

Report No.: EME-050490 Page 1 of 32

EMC TEST REPORT

Report No.	: EME-050490
Model No.	: UCW2000
Issued Date	: May 17, 2005

Test By : Intertek Testing Services Taiwan Ltd. No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li, Shiang-Shan District, Hsinchu City, Taiwan

This test report consists of 32 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

Project Engineer

Marx Yan

Reviewed By

Jerry Liu

Report No.: EME-050490 Page 2 of 32

Table of Contents

Summary of Tests	4
1. General information	5
1.1 Identification of the EUT	5
1.2 Additional information about the EUT	5
1.3 Antenna description	6
1.4 Peripherals equipment	6
2. Test specifications	7
2.1 Test standard	7
2.2 Operation mode	7
2.3 Test equipment	8
3. Minimum 6dB Bandwidth test	9
3.1 Operating environment	9
3.2 Test setup & procedure	9
3.3 Measured data of Minimum 6dB Bandwidth test results	9
4. Maximum Output Power test	13
4.1 Operating environment	13
4.2 Test setup & procedure	13
4.3 Measured data of Maximum Output Power test results	13
5. Radiated Emission test	14
5.1 Operating environment	14
5.2 Test setup & procedure	14
5.3 Emission limits	15
5.4 Radiated spurious emission test data	16
5.4.1 Measurement results: frequencies equal to or less than 1 GHz	16
5.4.2 Measurement results: frequency above 1GHz	17
6. Power Spectrum Density test	18
6.1 Operating environment	18
6.2 Test setup & procedure	18
6.3 Measured data of Power Spectrum Density test results	18
7. Emission on the band edge §FCC 15.247(C)	22
7.1 Band-edge (Conducted method)	23
7.2 Band-edge (Radiated method)	25

8. Power Line Conducted Emission test §FCC 15.207	29
8.1 Operating environment	29
8.2 Test setup & procedure	
8.3 Emission limit	
8.4 Uncertainty of Conducted Emission	
8.5 Power Line Conducted Emission test data	

Summary of Tests

CPSCB1 Chalkboard-Model: UCW2000 FCC ID: MQ4UCW2000

Test	Reference	Results
Minimum 6dB Bandwidth test	15.247(a)(2)	Complies
Maximum Output Power test	15.247(b)	Complies
Radiated Spurious Emission test	15.205, 15.209	Complies
Power Spectrum Density test	15.247(d)	Complies
Power Line Conducted Emission test	15.207	Complies

Report No.: EME-050490 Page 5 of 32

1. General information

1.1 Identification of the EUT

Applicant	: AboCom Syatems, Inc.
Product	: CPSCB1 Chalkboard
Model No.	: UCW2000
FCC ID.	: MQ4UGW2000
Frequency Range	: 2402MHz ~ 2478MHz
Channel Number	: 77 channels
Frequency of Each Channel	$2402MHz + k MHz k = 0 \sim 76$
Type of Modulation	: DSSS
Rated Power	: 120Vac, 60Hz with adapter (Model: MKD-410500500R)
Power Cord	: N/A
Sample Received	: May 12, 2005
Test Date(s)	: May 11, 2005 ~ May 12, 2005

A FCC DoC report has been generated for the client.

1.2 Additional information about the EUT

By using the advanced RF technology, a 360° of operation is possible, and no line-of-sight is required between the receiver and the chalkboard. The chalkboard, with the high performance and long distance, will bring users the best operation accuracy and efficiency.

For more detail features, please refer to User's manual as file name "Installation guide.pdf"

Report No.: EME-050490 Page 6 of 32

1.3 Antenna description

The EUT uses a permanently connected antenna.

Antenna Gain: -1dBi maxAntenna Type: Printed antennaConnector Type: N/A

1.4 Peripherals equipment

Peripherals	Manufacturer	Product No.	Serial No.	FCC ID
Notebook PC	DELL	PP01L	CN-06P83-48643-33V-0112	FCC DoC Approved

2. Test specifications

2.1 Test standard

The EUT was performed according to the procedures in FCC Part 15 Subpart C Section § 15.205、 §15.207、 §15.209、 §15.247 and ANSI C63.4/2003.

The test of radiated measurements according to FCC Part15 Section 15.33(a) had been conducted and the field strength of this frequency band were all meet limit requirement, thus we evaluate the EUT pass the specified test.

2.2 Operation mode

During conducted emission test, the EUT was in normal mode communicating with receiver. While in other test, it worked in the status of continuously transmitting.

