

FCC ID. : MQ4WR254 Report No.: EME-050128
Page 1 of 50

EMC TEST REPORT

Report No. : EME-050128

Model No. : WR254

Issued Date : May 2, 2005

Applicant : AboCom Systems, Inc.

1F, No. 21, Yanfa 2nd Rd., SBIP, HsinChu City 300,

Taiwan

Test By : Intertek Testing Services Taiwan Ltd.

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li, Shiang-Shan District, Hsinchu City, Taiwan

This test report consists of 50 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

Project Engineer

Jackey Chiu

Reviewed By

Jerry Liu

FCC ID. : MQ4WR254 Report No.: EME-050128
Page 2 of 50

Table of Contents

Summary of Tests	4
1. General information	5
1.1 Identification of the EUT	5
1.2 Additional information about the EUT	5
1.3 Antenna description	6
1.4 Peripherals equipment	6
2. Test specifications	7
2.1 Test standard	7
2.2 Operation mode	7
2.3 Test equipment	8
3. Minimum 6dB Bandwidth test	9
3.1 Operating environment	9
3.2 Test setup & procedure	9
3.3 Measured data of Minimum 6dB Bandwidth test results	9
4. Maximum Output Power test	16
4.1 Operating environment	16
4.2 Test setup & procedure	16
4.3 Measured data of Maximum Output Power test results	16
5. Radiated Emission test	17
5.1 Operating environment	17
5.2 Test setup & procedure	17
5.3 Emission limits	18
5.4 Radiated spurious emission test data	19
5.4.1 Measurement results: frequencies equal to or less than 1 GHz	19
5.4.2 Measurement results: frequency above 1GHz	21
6. Power Spectrum Density test	27
6.1 Operating environment	27
6.2 Test setup & procedure	27
6.3 Measured data of Power Spectrum Density test results	27
7. Emission on the band edge §FCC 15.247(C)	34
7.1 Band-edge (Conducted method)	
7.2 Band-edge (Radiated method)	39

FCC ID. : MQ4WR254 Report No.: EME-050128
Page 3 of 50

B. Power Line Conducted Emission test §FCC 15.207	47
8.1 Operating environment	47
8.2 Test setup & procedure	47
8.3 Emission limit	48
8.4 Uncertainty of Conducted Emission	48
8.5 Power Line Conducted Emission test data	40

FCC ID.: MQ4WR254 Report No.: EME-050128
Page 4 of 50

Summary of Tests

Wireless Router-Model: WR254 FCC ID: MQ4WR254

Test	Reference	Results
Minimum 6dB Bandwidth test	15.247(a)(2)	Complies
Maximum Output Power test	15.247(b)	Complies
Radiated Spurious Emission test	15.205, 15.209	Complies
Power Spectrum Density test	15.247(d)	Complies
Power Line Conducted Emission test	15.207	Complies

Page 5 of 50

1. General information

1.1 Identification of the EUT

Applicant : AboCom Systems, Inc.

Product : Wireless Router

Model No. : WR254

FCC ID. : MQ4WR254

Frequency Range : 2400 MHz to 2483.5MHz

Channel Number : 11 Channels

: 2412MHz, 2417MHz, 2422MHz, 2427MHz,

Frequency of Each Channel 2432MHz, 2437MHz, 2442MHz, 2447MHz,

2452MHz, 2457MHz, 2462MHz

Type of Modulation : DSSS, OFDM

Rated Power : 120Vac, 60Hz with adapter (MW48-1200800)

Power Cord : N/A

Sample Received : Feb. 14, 2005

Test Date(s) : Feb. 14, 2005 ~ Feb. 23, 2005

A FCC DoC report has been generated for the client.

1.2 Additional information about the EUT

The EUT is a Wireless Router, and was defined as information technology equipment.

The Wireless Router is a multi-function device providing the following services:

- Shared Broadband Internet Access for all LAN users.
- **4-Port Switching Hub** for 10BaseT or 100BaseT connections.
- Wireless Access Point for 802.11b and 802.11g Wireless Stations.

For more detail features, please refer to User's manual as file name "Installation guide.pdf"

Page 6 of 50

1.3 Antenna description

The antenna is affixed to the EUT using a unique connector, which allows for replacement of a broken antenna, but DOES NOT use a standard antenna jack or electrical connector.

Antenna Gain: 2dBi max

Antenna Type: Dipole antenna

Connector Type: Reverse

1.4 Peripherals equipment

Peripherals	Manufacturer	Product No.	Serial No.	FCC ID
Notebook PC 1	IBM	R51	99XML12	FCC DoC Approved
Notebook PC 2	DELL	PP05L	CN-0G5152-48643-498-6810	FCC DoC Approved

Dummy Load: 100Ω

Page 7 of 50

2. Test specifications

2.1 Test standard

The EUT was performed according to the procedures in FCC Part 15 Subpart C Section § 15.205 \ §15.207 \ §15.209 \ §15.247 and ANSI C63.4/2003.

The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of this frequency band were all meet limit requirement, thus we evaluate the EUT pass the specified test.

2.2 Operation mode

The EUT was supplied with 120Vac, 60Hz with adapter and run the test program "nfjrom.exe" under windows OS, which provide by manufacturer.

During conducted emission test, the EUT was in normal operating mode communication with AP. While in other test, it worked in the status of continuously transmitting.

Verifying, the maximum output power; we found the maximum output power was occurred at 11Mbps data rate in 802.11b and at 54Mbps data rated in 802.11g. The final test was executed under this condition and recorded in this report individually.

FCC ID. : MQ4WR254 Report No.: EME-050128
Page 8 of 50

2.3 Test equipment

Equipment	Brand	Frequency range	Model No.	Intertek ID No.	Next Cal. Date
EMI Test Receiver	Rohde & Schwarz	9kHz~2.75GHz	ESCS 30	EC303	04/13/2005
EMI Test Receiver	Rohde & Schwarz	20Hz~26.5GHz	ESMI	EC317	07/14/2005
Spectrum Analyzer	Rohde & Schwarz	9kHz~30GHz	FSP 30	EC353	07/13/2005
Spectrum Analyzer	Rohde & Schwarz	20Hz~40GHz	FSEK 30	EC365	10/18/2005
Horn Antenna	EMCO	1GHz~18GHz	3115	EC338	08/16/2005
Horn Antenna	SCHWARZBECK	14GHz~40GHz	BBHA 9170	EC351	07/08/2005
Bilog Antenna	SCHWARZBECK	25MHz~1.7GHz	VULB 9160	EC368	05/20/2005
Pre-Amplifier	MITEQ	100MHz~26.5GHz	919981	EC373	4/13/2005
Pre-Amplifier	MITEQ	26GHz~40GHz	828825	EC374	1/27/2006
Wideband Peak Power Meter/ Sensor	Anritsu	100MHz~18GHz	ML2497A/ MA2491A	EC396	10/18/2005
Controller	HDGmbH	N/A	HD 100	EP317-1	N/A
Antenna Tower	HDGmbH	N/A	MA 240	EP317-2	N/A
Turn Table	HDGmbH	N/A	DS 420S	EP317-3	N/A
LISN	Rohde & Schwarz	9KHz~30MHz	ESH3-Z5	EC344	01/13/2006

Note: The above equipments are within the valid calibration period.

