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13			
Power Sensor	Gigatronics	80701A	SPL	12/7/2007	13			
Power Meter	Gigatronics	8651A	SPM	12/7/2007	13			
Signal Generator	Hewlett-Packard	8648D	TGC	12/7/2007	13			

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION


The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.


De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

NORTHWEST EMC		OUTPUT I	POWEI	र		XMit 2007.06.13
EUT:	Mega M.O.L.E.				Work Order:	CNTR0018
Serial Number:	Unit 1				Date:	03/26/08
Customer:	Controltek, Inc.				Temperature:	23°C
Attendees:	Sean Scott, Paul				Humidity	25%
Project:					Barometric Pres.:	29.95
	Rod Peloquin			V DC nominal	Job Site:	EV06
TEST SPECIFICATI	IONS		Te	st Method		
FCC 15.247 (DTS):2	2007		AN	ISI C63.4:2003 KDB No	. 558074	
COMMENTS						
None						
DEVIATIONS FROM	I TEST STANDARD					
None						
Configuration #	1	Signature Rocky ter	Reling			
						mit Results
Low Channel						Vatt Pass
Mid Channel						Vatt Pass
High Channel				0.81	1 mW 1 \	Vatt Pass

OUTPUT POWER

Low Channel				
Result: Pass	Value: 0.924 mW	Limit: 1 Watt		

NORTHWEST

OUTPUT POWER

High Channel				
Result: Pass	Value: 0.811 mW	Limit: 1 Watt		

OUTPUT POWER

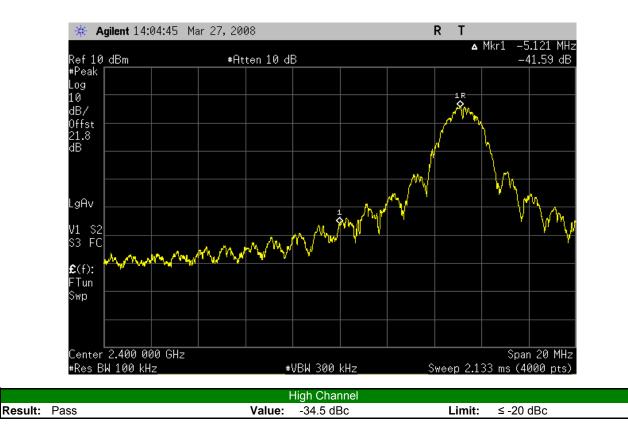
BAND EDGE COMPLIANCE

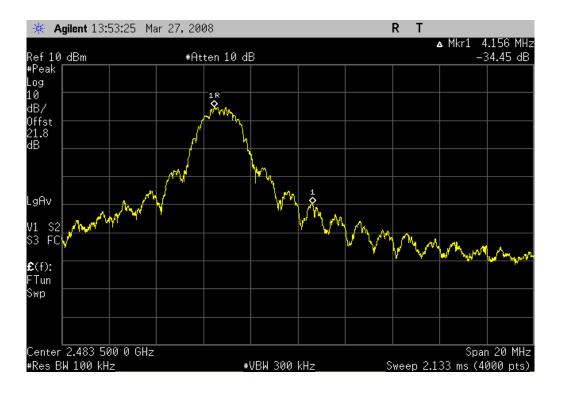
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT								
Description	Manufacturer	Model	ID	Last Cal.	Interval			
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12			
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13			

MEASUREMENT UNCERTAINTY

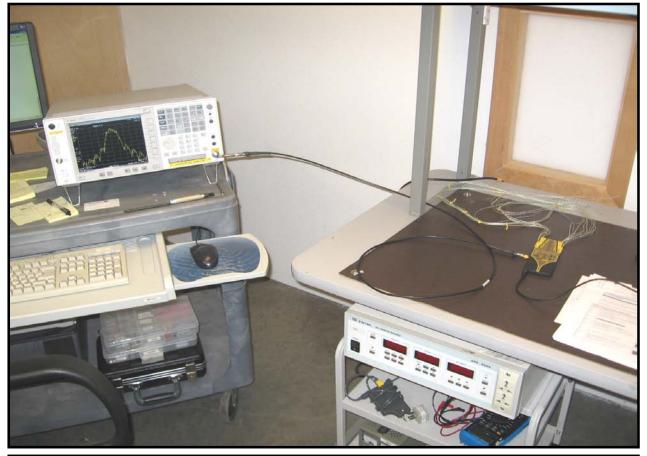
Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.


TEST DESCRIPTION


The requirements of FCC 15.247(d) for emissions at least 20dB below the carrier in any 100kHz bandwidth outside the allowable band was measured with the EUT set to low and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. The channels closest to the band edges were selected. The spectrum was scanned across each band edge from 10 MHz below the band edge to 10 MHz above the band edge.

NORTHWEST EMC	BAND EDGE C	OMPLIANCE		XMit 2007.06.13
EUT: Mega M.O.L.E.			Work Order: CNTR	
Serial Number: Unit 1			Date: 03/26	/08
Customer: Controltek, Inc.			Temperature: 23°C	
Attendees: Sean Scott, Paul A	usten		Humidity: 25%	
Project: None			Barometric Pres.: 29.95	
Tested by: Rod Peloquin		Power: 3.7 V DC nominal	Job Site: EV06	
TEST SPECIFICATIONS		Test Method		
FCC 15.247 (DTS):2007		ANSI C63.4:2003 KDB No. 5	58074	
COMMENTS				
None				
DEVIATIONS FROM TEST STANDARD				
Configuration # 1	Signature	Reling		
		Value	Limit	Results
Low Channel		-41.6 dBc	≤ -20 dBc	Pass
High Channel		-34.5 dBc	≤ -20 dBc	Pass

BAND EDGE COMPLIANCE


		Low Channel	
Result:	Pass	Value: -41.6 dBc	Limit: ≤ -20 dBc

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13
Power Sensor	Gigatronics	80701A	SPL	12/7/2007	13
Power Meter	Gigatronics	8651A	SPM	12/7/2007	13
Signal Generator	Hewlett-Packard	8648D	TGC	12/7/2007	13