Report No.: EME-050490 Page 8 of 32

2.3 Test equipment

Equipment	Brand	Frequency range	Model No.	Intertek ID No.	Next Cal. Date
EMI Test Receiver	Rohde & Schwarz	9kHz~2.75GHz	ESCS 30	EC303	04/13/2006
EMI Test Receiver	Rohde & Schwarz	20Hz~26.5GHz	ESMI	EC317	07/14/2005
Spectrum Analyzer	Rohde & Schwarz	9kHz~30GHz	FSP 30	EC353	07/13/2005
Spectrum Analyzer	Rohde & Schwarz	20Hz~40GHz	FSEK 30	EC365	10/18/2005
Horn Antenna	EMCO	1GHz~18GHz	3115	EC338	08/16/2005
Horn Antenna	SCHWARZBECK	14GHz~40GHz	BBHA 9170	EC351	07/08/2005
Bilog Antenna	SCHWARZBECK	25MHz~1.7GHz	VULB 9160	EC368	05/20/2005
Pre-Amplifier	MITEQ	100MHz~26.5GHz	919981	EC373	04/13/2006
Pre-Amplifier	MITEQ	26GHz~40GHz	828825	EC374	01/28/2006
Wideband Peak Power Meter/ Sensor	Anritsu	100MHz~18GHz	ML2497A/ MA2491A	EC396	10/18/2005
Controller	HDGmbH	N/A	HD 100	EP317-1	N/A
Antenna Tower	HDGmbH	N/A	MA 240	EP317-2	N/A
Turn Table	HDGmbH	N/A	DS 420S	EP317-3	N/A
LISN	Rohde & Schwarz	9KHz~30MHz	ESH3-Z5	EC344	01/14/2006

Note: The above equipments are within the valid calibration period.

Intertek ETL SEMKO

FCC ID. : MQ4UCW2000

Report No.: EME-050490 Page 9 of 32

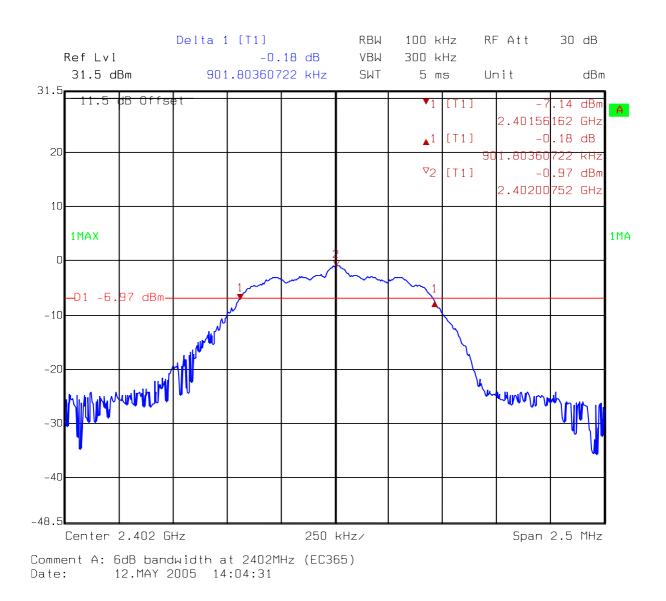
3. Minimum 6dB Bandwidth test

3.1 Operating environment

Temperature:25Relative Humidity:5858%Atmospheric Pressure:1023hPa

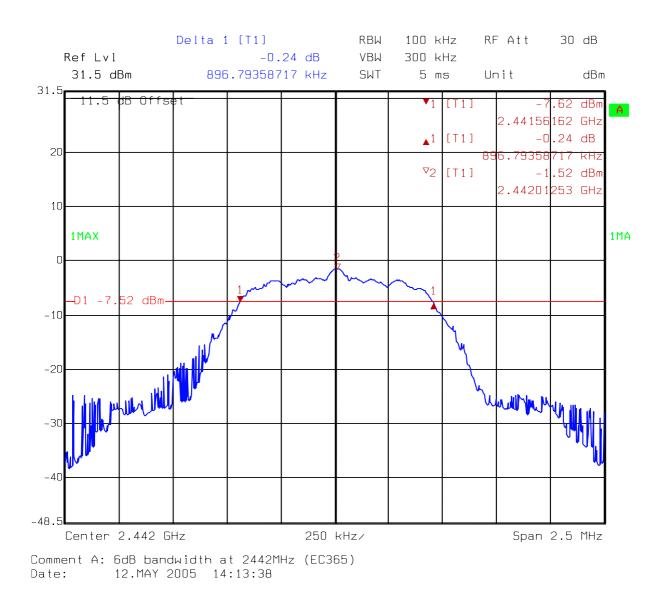
3.2 Test setup & procedure

The minimum 6dB bandwidth per FCC $\frac{15.247(a)(2)}{a}$ was measured using a 50 ohm spectrum analyzer with the resolutions bandwidth set at 100kHz, the video bandwidth set at 300kHz, and the SPAN>>RBW. The test was performed at 3 channels (lowest, middle and highest channel). The minimum 6-dB modulation bandwidth is in the following Table.