Page 9 of 50

3. Minimum 6dB Bandwidth test

3.1 Operating environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure: 1023 hPa

3.2 Test setup & procedure

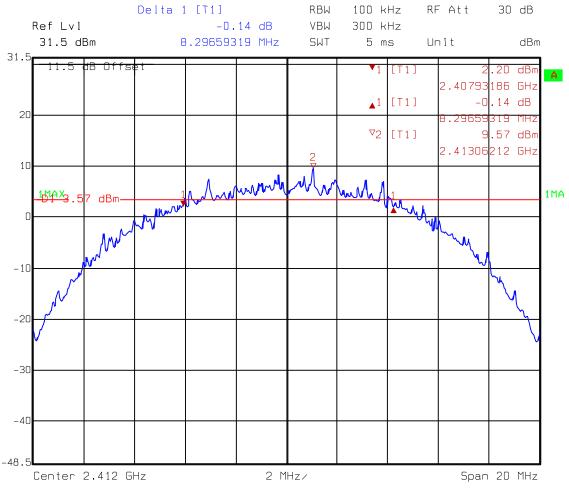
The minimum 6dB bandwidth per FCC §15.247(a)(2) was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 100kHz, the video bandwidth set at 300kHz, and the SPAN>>RBW. The test was performed at 3 channels (lowest, middle and highest channel). The minimum 6-dB modulation bandwidth is in the following Table.

3.3 Measured data of Minimum 6dB Bandwidth test results

Test Mode: 802.11b operating mode (DSSS Modulation)

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit
1	2412	8.29659	>500kHz
6	2437	8.61723	>500kHz
11	2462	8.25651	>500kHz

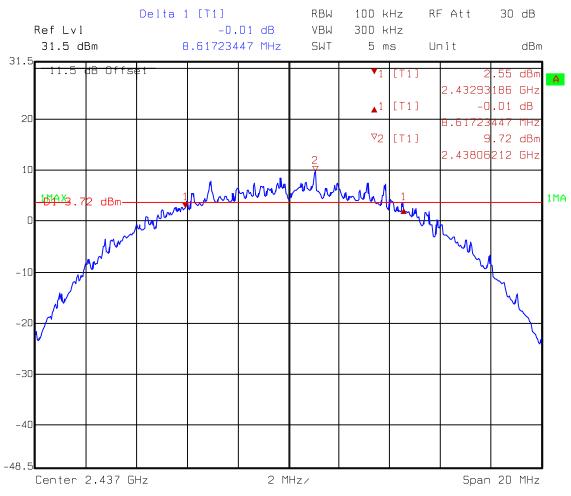
Test Mode: 802.11g operating mode (OFDM Modulation)


Channel	Frequency (MHz)	Bandwidth (MHz)	Limit
1	2412	16.03206	>500kHz
6	2437	16.07214	>500kHz
11	2462	15.99198	>500kHz

Please see the plot below.

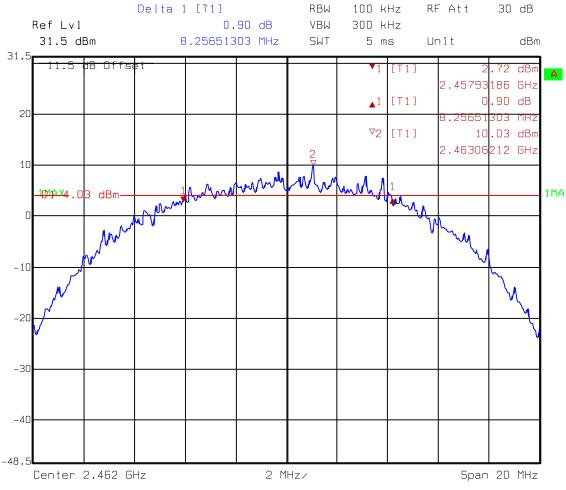
Page 10 of 50

Test Mode: 802.11b operating mode (DSSS Modulation)



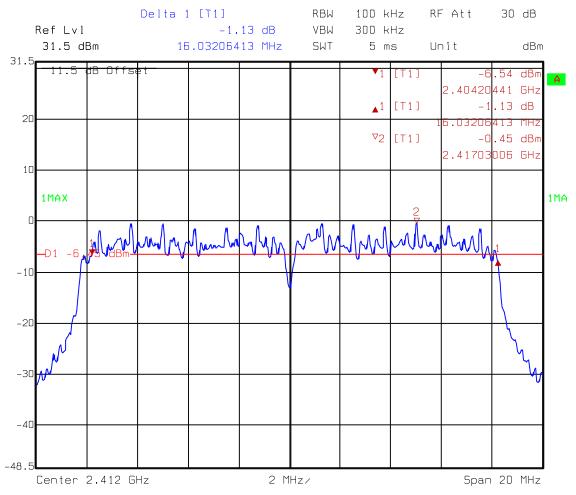
Comment A: 6dB bandwidth at channel 1 (EC365) 802.11b

Date: 15.FEB.2005 17:17:19


FCC ID. : MQ4WR254 Report No.: EME-050128
Page 11 of 50

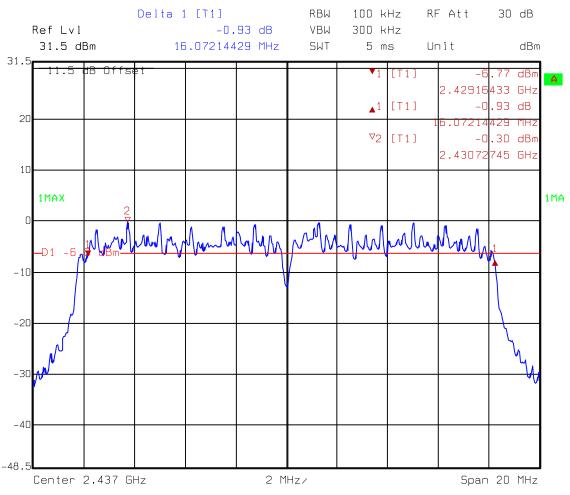
Comment A: 6dB bandwidth at channel 6 (EC365) 802.11b Date: 15.FEB.2005 17:14:42