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

NORTHWEST

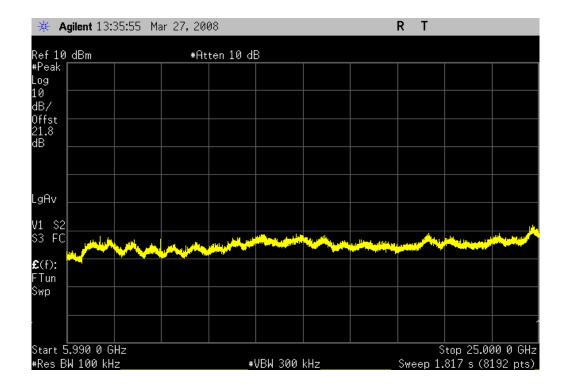
EMC

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

NORTHWEST						XMit 2007.06.13
EMC		SPURIOUS CONDL	JCTED EMISSION	S		
	Mega M.O.L.E.			N	ork Order: CNTR0018	
Serial Number:					Date: 03/26/08	
	Controltek, Inc.			Te	mperature: 23°C	
	Sean Scott, Paul Austen	1			Humidity: 25%	
Project:				Barom	etric Pres.: 29.95	
	Rod Peloquin		Power: 3.7 V DC nominal		Job Site: EV06	
TEST SPECIFICAT			Test Method			
FCC 15.247 (DTS)::	2007		ANSI C63.4:2003 KDB	No. 558074		
COMMENTS						
None						
DEVIATIONS FROM	M TEST STANDARD					
None						
Configuration #	1	Rocky le	Pelen			
Configuration #	I	Signature				
				Value	Limit	Results
Low Channel						
	0MHz - 6GHz		-2	9.28 dBc	≤ -20 dBc	Pass
	5.9GHz - 25GHz		<	-40 dBc	≤ -20 dBc	Pass
Mid Channel						
	0MHz - 6GHz		-2	8.85 dBc	≤ -20 dBc	Pass
	5.9GHz - 25GHz		<	-40 dBc	≤ -20 dBc	Pass
High Channel						
-	0MHz - 6GHz		-2	8.03 dBc	≤ -20 dBc	Pass
	5.9GHz - 25GHz		<	-40 dBc	≤ -20 dBc	Pass

	Low Channel, 0MHz - 6GHz			
Result: Pass	Value: -29.28 dBc	Limit:	≤ -20 dBc	

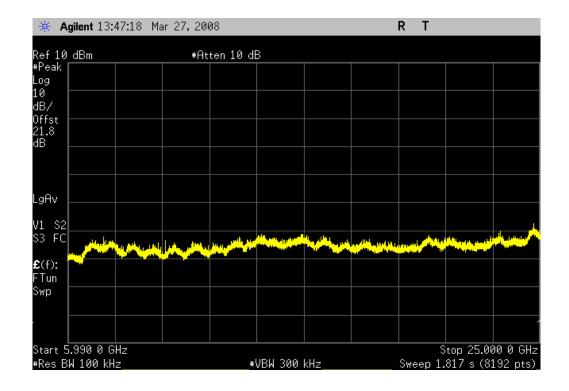
Ref 10 dBm	#Q+	ten 10 dl	R			Δ	Mkr1 2.4	05 э GH. 29.28 dB
#Peak	+Ht	ten re di						-5.20 UD
Log								
10		1						
dB/		<	>					
Offst								
21.8								
dB								
							• •	
							ř	
LgAv								
V1 S2								
\$3 FC								
				usuka i	1			
£(f):		de textitat						The second second
FTun								
Swp								
Start 30.0 MHz								⊥ NA A GHz
#Res BW 100 kHz_		#	VBW 300	kHz	\$		0.6 ms (8	


	Low Channel, 5.9GHz - 25GH	IZ
Result: Pass	Value: < -40 dBc	Limit: ≤ -20 dBc

🔆 Agilent 13	:26:59 Ma	ar 27, 200	98				RT		
Ref 10 dBm		#A+	ten 10 di	3					.619 9 GHz 52.74 dBm
#Peak									
Log									
10 dB/									
Offst 🗕 🔤									
21.8									
dB									
LgAv									
V1 S2	1								
V1 S2 S3 FS	, series and s	والمستحد والمعالي	المليه الملجم والمل	a a share ya share	New York	a de la deserve			Contraction of the
£(f):									
Swp									
Start 5.990 0									000 0 GHz
#Res BW 100 k	Hz		#	VBW 300	kHz		Sweep 1.	.817 s (8192 pts)_

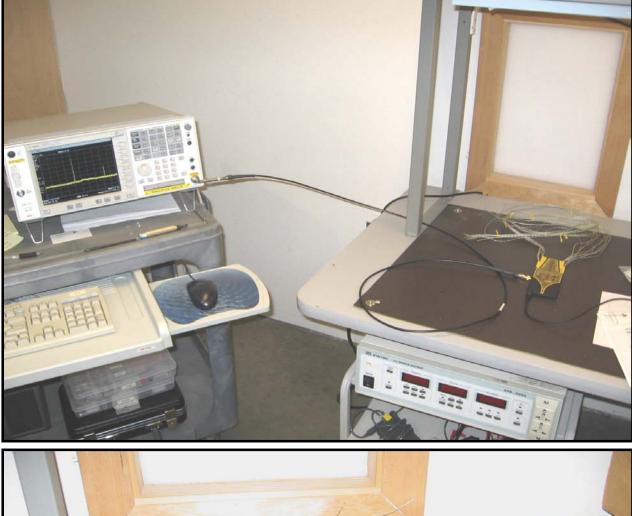
		Mid Ch	annel, 0MHz - 6GHz		
Result:	Pass	Value:	-28.85 dBc	Limit:	≤ -20 dBc

		10 10			∆ Mkr	1 2.438 7 GH:
Ref 10 dBm #Peak	#Htten	10 dB				-28.85 dB
+reak Log						
10		1R				
dB/		Ŷ				
Öffst						
21.8						
dB						
					1_	
					\$	
LgAv						
M1 S2		<mark>/</mark>				
\$3 FC						
		معط ولنانية عنورها أفريلته بوري	a della se el a un	A CONTRACTOR OF A	and the second second	and the second state of the second states
		and the second s			and a sector ball of the sector ball	a second a s
FTun						
Swp						
Start 30.0 MHz						p 6.000 0 GHz
#Res BW 100 kHz <u> </u>		#VBW 300	kHz	Swe	eep 570.6	ms (8192 pts)


