

# Appendix C. Maximum Permissible Exposure



## 1. Maximum Permissible Exposure

## 1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device. (A) Limits for Occupational / Controlled Exposure

| Frequency Range<br>(MHz) | Electric Field<br>Strength (E) (V/m) | Magnetic Field<br>Strength (H) (A/m) | Power Density (S)<br>(mW/ cm²) | Averaging Time<br> E  <sup>2</sup> ,  H  <sup>2</sup> or S<br>(minutes) |
|--------------------------|--------------------------------------|--------------------------------------|--------------------------------|-------------------------------------------------------------------------|
| 0.3-3.0                  | 614                                  | 1.63                                 | (100)*                         | 6                                                                       |
| 3.0-30                   | 1842 / f                             | 4.89 / f                             | (900 / f)*                     | 6                                                                       |
| 30-300                   | 61.4                                 | 0.163                                | 1.0                            | 6                                                                       |
| 300-1500                 |                                      |                                      | F/300                          | 6                                                                       |
| 1500-100,000             |                                      |                                      | 5                              | 6                                                                       |

(B) Limits for General Population / Uncontrolled Exposure

| Frequency Range<br>(MHz) | Electric Field<br>Strength (E) (V/m) | Magnetic Field<br>Strength (H) (A/m) | Power Density (S)<br>(mW/ cm²) | Averaging Time<br> E  <sup>2</sup> ,  H  <sup>2</sup> or S<br>(minutes) |
|--------------------------|--------------------------------------|--------------------------------------|--------------------------------|-------------------------------------------------------------------------|
| 0.3-1.34                 | 614                                  | 1.63                                 | (100)*                         | 30                                                                      |
| 1.34-30                  | 824/f                                | 2.19/f                               | (180/f)*                       | 30                                                                      |
| 30-300                   | 27.5                                 | 0.073                                | 0.2                            | 30                                                                      |
| 300-1500                 |                                      |                                      | F/1500                         | 30                                                                      |
| 1500-100,000             |                                      |                                      | 1.0                            | 30                                                                      |

Note: f = frequency in MHz; \*Plane-wave equivalent power density

## 1.2. MPE Calculation Method

E (V/m) = 
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m<sup>2</sup>) =  $\frac{E^2}{377}$ 

E = Electric field (V/m)

**P** = Peak RF output power (W)

- G = EUT Antenna numeric gain (numeric)
- d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.



## 1.3. Calculated Result and Limit

<For WLAN Function>:

### Antenna Type : PIFA Antenna

Max Conducted Power for IEEE 802.11g Ant. A: 21.48 dBm

| Antenna Gain<br>(dBi) | Antenna Gain<br>(numeric) | Peak Output<br>Power<br>(dBm) | Peak Output<br>Power ( mW ) | Power Density<br>(S)<br>(mW/cm <sup>2</sup> ) | Limit of Power<br>Density (S)<br>(mW/cm <sup>2</sup> ) | Test Result |
|-----------------------|---------------------------|-------------------------------|-----------------------------|-----------------------------------------------|--------------------------------------------------------|-------------|
| 2.84                  | 1.9231                    | 21.4800                       | 140.6048                    | 0.053821                                      | 1                                                      | Complies    |

<For WLAN Function>:

Antenna Type : Dipole Antenna

#### Max Conducted Power for IEEE 802.11n 40MHz MCS0 Ant. B: 23.44 dBm

| Antenna Gain<br>(dBi) | Antenna Gain<br>(numeric) | Peak Output<br>Power<br>(dBm) | Peak Output<br>Power ( mW ) | Power Density<br>(S)<br>(mW/cm <sup>2</sup> ) | Limit of Power<br>Density (S)<br>(mW/cm <sup>2</sup> ) | Test Result |
|-----------------------|---------------------------|-------------------------------|-----------------------------|-----------------------------------------------|--------------------------------------------------------|-------------|
| 2.00                  | 1.5849                    | 23.4400                       | 220.8005                    | 0.069655                                      | 1                                                      | Complies    |



<For GSM 850 Function>:

#### 3G USB Dongle 1 (Mode 1), FCC ID: Q78-ZTEMF626

#### Antenna Type : Fixed Internal Antenna

| Frequency<br>(MHz) | ERP<br>power(dBm) | EIRP(dBm) | EIRP(mW)  | Power Density<br>(S)<br>(mW/cm²) | Limit of Power<br>Density (S)<br>(mW/cm <sup>2</sup> ) | Test Result |
|--------------------|-------------------|-----------|-----------|----------------------------------|--------------------------------------------------------|-------------|
| 824.2              | 27.4900           | 29.6300   | 918.3326  | 0.1828                           | 0.549                                                  | Complies    |
| 836.4              | 28.9600           | 31.1000   | 1288.2496 | 0.256419                         | 0.549                                                  | Complies    |
| 848.8              | 29.9900           | 32.1300   | 1633.0519 | 0.325050                         | 0.549                                                  | Complies    |

#### CONCULSION:

Both of the WLAN and GSM 850 can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 + .....etc. < 1

CPD = Calculation power density

LPD = Limit of power density

#### <For Ant. A>:

Therefore, the worst-case situation is 0.053821 / 1 + 0.325050 / 0.549 = 0.645898, which isless than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

#### <For Ant. B>:

Therefore, the worst-case situation is 0.069655 / 1 + 0.325050 / 0.549 = 0.661732, which isless than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.



#### <For GSM 850 Function>

#### 3G USB Dongle 2 (Mode 2), FCC ID: QISE169

#### Antenna Type : Fixed Internal Antenna

| Frequency<br>(MHz) | ERP<br>power(dBm) | EIRP(dBm) | EIRP(mW)  | Power Density<br>(S)<br>(mW/cm²) | Limit of Power<br>Density (S)<br>(mW/cm <sup>2</sup> ) | Test Result |
|--------------------|-------------------|-----------|-----------|----------------------------------|--------------------------------------------------------|-------------|
| 824.2              | 31.7800           | 33.9200   | 2466.0393 | 0.490852                         | 0.549                                                  | Complies    |
| 836.4              | 31.7500           | 33.8900   | 2449.0632 | 0.487473                         | 0.549                                                  | Complies    |
| 848.8              | 31.7300           | 33.8700   | 2437.8108 | 0.485233                         | 0.549                                                  | Complies    |

#### CONCULSION:

Both of the WLAN and GSM 850 can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 + .....etc. < 1

CPD = Calculation power density

LPD = Limit of power density

#### <For Ant. A>:

Therefore, the worst-case situation is 0.053821 / 1 + 0.490852 / 0.549 = 0.947905, which isless than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

#### <For Ant. B>:

Therefore, the worst-case situation is 0.069655 / 1 + 0.490852 / 0.549 = 0.963739, which isless than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.



<For GSM 1900 Function>:

#### 3G USB Dongle 3 (Mode 3), FCC ID: QISE220

#### Antenna Type : Fixed Internal Antenna

| Frequency<br>(MHz) | ERP<br>power(dBm) | EIRP(dBm) | EIRP(mW) | Power Density<br>(S)<br>(mW/cm²) | Limit of Power<br>Density (S)<br>(mW/cm <sup>2</sup> ) | Test Result |
|--------------------|-------------------|-----------|----------|----------------------------------|--------------------------------------------------------|-------------|
| 1850.2             | 26.6700           | 28.8100   | 760.3263 | 0.151339                         | 1                                                      | Complies    |
| 1880               | 26.9200           | 29.0600   | 805.3784 | 0.160306                         | 1                                                      | Complies    |
| 1909.8             | 26.7900           | 28.9300   | 781.6278 | 0.155579                         | 1                                                      | Complies    |

#### CONCULSION:

Both of the WLAN and GSM 1900 can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 + .....etc. < 1

CPD = Calculation power density

LPD = Limit of power density

#### <For Ant. A>:

Therefore, the worst-case situation is 0.053821 / 1 + 0.160306 / 1 = 0.214127, which isless than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

#### <For Ant. B>:

Therefore, the worst-case situation is 0.069655 / 1 + 0.160306 / 1 = 0.229961, which isless than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.