FCC ID. : MQ4WR254 Report No.: EME-050128
Page 12 of 50

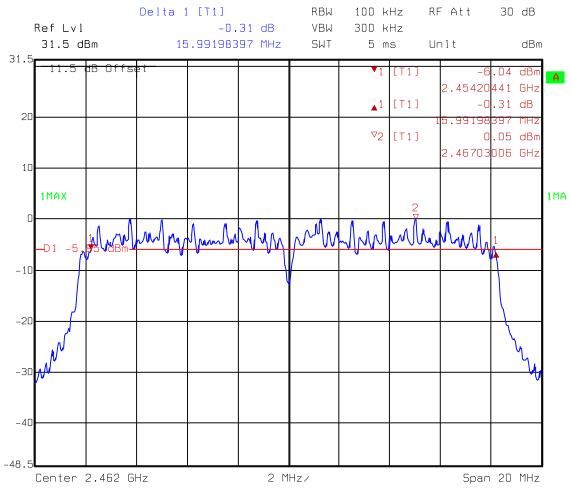

Comment A: 6dB bandwidth at channel 11 (EC365) 802.11b

Date: 15.FEB.2005 17:16:03

Page 13 of 50


Test Mode: 802.11g operating mode (OFDM Modulation)

Comment A: 6dB bandwidth at channel 1 (EC365) 802.11g Date: 15.FEB.2005 17:03:43


FCC ID. : MQ4WR254 Report No.: EME-050128
Page 14 of 50

Comment A: 6dB bandwidth at channel 6 (EC365) 802.11g Date: 15.FEB.2005 17:06:30

FCC ID. : MQ4WR254 Report No.: EME-050128
Page 15 of 50

Comment A: 6dB bandwidth at channel 11 (EC365) 802.11g

Date: 15.FEB.2005 17:08:35

Page 16 of 50

4. Maximum Output Power test

4.1 Operating environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure: 1023 hPa

4.2 Test setup & procedure

The power output per FCC §15.247(b) was measured on the EUT using a 50 ohm SMA cable connected to peak power meter via power sensor. Power was read directly and cable loss correction (1.5 dB) was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel).

4.3 Measured data of Maximum Output Power test results

Test Mode: 802.11b operating mode (DSSS Modulation)

Channel	Freq.	C.L.	Reading	Conducted Pov	Limit (W)	
	(MHz)	z) (dB) (dBm)	(dBm)	(mW)		
1	2412	1.5	16.48	17.98	62.81	1
6	2437	1.5	16.72	18.22	66.37	1
11	2462	1.5	16.56	18.06	63.97	1

Remark:

Conducted Peak Output Power = Reading + C.L.

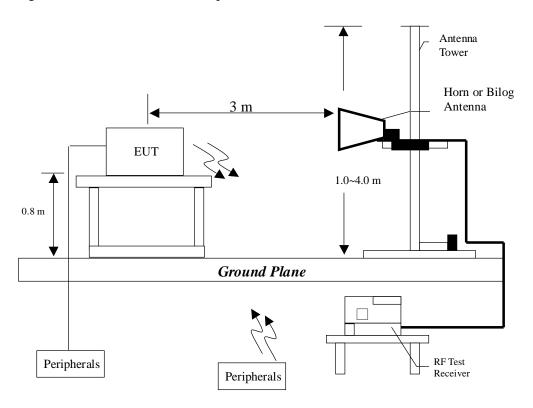
Test Mode: 802.11g operating mode (OFDM Modulation)

Channel	Freq.	C.L. Reading		Conducted Peak Output Power		Limit	
	(MHz) (dB	(dB)	dB) (dBm)	(dBm)	(mW)	(W)	
1	2412	1.5	19.83	21.33	135.83	1	
6	2437	1.5	19.87	21.37	137.09	1	
11	2462	1.5	19.92	21.42	138.68	1	

Remark:

Conducted Peak Output Power = Reading + C.L.

Page 17 of 50


5. Radiated Emission test

5.1 Operating environment

Temperature: 25 °C Relative Humidity: 55 % Atmospheric Pressure: 1023 hPa

5.2 Test setup & procedure

The Diagram below shows the test setup, which is utilized to make these measurements.

Radiated emissions were invested cover the frequency range from 30MHz to 1000MHz using a receiver RBW of 120kHz record QP reading, and the frequency over 1GHz using a spectrum analyzer RBW of 1MHz and 10Hz VBW record Average reading. (15.209 paragraph), the Peak reading (1MHz RBW/VBW) recorded also on the report.

The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.

Page 18 of 50

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance.

The EUT configuration please refer to the "Spurious set-up photo.pdf".

5.3 Emission limits

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency (MHz)	Limits (dB μ V/m@3m)
30-88	40
88-216	43.5
216-960	46
Above 960	54

Remark:

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Uncertainty was calculated in accordance with NAMAS NIS 81. Expanded uncertainty (k=2) of radiated emission measurement is 4.98 dB.

Page 19 of 50

5.4 Radiated spurious emission test data

The radiated spurious emissions at

Frequency(MHz)	Margin
39.700	-1.80
39.700	-2.10

are less than uncertainty. This is within the stated measurement uncertainty, this may affect compliance determined in other test arrangements.

5.4.1 Measurement results: frequencies equal to or less than 1 GHz

The test was performed on EUT under 802.11b continuously transmitting mode. Channel 1, 6, 11 were verified. The worst case occurred at 802.11b Tx channel 1.