		Mid Char	inel, 5.9GHz - 25GHz		
Result:	Pass	Value:	< -40 dBc	Limit:	≤ -20 dBc

	High Channel, 0MHz - 6GHz		
Result: Pass	Value: -28.03 dBc	Limit:	≤ -20 dBc

Ref 10 dBm	#O++	en 10 di	>			ΔΙ	Mkr1 2.4	28.03 dB
#Peak	#Htt	en 10 ai			1		_	20.05 AD T
Log								
10			1 R					
dB/			\$					
Offst								
21.8								
dB								
							1	
							\$	
_gAv								
/1 S2								
S3 FC								
E (f):						a de la d	a da la davida d	he he he he he he he he he
FTun								
Swp								
Start 30.0 MHz							Stop 6 0	00 0 GHz
#Res BW 100 kHz		#	VBW 300	kH-2	<	weep 570		
		"	-DN 300	M112				102 pt3/


Result: Pass

NORTHWEST

SPURIOUS CONDUCTED EMISSIONS

XMit 2007.06.13

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

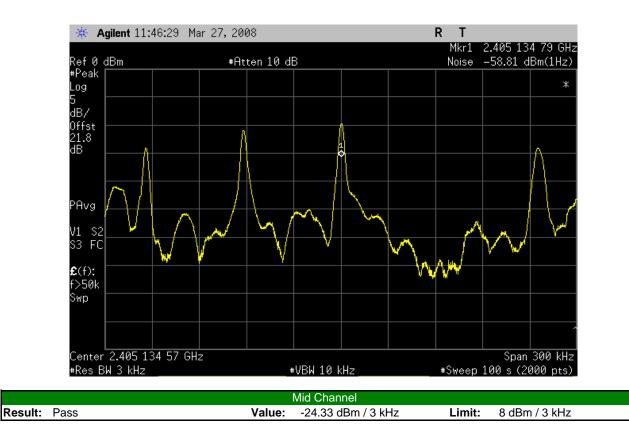
TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAY	12/18/2007	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	6/8/2007	13
Power Sensor	Gigatronics	80701A	SPL	12/7/2007	13
Power Meter	Gigatronics	8651A	SPM	12/7/2007	13
Signal Generator	Hewlett-Packard	8648D	TGC	12/7/2007	13

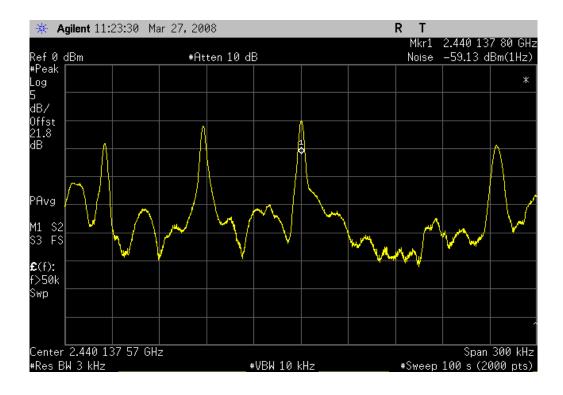
MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The peak power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. Per the procedure outlined in FCC 97-114, the spectrum analyzer was used as follows:

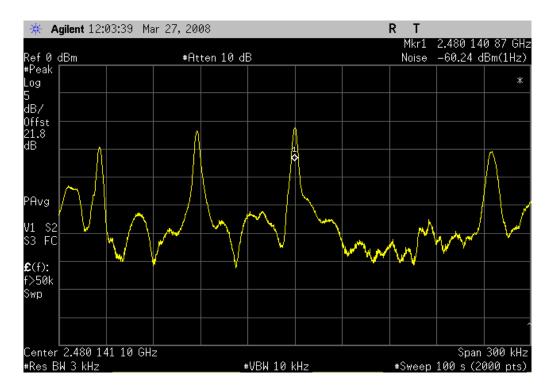

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be 1.5 x $10^6 \div 3 \times 10^3 = 500$ seconds. External attenuation was used and added to the reading. The following FCC procedure was used for modifying the power spectral density measurements:

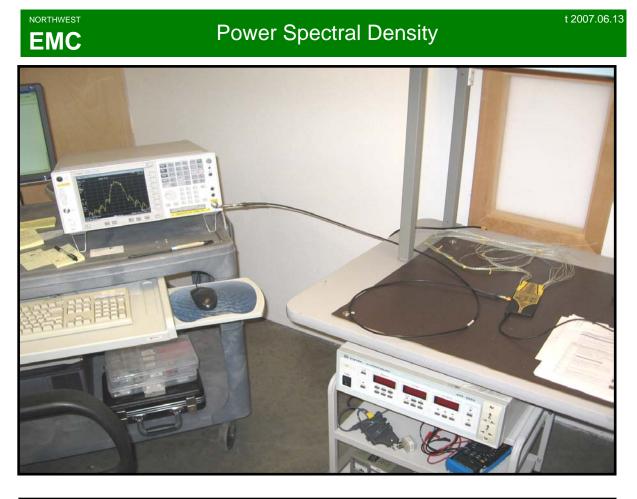

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 34.8 dB for correction to 3 kHz."

NORTHWEST						XMit 2007.06.13
EMC		POWER SPEC	TRAL I	DENSITY		
EUT:	Mega M.O.L.E.				Work Order:	CNTR0018
Serial Number:					Date:	03/26/08
Customer:	Controltek, Inc.				Temperature:	23°C
Attendees:	Sean Scott, Paul Austen				Humidity:	
Project:					Barometric Pres.:	
	Rod Peloquin			3.7 V DC nominal	Job Site:	EV06
TEST SPECIFICATI	ONS			Test Method		
FCC 15.247 (DTS):2	2007			ANSI C63.4:2003 KDB N	o. 558074	
COMMENTS						
None						
DEVIATIONS FROM	I TEST STANDARD					
None						
Configuration #	1	Signature Rocky Le	Reling	>		
						mit Results
Low Channel						/ 3 kHz Pass
Mid Channel				-24.33 d	Bm / 3 kHz 8 dBm	/ 3 kHz Pass
High Channel				-25.4 dE	3m/3kHz 8dBm	/ 3 kHz Pass

POWER SPECTRAL DENSITY

	Low Channel	
Result: Pass	Value: -24.01 dBm / 3 kHz	Limit: 8 dBm / 3 kHz





8 dBm / 3 kHz

 High Channel

 Result:
 Pass
 Value:
 -25.4 dBm / 3 kHz
 Limit:

EMC

AC POWERLINE CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

Transmitting high channel	
Transmitting mid channel	
Transmitting low channel	

POWER SETTINGS INVESTIGATED

120V/60Hz

CONFIGURATIONS INVESTIGATED

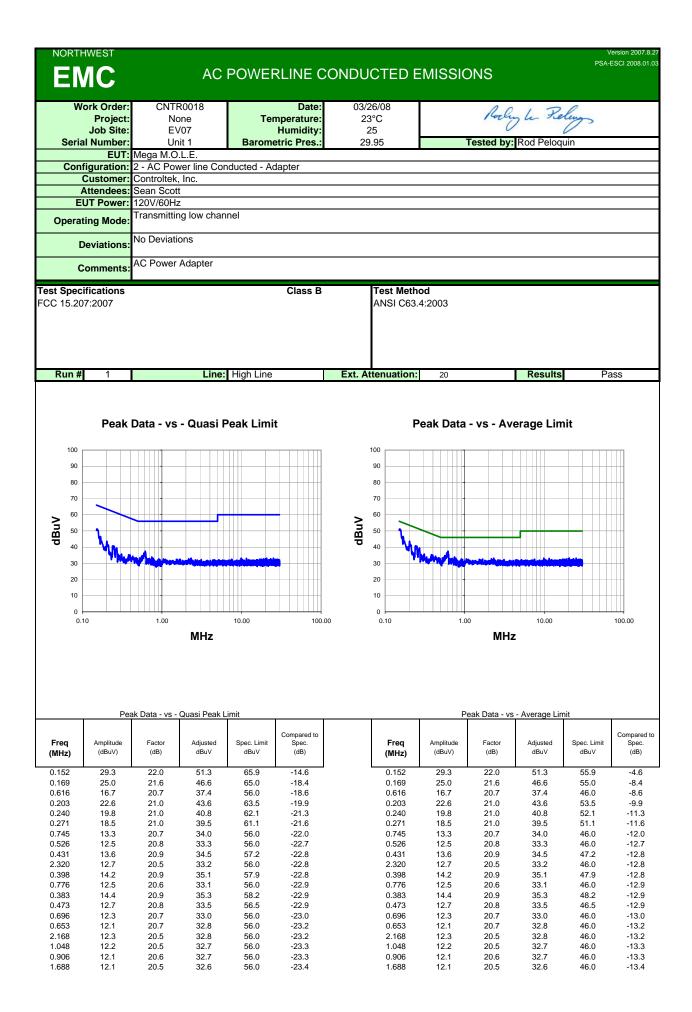
CNTR0018 - 3) AC Power line Conducted - PC Host CNTR0018 - 2) <u>AC Power line Conducted - Adapter</u>

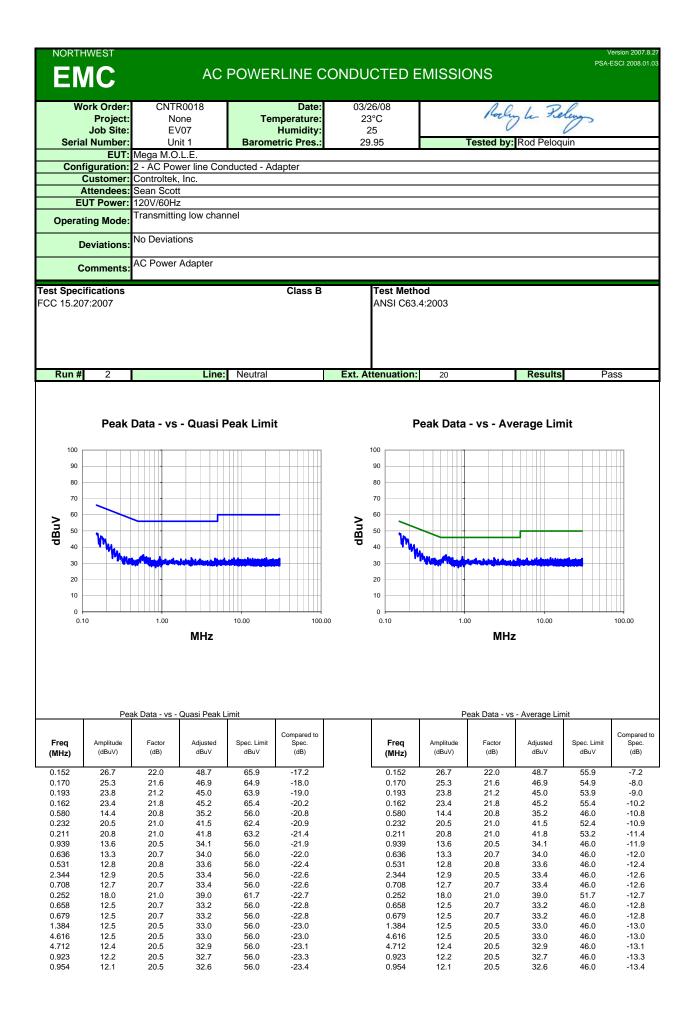
SAMPLE CALCULATIONS

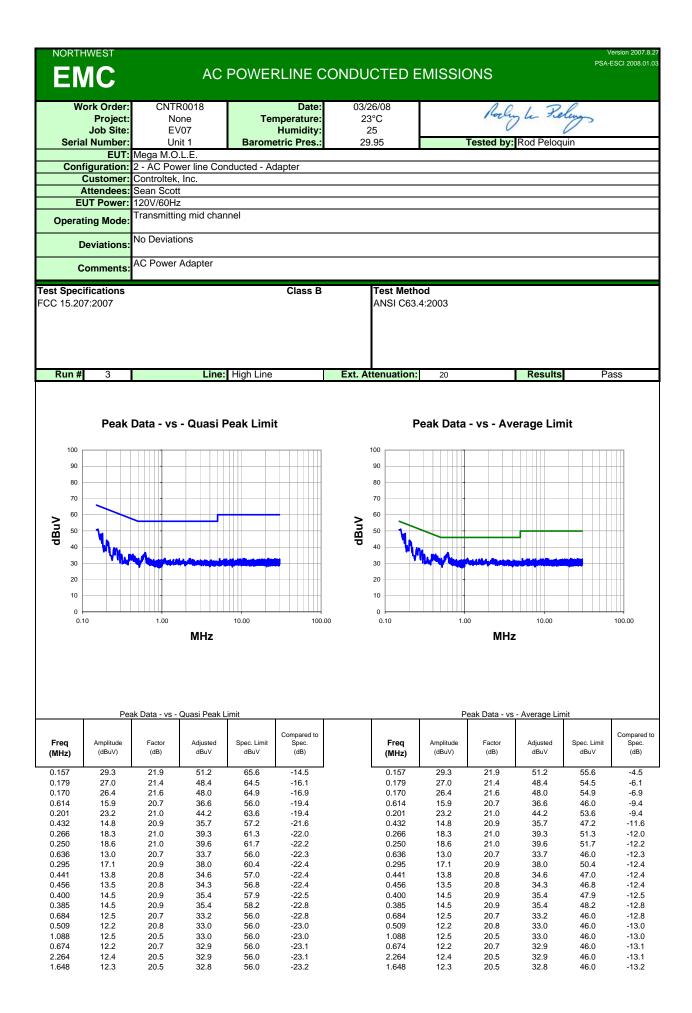
Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