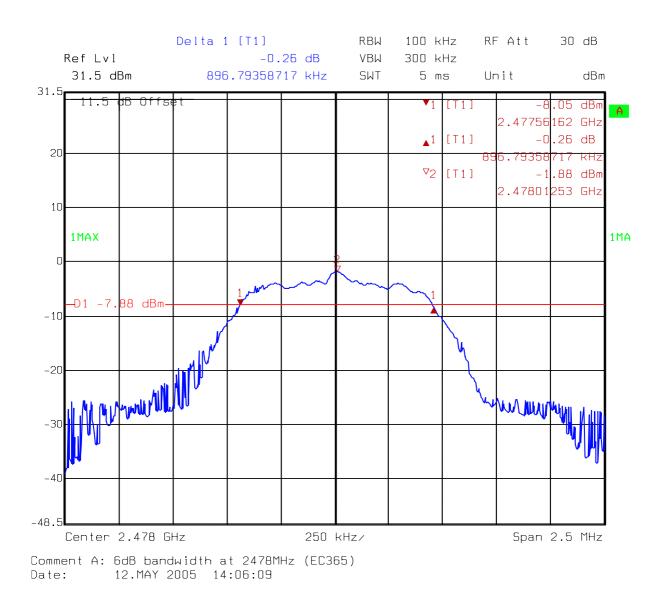

3.3 Measured data of Minimum 6dB Bandwidth test results

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit
1 (lowest)	2402	0.9018	> 500kHz
40 (middle)	2442	0.8968	> 500kHz
77 (highest)	2478	0.8968	> 500kHz

Please see the plot below.



Report No.: EME-050490 Page 10 of 32



Report No.: EME-050490 Page 11 of 32

Report No.: EME-050490 Page 12 of 32

Intertek ETL SEMKO

FCC ID. : MQ4UCW2000

Report No.: EME-050490 Page 13 of 32

4. Maximum Output Power test

4.1 Operating environment

Temperature:25Relative Humidity:5858%Atmospheric Pressure:1023hPa

4.2 Test setup & procedure

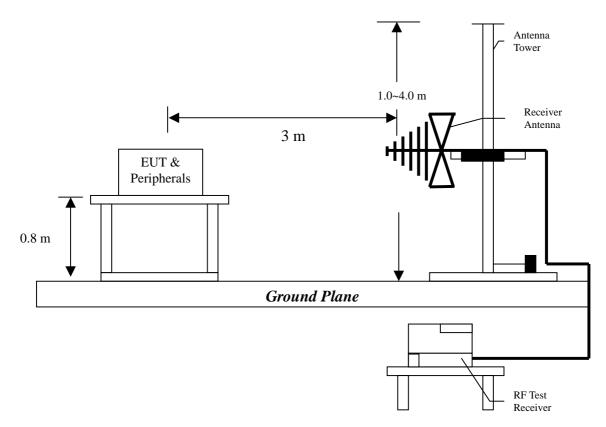
The power output per FCC §15.247(b) was measured on the EUT using a 50 ohm SMA cable connected to peak power meter via power sensor. Power was read directly and cable loss correction (1.5 dB) was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel).

4.3 Measured data of Maximum Output Power test results

Channel Freq. C.L.	Reading	Conducted Peak Output Power		Limit		
	(MHz)	(dB)	(dBm)	(dBm)	(mW)	(dBm)
1 (lowest)	2402	1.5	-0.10	1.40	1.38038	30
40 (middle)	2442	1.5	-0.39	1.11	1.28824	30
77 (highest)	2478	1.5	-0.72	0.78	1.19674	30

Remark:

Conducted Peak Output Power = Reading + C.L.


5. Radiated Emission test

5.1 Operating environment

Temperature:23Relative Humidity:5858%Atmospheric Pressure:1023hPa

5.2 Test setup & procedure

The Diagram below shows the test setup, which is utilized to make these measurements.