EUT : WR254

Worst Case Condition: 802.11b Tx at channel 1

Frequency	Spectrum	Antenna	Correction	Reading	Corrected	Limit	Margin	Antenna	Turn Table
	Analyzer	Polariz.	Factor		Level	@ 3 m		high	angle
(MHz)	Detector	(H/V)	(dB/m)	(dBuV)	(dBuV)	(dBuV)	(dB)	(cm)	(degree)
39.700	QP	V	12.74	25.46	38.20	40.00	-1.80	101.00	117.00
57.230	QP	V	12.97	20.93	33.90	40.00	-6.10	159.00	222.00
103.700	QP	V	10.97	22.83	33.80	43.50	-9.70	126.00	109.00
115.100	QP	V	12.01	17.87	29.88	43.50	-13.62	130.00	262.00
171.630	QP	V	14.24	17.01	31.25	43.50	-12.25	169.00	351.00
575.160	QP	V	20.18	10.72	30.90	46.00	-15.10	185.00	210.00
103.720	QP	Н	10.97	25.13	36.10	43.50	-7.40	385.00	103.00
171.630	QP	Н	14.24	16.86	31.10	43.50	-12.40	320.00	163.00
198.800	QP	Н	13.01	18.59	31.60	43.50	-11.90	219.00	187.00
264.700	QP	Н	12.99	18.21	31.20	46.00	-14.80	184.00	99.00
460.780	QP	Н	17.89	16.91	34.80	46.00	-11.20	200.00	259.00
575.100	QP	Н	20.18	16.02	36.20	46.00	-9.80	193.00	117.00

Remark:

1.Corrected Level = Reading Level + Correction Factor

2.Correction Factor = Antenna Factor + Cable Loss

Page 20 of 50

The test was performed on EUT under 802.11g continuously transmitting mode. Channel 1, 6, 11 were verified. The worst case occurred at 802.11g Tx channel 1.

EUT : WR254

Worst Case Condition : 802.11g Tx at channel 1

Frequency	Spectrum	Antenna	Correction	Reading	Corrected	Limit	Margin	Antenna	Turn Table
	Analyzer	Polariz.	Factor		Level	@ 3 m		high	angle
(MHz)	Detector	(H/V)	(dB/m)	(dBuV)	(dBuV)	(dBuV)	(dB)	(cm)	(degree)
39.700	QP	V	12.74	25.16	37.90	40.00	-2.10	105.00	222.00
57.320	QP	V	12.97	20.43	33.40	40.00	-6.60	119.00	234.00
103.720	QP	V	10.97	22.73	33.70	43.50	-9.80	126.00	88.00
171.690	QP	V	14.24	16.76	31.00	43.50	-12.50	125.00	203.00
200.710	QP	V	12.91	16.29	29.20	43.50	-14.30	157.00	35.00
575.100	QP	V	20.18	10.92	31.10	46.00	-14.90	200.00	285.00
103.720	QP	Н	10.97	24.43	35.40	43.50	-8.10	333.00	62.00
200.750	QP	Н	12.91	18.79	31.70	43.50	-11.80	400.00	106.00
264.700	QP	Н	12.99	19.21	32.20	46.00	-13.80	326.00	52.00
379.630	QP	Н	15.92	16.58	32.50	46.00	-13.50	265.00	109.00
460.780	QP	Н	17.89	16.41	34.30	46.00	-11.70	251.00	119.00
575.100	QP	Н	20.18	17.88	38.06	46.00	-7.94	177.00	162.00

Remark:

- 1.Corrected Level = Reading Level + Correction Factor
- 2.Correction Factor = Antenna Factor + Cable Loss

Page 21 of 50

5.4.2 Measurement results: frequency above 1GHz

EUT : WR254

Test Condition : 802.11b Tx at channel 1

Frequency	Spectrum	Antenna	Preamp	Correction	Reading	Corrected	Limit	Margin	Antenna	Turn Table
	Analyzer	Polariz.		Factor		Level	@ 3 m		high	angle
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV)	(dBuV)	(dB)	(cm)	(degree)
7236.000	PK	V	34.17	39.97	45.81	51.61	74.00	-22.39	188.00	334.00
7236.000	AV	V	34.17	39.97	33.97	39.77	54.00	-14.23	188.00	334.00
9648.000	PK	V	35.75	43.38	50.56	58.19	74.00	-15.81	154.00	26.00
9648.000	AV	V	35.75	43.38	44.70	52.33	54.00	-1.67	154.00	26.00

Remark:

- 1. Corrected Level = Reading + Correction Factor Preamp
- 2. Correction Factor = Antenna Factor + Cable Loss
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

FCC ID. : MQ4WR254 Report No.: EME-050128
Page 22 of 50

EUT : WR254

Test Condition: 802.11b Tx at channel 6

Frequency	Spectrum	Antenna	Preamp	Correction	Reading	Corrected	Limit	Margin	Antenna	Turn Table
	Analyzer	Polariz.		Factor		Level	@ 3 m		high	angle
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV)	(dBuV)	(dB)	(cm)	(degree)
7312.000	PK	V	34.17	39.97	53.25	59.05	74.00	-14.95	219.00	29.00
7312.000	AV	V	34.17	39.97	47.31	53.11	54.00	-0.89	219.00	29.00
9748.000	PK	V	35.75	43.38	52.44	60.07	74.00	-13.93	142.00	358.00
9748.000	AV	V	35.75	43.38	45.75	53.38	54.00	-0.62	142.00	358.00
7312.000	PK	Н	34.17	39.97	44.69	50.49	74.00	-23.51	164.00	304.00
7312.000	AV	Н	34.17	39.97	32.40	38.20	54.00	-15.80	164.00	304.00

Remark:

- 1. Corrected Level = Reading Level + Correction Factor Preamp
- 2. Correction Factor = Antenna Factor + Cable Loss
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

FCC ID. : MQ4WR254 Report No.: EME-050128
Page 23 of 50

EUT : WR254

Test Condition: 802.11b Tx at channel 11

Frequency	Spectrum	Antenna	Preamp	Correction	Reading	Corrected	Limit	Margin	Antenna	Turn Table
	Analyzer	Polariz.		Factor		Level	@ 3 m		high	angle
(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBuV)	(dBuV)	(dBuV)	(dB)	(cm)	(degree)
7387.000	PK	V	34.17	39.97	50.58	56.38	74.00	-17.62	197.00	80.00
7387.000	AV	V	34.17	39.97	40.04	45.84	54.00	-8.16	197.00	80.00
9848.000	PK	V	35.75	43.38	50.51	58.14	74.00	-15.86	143.00	301.00
9848.000	AV	V	35.75	43.38	43.83	51.46	54.00	-2.54	143.00	301.00

Remark:

- 1. Corrected Level = Reading Level + Correction Factor Preamp
- 2. Correction Factor = Antenna Factor + Cable Loss
- 3. The frequency measured ranges from 1GHz to 25GHz. The data value listed above which is higher than the noise floor, the others please refer to noise floor level.