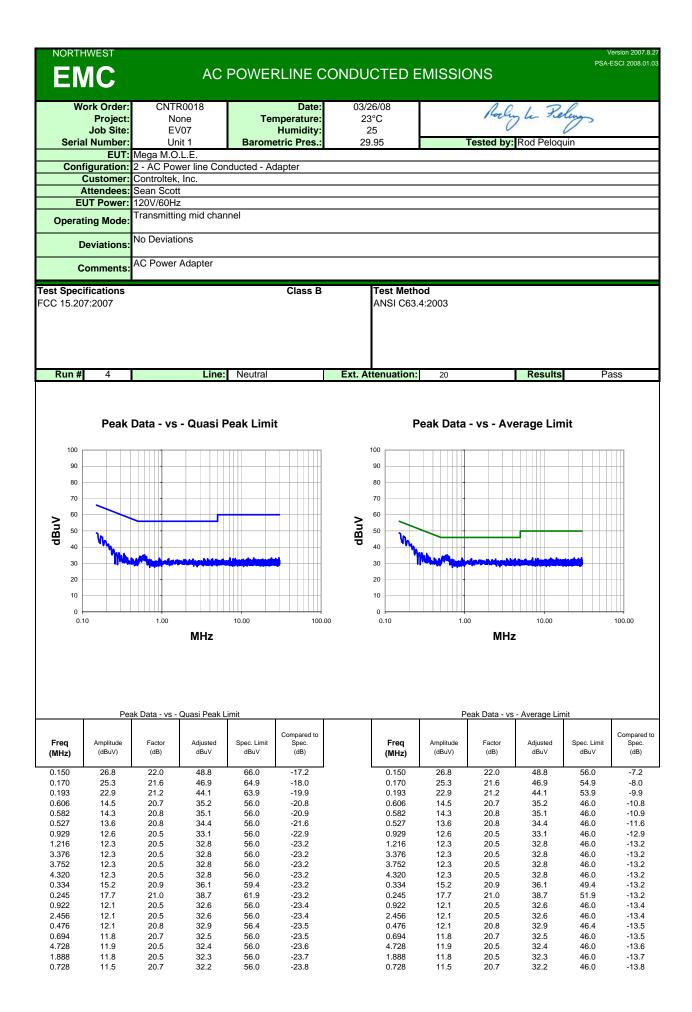
TEST EQUIPMENT

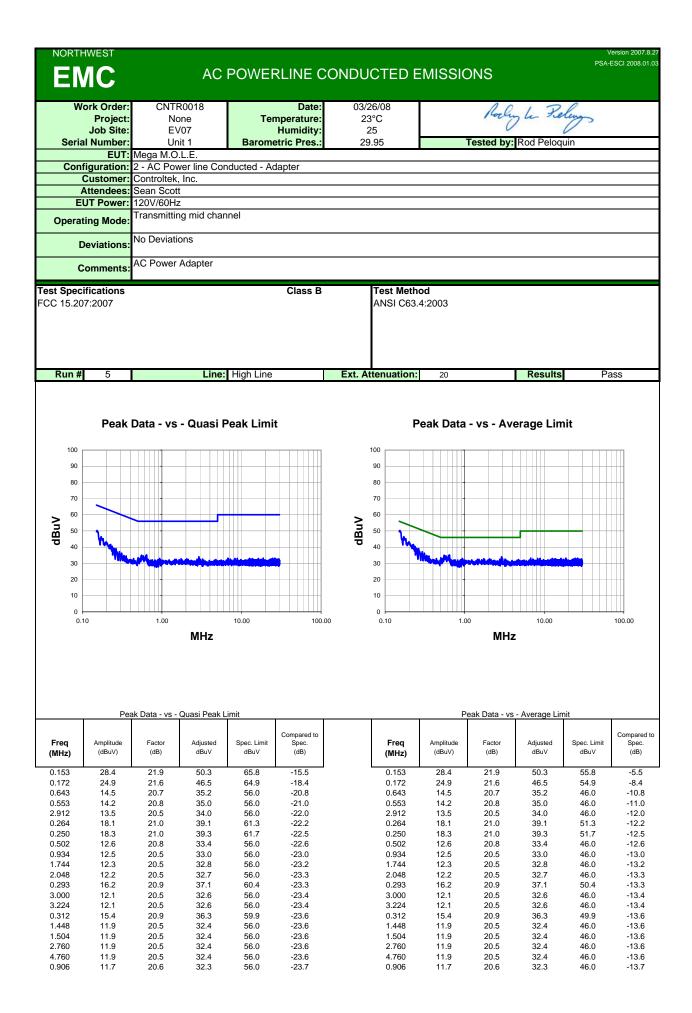
Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwartz	ESCI	ARG	12/7/2007	13 mo
Attenuator	Coaxicom	66702 2910-20	ATO	5/25/2007	13 mo
High Pass Filter	T.T.E.	7766	HFG	2/5/2008	13 mo
LISN	Solar	9252-50-R-24-BNC	LIP	1/4/2008	13 mo
LISN	Solar	9252-50-R-24-BNC	LIR	1/4/2008	13 mo
EV07 Cables		Conducted Cables	EVG	4/17/2007	13 mo