Radiated emissions were invested cover the frequency range from 30MHz to 1000MHz using a receiver RBW of 120kHz record QP reading, and the frequency over 1GHz using a spectrum analyzer RBW of 1MHz and 10Hz VBW record Average reading. (15.209 paragraph), the Peak reading (1MHz RBW/VBW) recorded also on the report.

The EUT for testing is arranged on a wooden turntable. If some peripherals apply to the EUT, the peripherals will be connected to EUT and the whole system. During the test, all cables were arranged to produce worst-case emissions. The signal is maximized through rotation. The height of antenna and polarization is changing constantly for exploring for maximum signal level. The height of antenna can be up to 4 meters and down to 1 meter.

Intertek ETL SEMKO

FCC ID. : MQ4UCW2000

Report No.: EME-050490 Page 15 of 32

The measurement for radiated emission will be done at the distance of three meters unless the signal level is too low to measure at that distance. In the case of the reading under noise floor, a pre-amplifier is used and/or the test is conducted at a closer distance. And then all readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance.

The EUT configuration please refer to the "Spurious set-up photo.pdf".

5.3 Emission limits

The spurious Emission shall test through the 10th harmonic. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency (MHz)	Limits (dB µ V/m@3m)
30-88	40
88-216	43.5
216-960	46
Above 960	54

Remark:

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Uncertainty was calculated in accordance with NAMAS NIS 81. Expanded uncertainty (k=2) of radiated emission measurement is 4.98 dB.

5.4 Radiated spurious emission test data

5.4.1 Measurement results: frequencies equal to or less than 1 GHz

The test was performed on EUT under continuously transmitting mode. Tx at 2402MHz, 2442MHz and 2478MHz were verified. The worst case occurred at 2402MHz.

EUT	: UCW2000
Worst Case	: Tx at 2402MHz

Frequency	Spectrum	Antenna	Correction	Reading	Corrected	Limit	Margin	Antenna	Turn Table
	Analyzer	Polariz.	Factor		Level	@ 3 m		high	angle
(MHz)	Detector	(H/V)	(dB/m)	(dBuV)	(dBuV)	(dBuV)	(dB)	(m)	(degree)
84.320	QP	V	8.09	26.21	34.30	40.00	-5.70	1.00	334.49
398.600	QP	V	16.43	20.62	37.05	46.00	-8.95	1.00	75.24
431.580	QP	V	17.23	24.17	41.40	46.00	-4.60	1.00	277.42
565.440	QP	V	19.91	15.84	35.75	46.00	-10.25	1.00	153.96
598.420	QP	V	20.71	16.40	37.11	46.00	-8.89	1.00	86.91
632.370	QP	V	21.24	15.83	37.07	46.00	-8.93	2.43	81.48
84.320	QP	Н	8.74	23.79	32.53	40.00	-7.47	2.30	271.83
95.960	QP	Н	8.37	28.32	36.69	43.50	-6.81	2.01	184.58
397.630	QP	Н	16.75	19.36	36.11	46.00	-9.89	2.19	145.65
431.580	QP	Н	17.66	23.60	41.26	46.00	-4.74	1.85	52.02
765.260	QP	Н	23.20	13.06	36.26	46.00	-9.74	1.74	295.08
898.150	QP	Н	24.57	15.04	39.61	46.00	-6.39	3.00	10.36

Remark:

1.Corrected Level = Reading Level + Correction Factor

2.Correction Factor = Antenna Factor + Cable Loss

Report No.: EME-050490 Page 17 of 32

5.4.2 Measurement results: frequency above 1GHz

EUT : UCW2000 Test Condition : Tx at 2402MHz, 2442MHz, 2478MHz

Test Result: No spurious emission was found above the spectrum analyzer's noise floor. The noise floor are listed as below:

For PK: 1GHz-3GHz: 20dBuV 3GHz-14GHz: 27dBuV 14GHz-26.5GHz: 39dBuV

For AV: 1GHz-3GHz: 10dBuV 3GHz-14GHz: 16dBuV 14GHz-26.5GHz: 28dBuV Intertek ETL SEMKO