Noise floor level is:

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

Page 24 of 50

EUT : WR254

Test Condition : 802.11g Tx at channel 1

Test Result:

No spurious emission was found above the spectrum analyzer's noise floor.

The noise floor are listed as below:

Noise floor level

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

Page 25 of 50

EUT : WR254

Test Condition: 802.11g Tx at channel 6

Test Result:

No spurious emission was found above the spectrum analyzer's noise floor.

The noise floor are listed as below:

Noise floor level

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

Page 26 of 50

EUT : WR254

Test Condition: 802.11g Tx at channel 11

Test Result:

No spurious emission was found above the spectrum analyzer's noise floor.

The noise floor are listed as below:

Noise floor level

For PK:

1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV:

Page 27 of 50

6. Power Spectrum Density test

6.1 Operating environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure 1023 hPa

6.2 Test setup & procedure

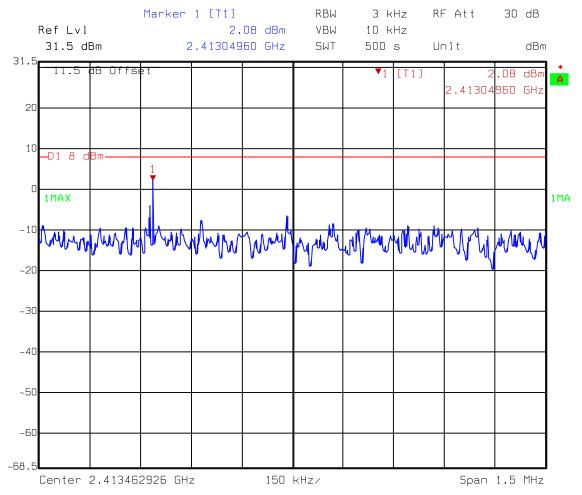
The power spectrum density per FCC §15.247(d) was measured from the antenna port of the EUT using a 50ohm spectrum analyzer with the resolution bandwidth set at 3kHz, the video bandwidth set at 10kHz, a span of 1.5 MHz, and the sweep time set at 500 seconds. Power Density was read directly correction was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel). The Power Spectral Density measured result is in the following table.

6.3 Measured data of Power Spectrum Density test results

Test Mode: 802.11b operating (DSSS Modulation) mode

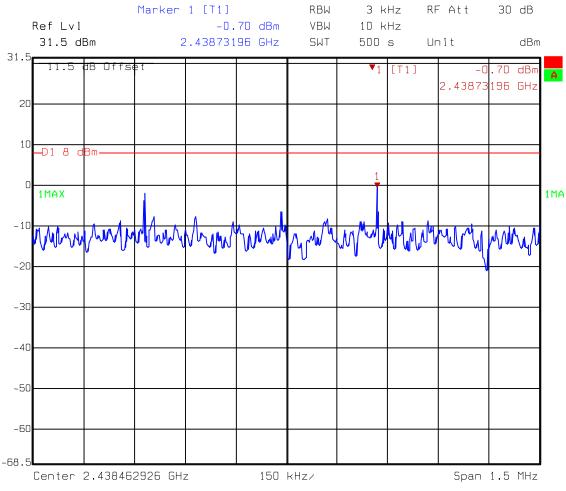
1656 1/1046. 002.110	Test wrode: 002:11b operating (DBBB wrodulation) mode									
Channel	Frequency	Measured level	Limit							
	(MHz)	(dBm)	(dBm)							
1	2412	2.08	8							
6	2437	-0.70	8							
11	2462	6.18	8							

Test Mode: 802.11g operating (OFDM Modulation) mode


Channel	Frequency (MHz)	Measured level (dBm)	Limit (dBm)
1	2412	-14.71	8
6	2437	-13.87	8
11	2462	-13.61	8

Please see the plot below.

Page 28 of 50

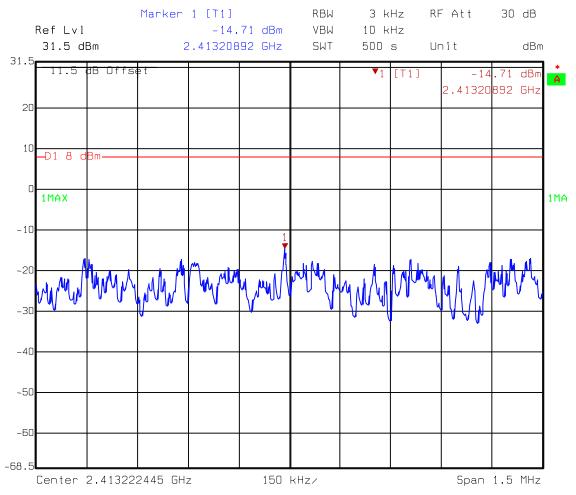

Test Mode: 802.11b operating (DSSS Modulation) mode

Comment A: Power spectrum density at channel 1 (EC365) 802.11b Date: 15.FEB.2005 17:25:37

Page 29 of 50

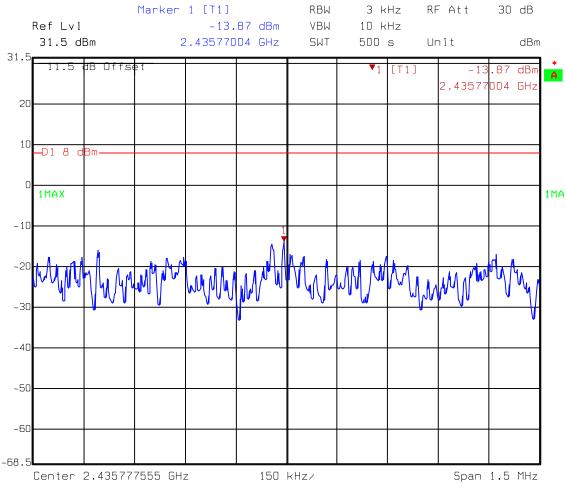
Comment A: Power spectrum density at channel 6 (EC365) 802.1b Date: 15.FEB.2005 17:22:17

Page 30 of 50

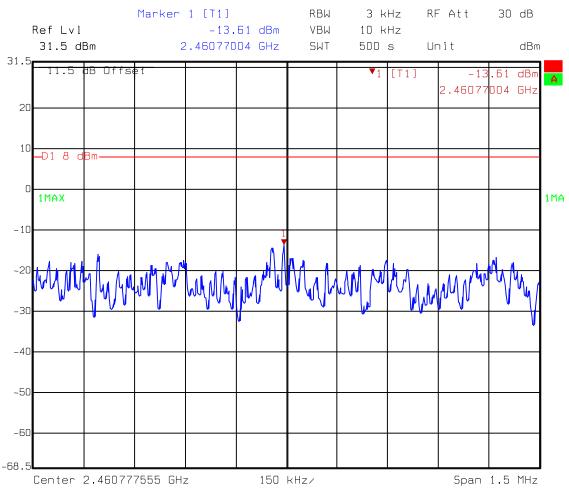


Comment A: Power spectrum density at channel 11 (EC365) 802.1b Date: 15.FEB.2005 17:23:52