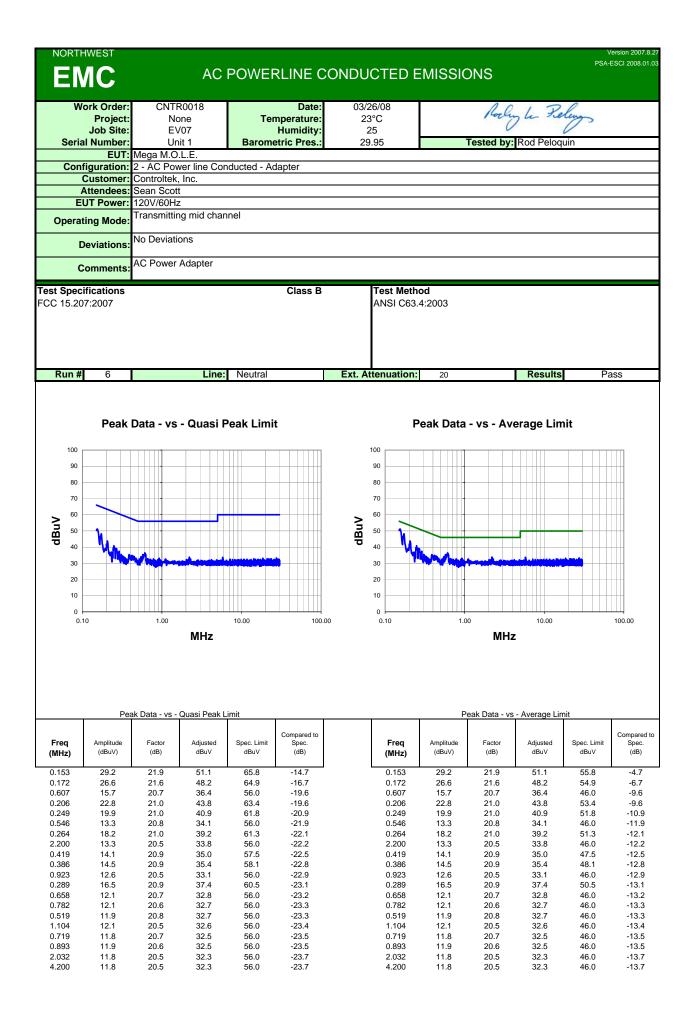

Frequency R	ange Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.1	5 1.0	0.2	0.2
0.15 - 30.	0 10.0	9.0	9.0
30.0 - 100	0 100.0	120.0	120.0
Above 100	0 1000.0	N/A	1000.0