FCC ID. : MQ4UCW2000

Report No.: EME-050490 Page 18 of 32

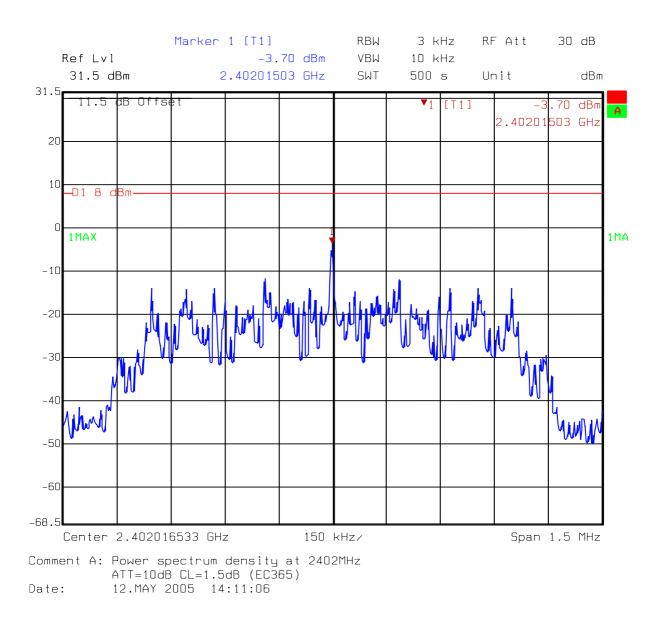
6. Power Spectrum Density test

6.1 Operating environment

Temperature:23Relative Humidity:58Atmospheric Pressure1023hPa

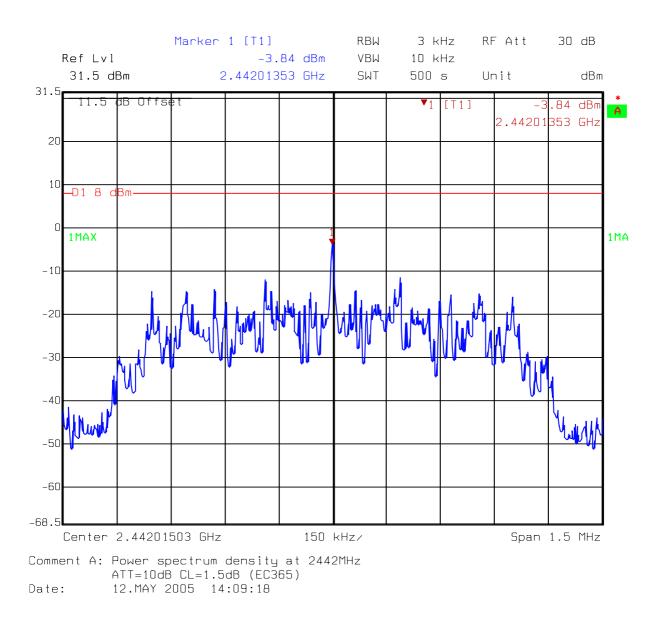
6.2 Test setup & procedure

The power spectrum density per FCC §15.247(d) was measured from the antenna port of the EUT using a 50ohm spectrum analyzer with the resolution bandwidth set at 3kHz, the video bandwidth set at 10kHz, a span of 1.5 MHz, and the sweep time set at 500 seconds. Power Density was read directly and cable loss (1.5dB)/external attenuator (10dB) correction was added to the reading to obtain power at the EUT antenna terminals. The test was performed at 3 channels (lowest, middle and highest channel). The Power Spectral Density measured result is in the following table.

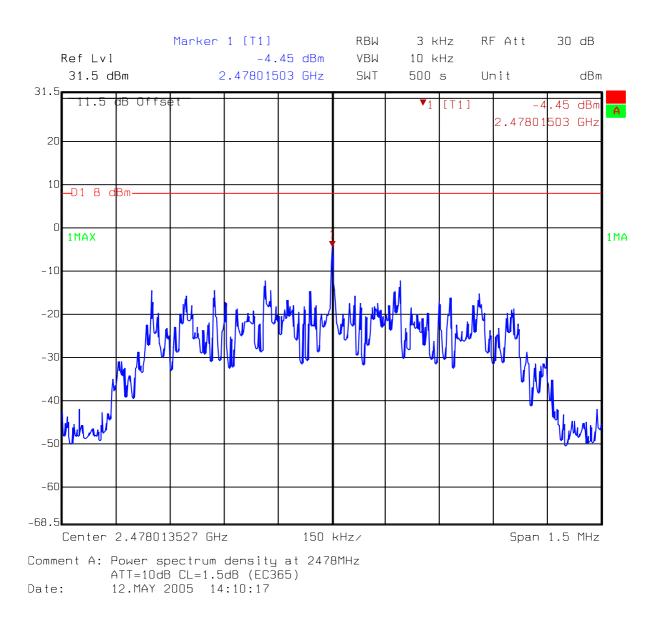

6.3 Measured data of Power Spectrum Density test results

Channel	Frequency	Power spectrum density	Limit
Chaimer	(MHz)	(dBm)	(dBm)
1 (lowest)	2402MHz	-3.70	8
40 (middle)	2442MHz	-3.84	8
77 (highest)	2478MHz	-4.45	8

Please see the plot below.