Page 31 of 50


Test Mode: 802.11g operating (OFDM Modulation) mode

Comment A: Power spectrum density at channel 1 (EC365) 802.11g Date: 15.FEB.2005 17:26:44


FCC ID. : MQ4WR254 Report No.: EME-050128
Page 32 of 50

Comment A: Power spectrum density at channel 6 (EC365) 802.11g Date: 15.FEB.2005 17:28:01

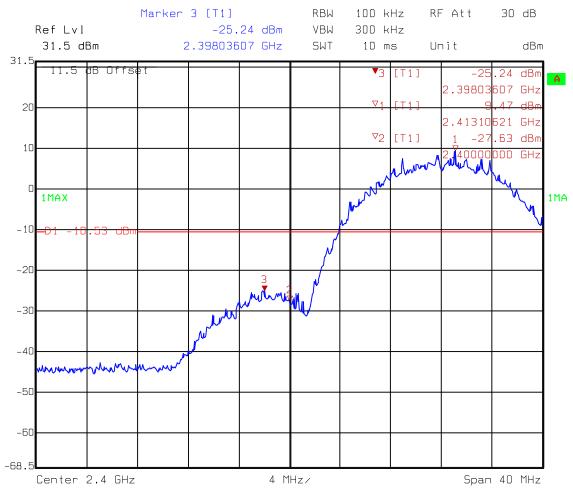
FCC ID. : MQ4WR254 Report No.: EME-050128
Page 33 of 50

Comment A: Power spectrum density at channel 11 (EC365) 802.11g Date: 15.FEB.2005 17:29:12

FCC ID. : MQ4WR254 Report No.: EME-050128
Page 34 of 50

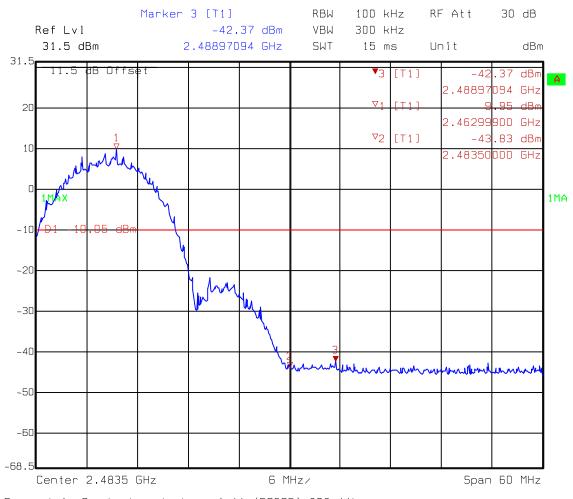
7. Emission on the band edge §FCC 15.247(C)

In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


Please see the plot below.

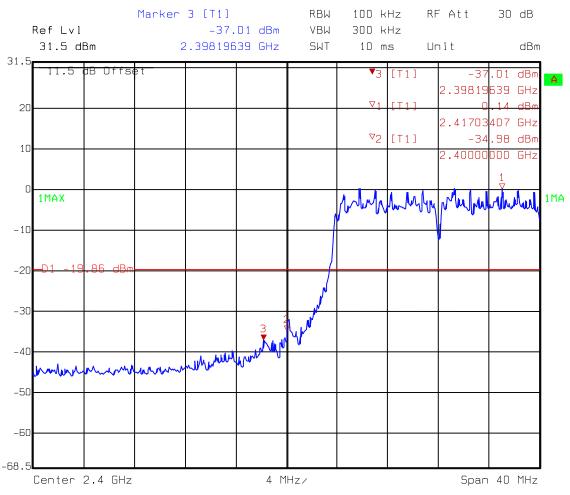
Page 35 of 50

7.1 Band-edge (Conducted method)


Test Mode: 802.11b operating (DSSS Modulation) mode

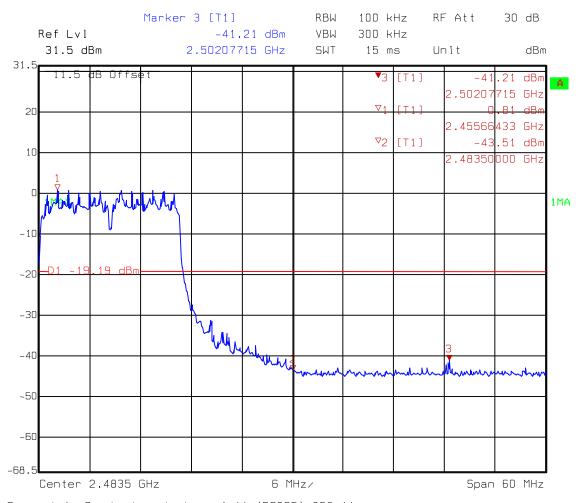
Comment A: Band-edge at channel 1 (EC365) 802.11b Date: 15.FEB.2005 17:36:50