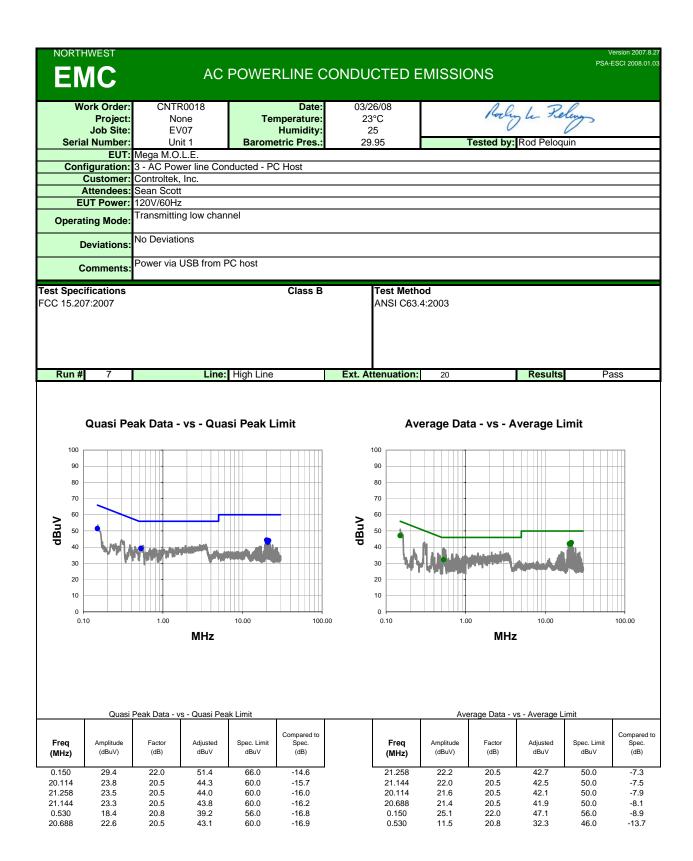

MEASUREMENT UNCERTAINTY

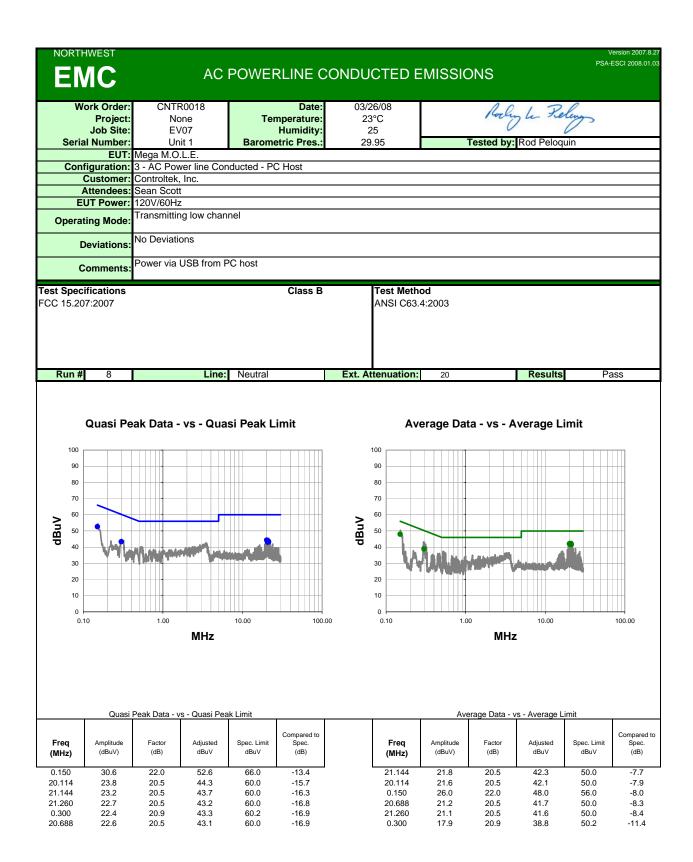

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

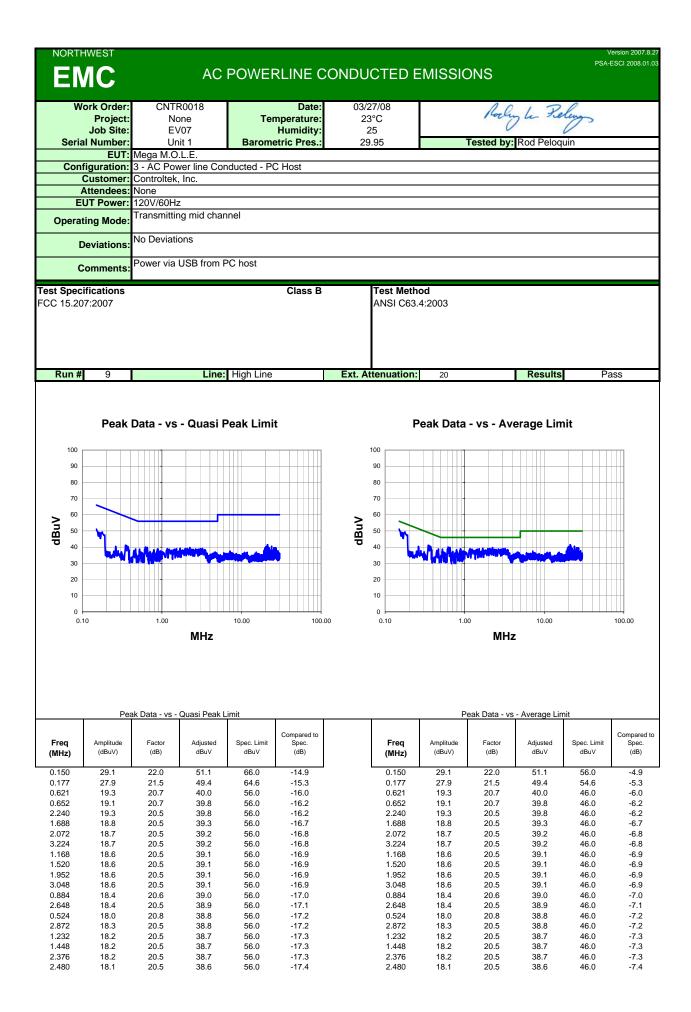

TEST DESCRIPTION

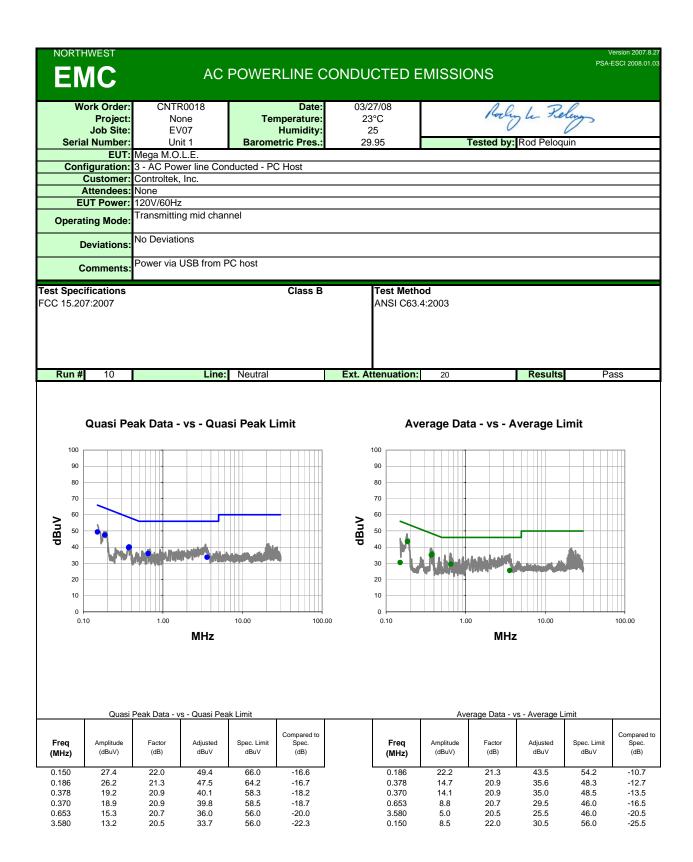

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 500hm measuring port is terminated by a 500hm EMI meter or a 500hm resistive load. All 500hm measuring ports of the LISN are terminated by 500hm.