Report No.: EME-050490 Page 19 of 32

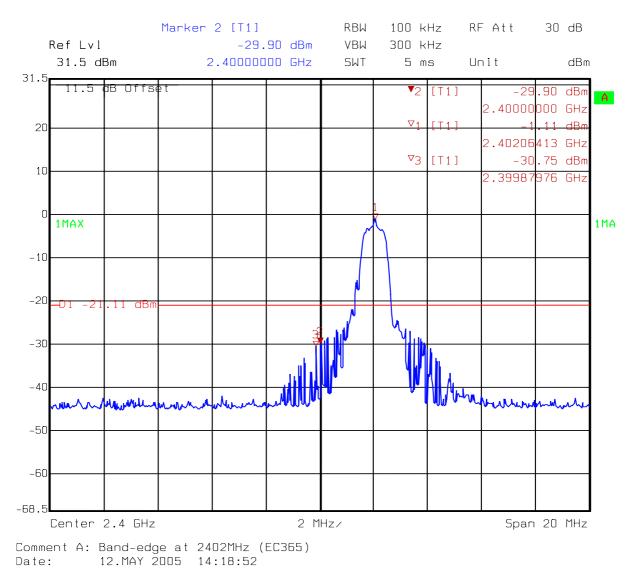


Report No.: EME-050490 Page 20 of 32

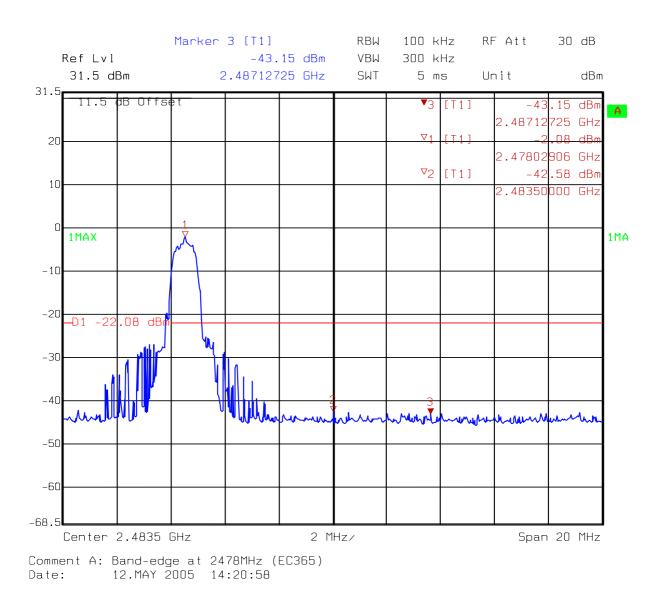
Report No.: EME-050490 Page 21 of 32

Report No.: EME-050490 Page 22 of 32

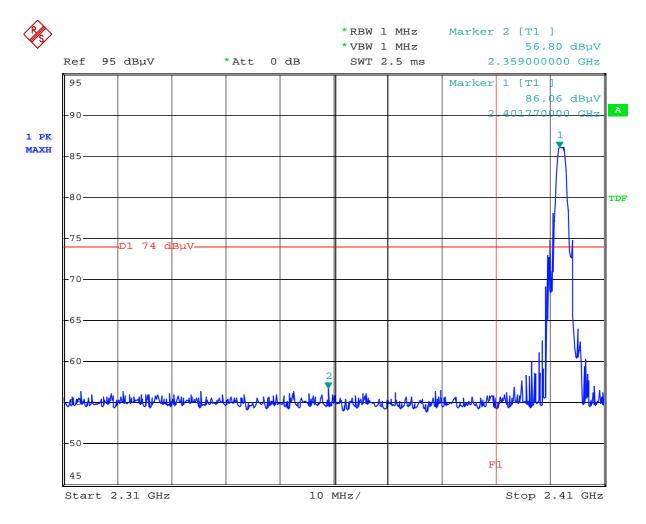
7. Emission on the band edge §FCC 15.247(C)