Page 36 of 50


Comment A: Band-edge at channel 11 (EC365) 802.11b

Date: 15.FEB.2005 17:33:50

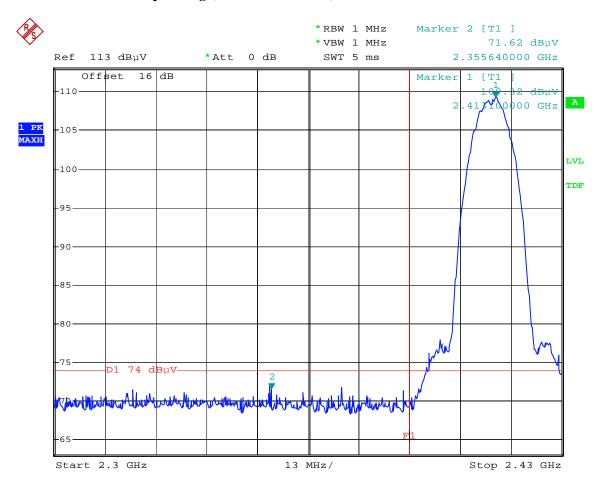
Page 37 of 50


Test Mode: 802.11g operating (OFDM Modulation) mode

Comment A: Band-edge at channel 1 (EC365) 802.11g Date: 15.FEB.2005 17:38:09

Page 38 of 50

Comment A: Band-edge at channel 11 (EC365) 802.11g


Date: 15.FEB.2005 17:32:20

Page 39 of 50

7.2 Band-edge (Radiated method)

Test Mode: 802.11b operating (DSSS Modulation) mode

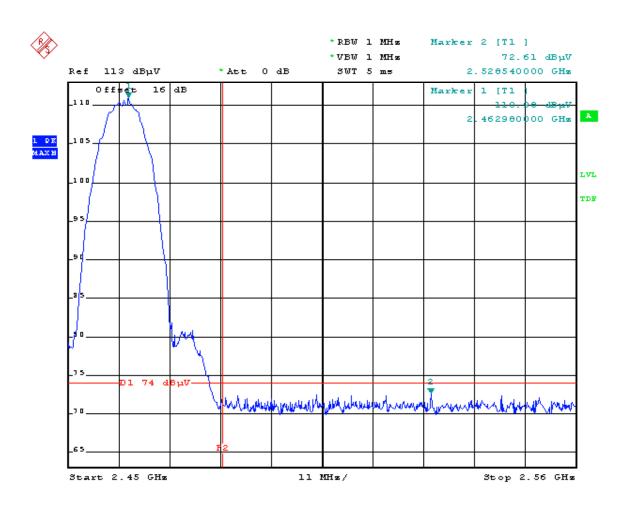


Comment: Band-edge Test at CH1

Comment: Peak. Detetor F1=2390MHz ATT=16dB 802.11b

Date: 18.FEB.2005 11:15:36

Page 40 of 50

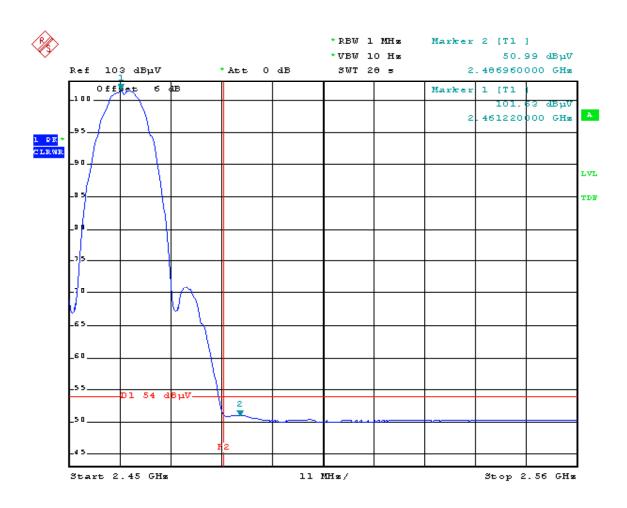


Comment: Band-edge Test at CH1

Comment: Avg. Detetor F1=2390MHz ATT=6dB 802.11b

Date: 18.FEB.2005 11:12:13

Page 41 of 50



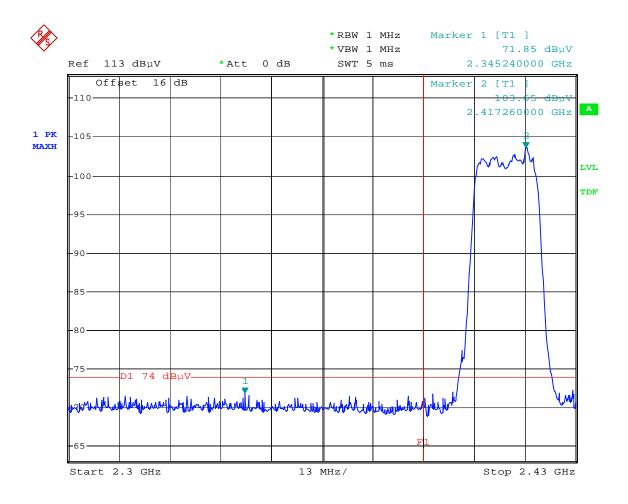
Comment: Band-edge Test at CHll

Comment: Peak. Detetor F2=2403.5MHz ATT=16dB 002.11b

Date: 18.FEB.2005 10:44:25

Page 42 of 50

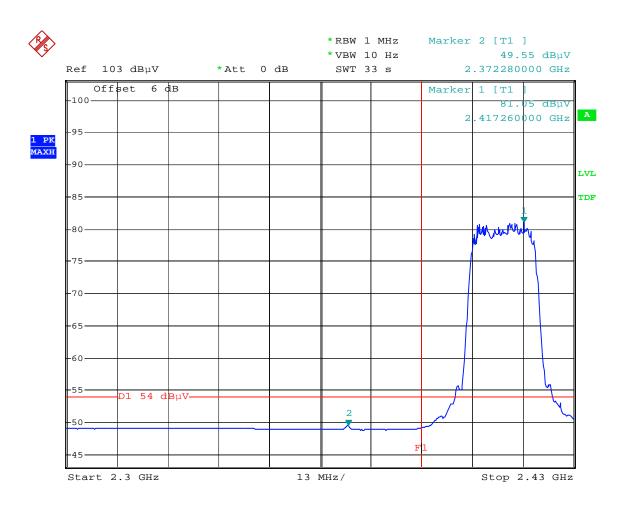
Comment: Band-edge Test at CHll


Comment: Avg. Detetor F2=2483.5MHz ATT=6dB 802.11b

Date: 10.FEB.2005 10:52:06

Page 43 of 50

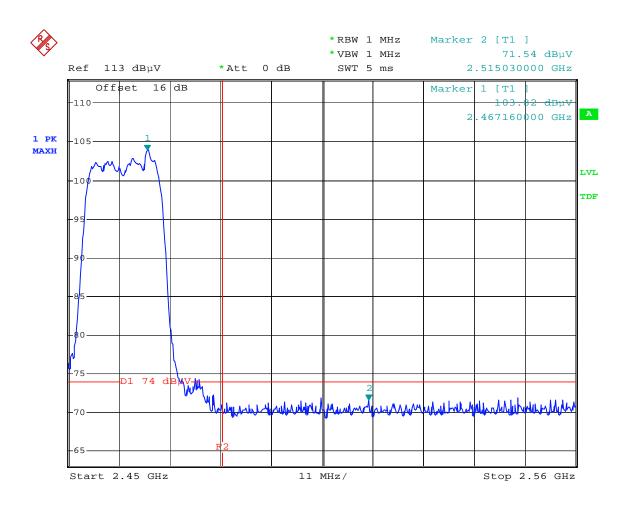
Test Mode: 802.11g operating (OFDM Modulation) mode