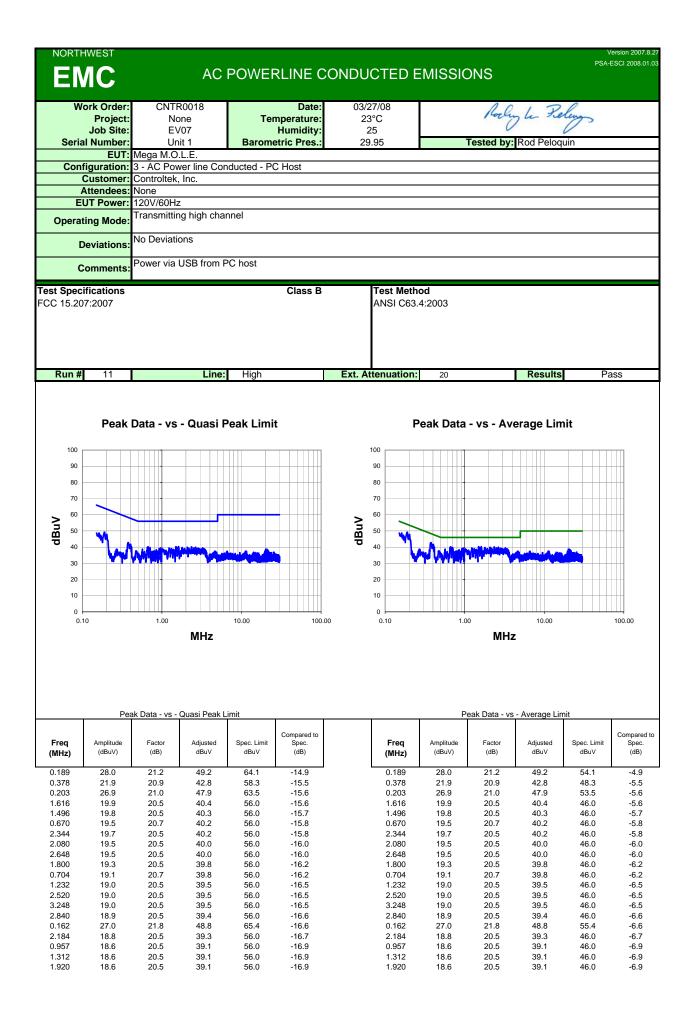


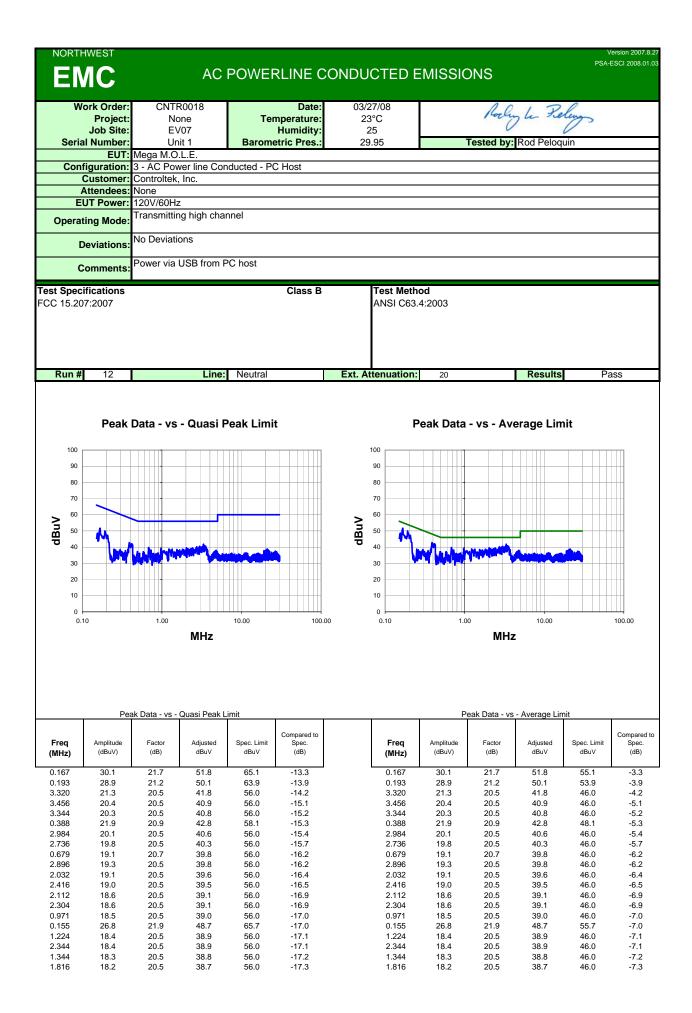


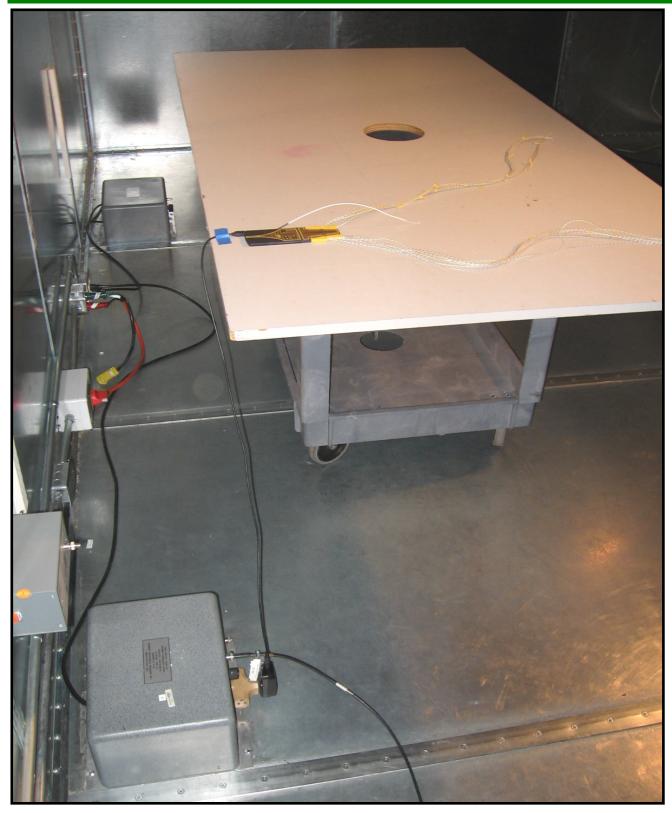




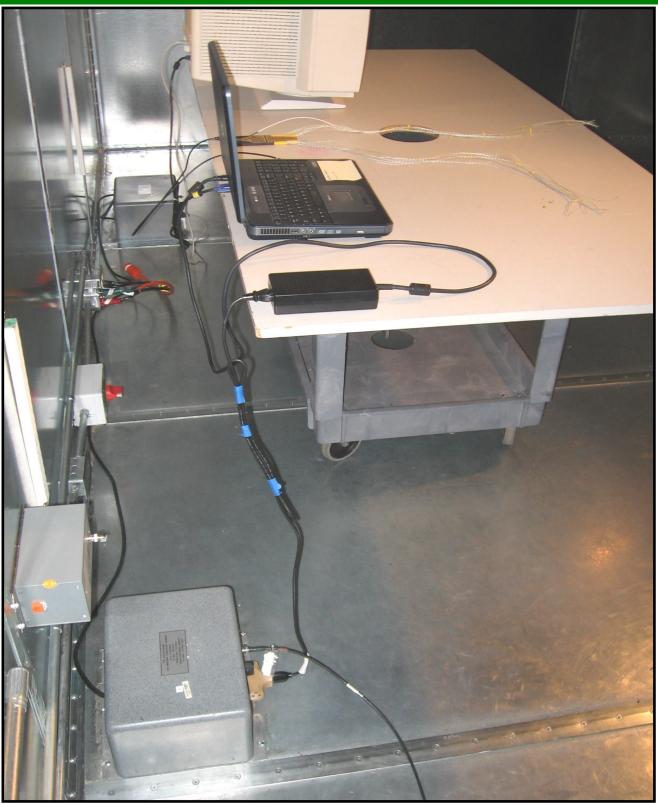








PSA-ESCI 2008.01.03



PSA-ESCI 2008.01.03