In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

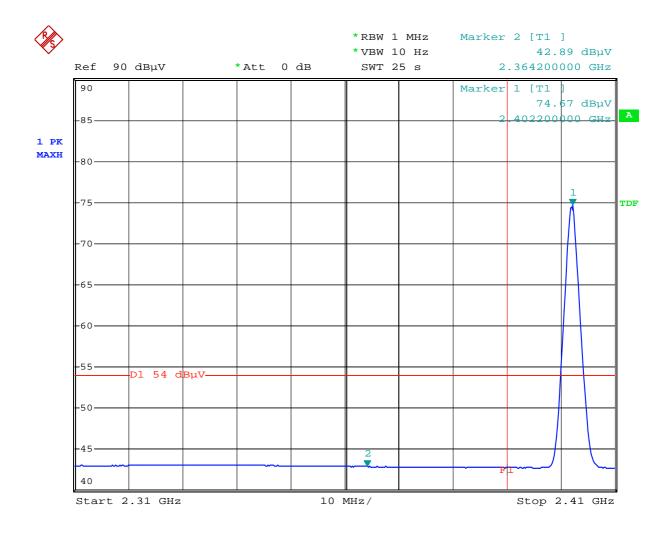
Please see the plot below.


Report No.: EME-050490 Page 23 of 32

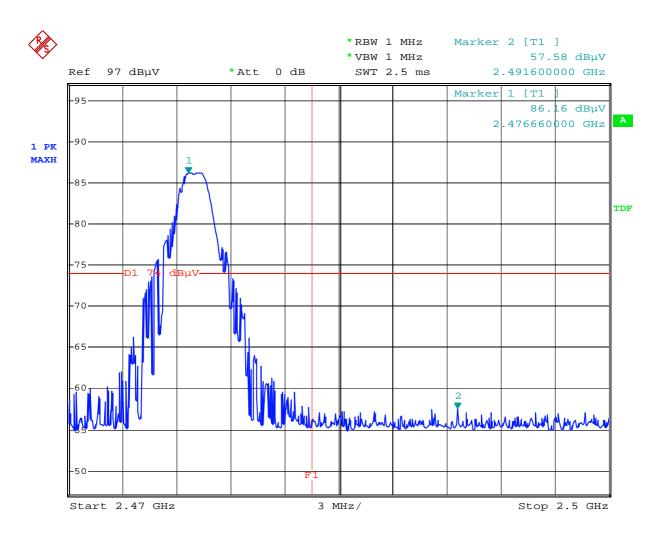
7.1 Band-edge (Conducted method)


Report No.: EME-050490 Page 24 of 32

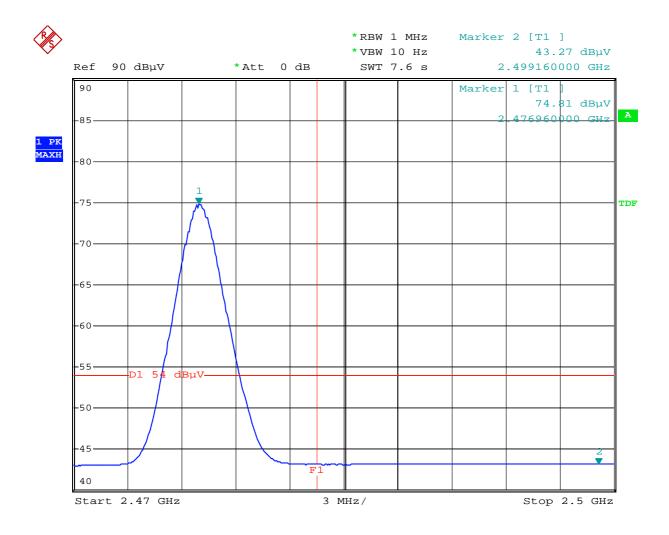
Report No.: EME-050490 Page 25 of 32


7.2 Band-edge (Radiated method)

Comment: Band-Edge at 2402MHz F1=2390MHz Comment: Peak (EC371/EC353) Date: 12.MAY.2005 19:10:51


Report No.: EME-050490 Page 26 of 32

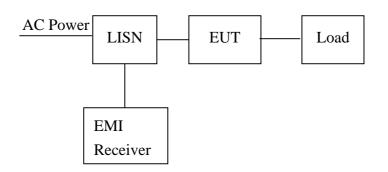
Comment: Band-Edge at 2402MHz F1=2390MHz Comment: Average (EC371/EC353) Date: 12.MAY.2005 19:12:47


Report No.: EME-050490 Page 27 of 32

Comment: Band-Edge at 2478MHz F1=2483.5MHz Comment: Peak (EC371/EC353) Date: 12.MAY.2005 19:16:12

Report No.: EME-050490 Page 28 of 32

Comment: Band-Edge at 2478MHz F1=2483.5MHz Comment: Average (EC371/EC353) Date: 12.MAY.2005 19:17:23



8. Power Line Conducted Emission test §FCC 15.207

8.1 Operating environment

Temperature:	22	
Relative Humidity:	60	%
Atmospheric Pressure	1023	hPa

8.2 Test setup & procedure

The EUT are connected to the main power through a line impedance stabilization network (LISN). This provides a 50 ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination.