Comment: Band-edge Test at CH1

Comment: Peak. Detetor F1=2390MHz ATT=16dB 802.11g

Date: 18.FEB.2005 11:05:54

Page 44 of 50

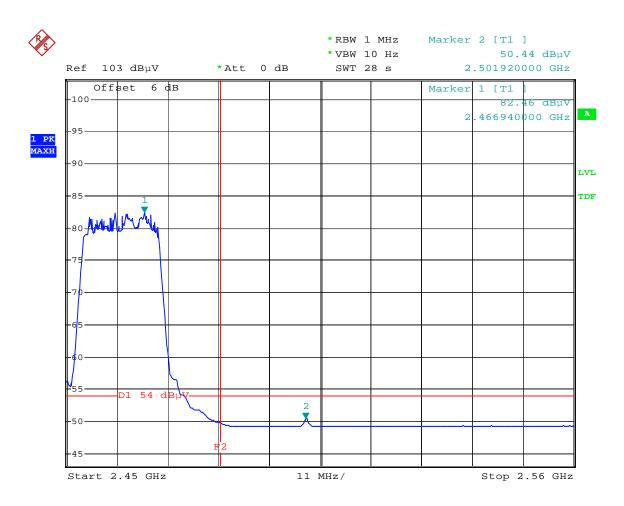


Comment: Band-edge Test at CH1

Comment: Avg. Detetor F1=2390MHz ATT=6dB 802.11g

Date: 18.FEB.2005 11:09:16

Page 45 of 50



Comment: Band-edge Test at CH11

Comment: Peak. Detetor F2=2483.5MHz ATT=16dB 802.11g

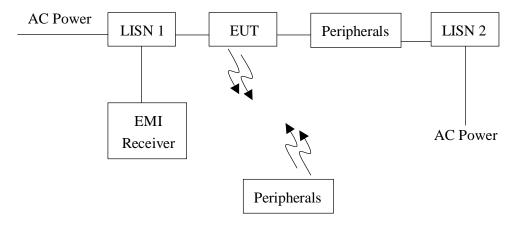
Date: 18.FEB.2005 10:57:53

Page 46 of 50

Comment: Band-edge Test at CH11

Comment: Avg. Detetor F2=2483.5MHz ATT=6dB 802.11g

Date: 18.FEB.2005 11:01:22


Page 47 of 50

8. Power Line Conducted Emission test §FCC 15.207

8.1 Operating environment

Temperature: 23 °C Relative Humidity: 55 % Atmospheric Pressure 1023 hPa

8.2 Test setup & procedure

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a 50 ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4/2003 on conducted measurement. The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 9kHz.

The EUT configuration please refer to the "Conducted set-up photo.pdf".

Page 48 of 50

8.3 Emission limit

Freq. (MHz)	Conducted Limit (dBuV)		
	Q.P.	Ave.	
0.15~0.50	66 – 56*	56 – 46*	
0.50~5.00	56	46	
5.00~30.0	60	50	

^{*}Decreases with the logarithm of the frequency.

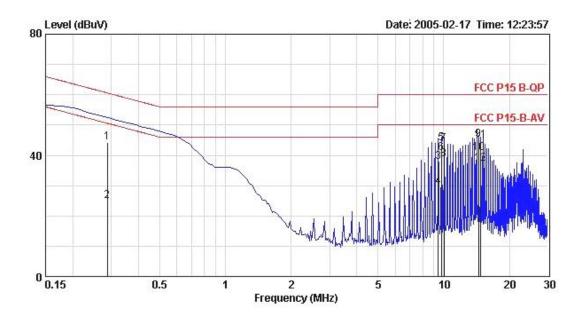
8.4 Uncertainty of Conducted Emission

Expanded uncertainty (k=2) of conducted emission measurement is 2.6 dB.

FCC ID. : MQ4WR254 Report No.: EME-050128
Page 49 of 50

8.5 Power Line Conducted Emission test data

The test was performed the 802.11b and 802.11g normal operating modes, the worst case was occurred at 802.11g normal operating mode


Phase: Line Model No.: WR254

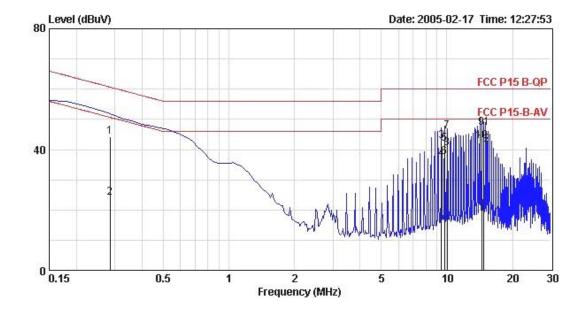
Worst Case: 802.11g normal operating mode

Frequency	Corr. Factor	Level Qp	Limit Qp	Level AV	Limit Av		rgin dB)
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qp	Av
0.288	0.10	44.27	60.60	24.87	50.60	-16.33	-25.73
9.429	0.48	37.72	60.00	29.61	50.00	-22.28	-20.39
9.739	0.49	43.84	60.00	40.77	50.00	-16.16	-9.23
10.047	0.50	43.59	60.00	38.60	50.00	-16.41	-11.40
14.446	0.78	45.16	60.00	40.76	50.00	-14.84	-9.24
14.761	0.80	44.74	60.00	37.34	50.00	-15.26	-12.66

Remark:

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

FCC ID. : MQ4WR254 Report No.: EME-050128
Page 50 of 50


Phase: Neutral Model No.: WR254

Worst Case: 802.11g normal operating mode

Frequency	Corr. Factor	Level Qp	Limit Qp	Level AV	Limit Av		rgin dB)
(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	Qp	Av
0.285	0.10	44.29	60.67	24.11	50.67	-16.38	-26.56
9.420	0.29	42.84	60.00	36.80	50.00	-17.16	-13.20
9.735	0.30	41.95	60.00	37.57	50.00	-18.05	-12.43
10.044	0.30	46.03	60.00	40.43	50.00	-13.97	-9.57
14.436	0.50	47.11	60.00	42.78	50.00	-12.89	-7.22
14.749	0.51	47.09	60.00	41.51	50.00	-12.91	-8.49

Remark:

- 1. Corr. Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