Both sides (Line and Neutral) of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4/2003 on conducted measurement. The bandwidth of the field strength meter (R & S Test Receiver ESCS 30) is set at 9kHz.

The EUT configuration please refer to the "Conducted set-up photo.pdf".

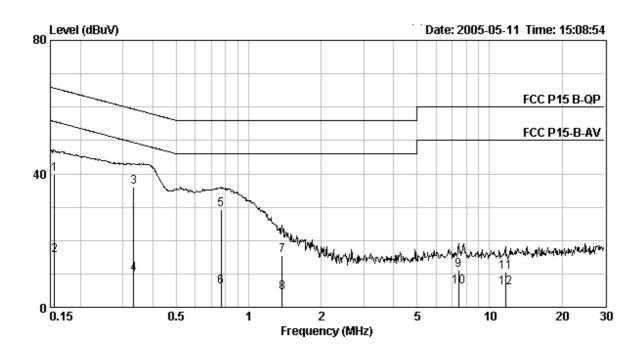
8.3 Emission limit

Freq.	Conducted Limit (dBuV)				
(MHz)	Q.P.	Ave.			
0.15~0.50	66 – 56*	56 - 46*			
0.50~5.00	56	46			
5.00~30.0	60	50			

*Decreases with the logarithm of the frequency.

8.4 Uncertainty of Conducted Emission

Expanded uncertainty (k=2) of conducted emission measurement is ± 2.6 dB.


8.5 Power Line Conducted Emission test data

Phase	: Line
EUT	: UCW2000
Test Condition	: Normal operating mode

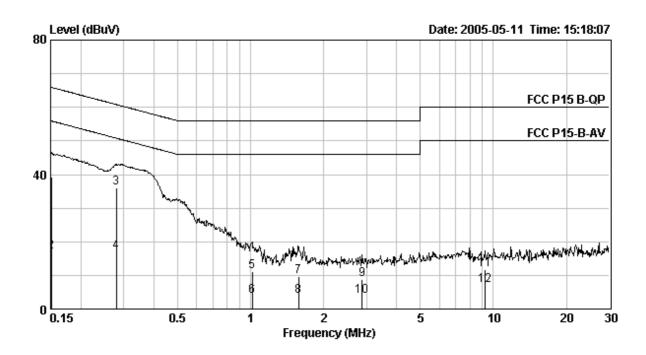
Frequency	Corr. Factor	Level Qp	Limit Qp	Level AV	Limit Av		rgin dB)
(MHz)	(dB)	(dBuA)	(dBuA)	(dBuA)	(dBuA)	Qp	Av
0.156	0.10	39.76	65.67	15.43	55.67	-25.91	-40.24
0.333	0.10	36.07	59.38	10.00	49.38	-23.31	-39.38
0.768	0.10	29.45	56.00	6.19	46.00	-26.55	-39.81
1.374	0.10	15.47	56.00	4.52	46.00	-40.53	-41.48
7.443	0.32	11.01	60.00	6.07	50.00	-49.00	-43.94
11.629	0.50	10.64	60.00	5.95	50.00	-49.36	-44.05

Remark:

- 1. Correction Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

Intertek ETL SEMKO

FCC ID. : MQ4UCW2000


Margin (dB)

Phase		: Neutr	al			
EUT		: UCW2000				
Test Condition		: Normal operating mode				
Frequency	Corr. Factor	Level Qp	Limit Qp	Level AV	Limit Av	

(MHz)	(dB)	(dBuA)	(dBuA)	(dBuA)	(dBuA)	Qp	Av
0.151	0.10	39.39	65.93	17.14	55.93	-26.54	-38.79
0.279	0.10	36.03	60.84	16.99	50.84	-24.81	-33.85
1.015	0.10	11.14	56.00	3.79	46.00	-44.86	-42.21
1.574	0.10	9.53	56.00	3.81	46.00	-46.47	-42.19
2.884	0.14	8.78	56.00	3.83	46.00	-47.22	-42.17
9.230	0.20	11.60	60.00	6.90	50.00	-48.40	-43.10

Remark:

- 1. Correction Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

