

JQA APPLICATION NO.: 400-00212 Issue Date : July 25, 2000 Page 1 of 25

EMI TEST REPORT

Final Judgment	: Passed
Received date of EUT	Aichi-ken 480-0195, Japan : June 22, 2000
Address	260, Toyota 3-chome, Oguchi-cho, Niwa-gun,
Manufacture	: TOKAI RIKA CO., LTD.
	Aichi-ken 480-0195, Japan
Address	: 260, Toyota 3-chome, Oguchi-cho, Niwa-gun,
Applicant	: TOKAI RIKA CO., LTD.
FCC ID	: MOZRI-4ATY-A
Regulations Applied	: CFR 47 FCC Rules and Regulations Part 15 \bigtriangleup
Type of Equipment	: Immobilizer System
Model No.	: RI-4ATY(a)
JQA APPLICATION NO.	: 400-00212

TEST RESULTS IN THIS REPORT are obtained in use of equipment that is traceable to Electrotechnical Lab. of MITI Japan and Communications Research Lab. of MPT Japan.

The test results only respond to the tested sample. It is not allowed to copy this report even partly without the allowance of the JQA EMC Engineering Dept. Testing Div.

TABLE OF CONTENTS

-	D		Page
1	Docu	mentation	
	1.1	Test Regulation	3
	1.2	General Information	3
	1.3	Test Condition	4 - 8
	1.4	EUT Modifications / Deviation from Standard	9
	1.5	Test results	10
	1.6	Summary	11
	1.7	Test Configuration / Operation of EUT	12
	1.8	EUT Arrangement(Drawing)	13
	1.9	Preliminary Test and Test setup (Drawings)	14 - 19
	1.10	EUT Arrangement (Photographs)	20
2	Test	Data	
	2.1	AC Power Line Conducted Emission 0.45 MHz - 30 MHz	<u>N/A</u>
	2.2	Radiated Emission (Electric Field)9 kHz - 30 MHz	21 - 22
	2.3	Radiated Emission (Electric Field)30 MHz - 1000 MHz	23 - 24
	2.4	Radiated Emission (Electric Field) Above 1 GHz	<u>N / A</u>
	2.5	Frequency Stability	<u>N / A</u>
	2.6	Occupied Bandwidth	<u>N / A</u>

1 DOCUMENTATION

1.1 TEST REGULATION

FCC Rules and Regulations Part 15 Subpart A and C (June 23, 1989) Intentional Radiators

Test procedure :

AC power line conducted emission, radiated emission, frequency stability and occupied bandwidth tests were performed according to the procedures in ANSI C63.4-1992.

1.2 GENERAL INFORMATION

1.2.1 Test facility :

- 1) Test Facility located at EMC Engineering Dept. Testing Div. :
 - No.2 and 3 Anechoic Chambers(3 meters Site).
 - Shielded Enclosure.
 - Expiration date of FCC test facility filing : June 4, 2002

TSURU EMC Branch: Open Site No.1, No.2, An Anechoic Chamber (3 m and 10 m, on common plane) and a Shielded Room (Date of Listing: March 30,1999)

2) EMC Engineering Dept. Testing Div. and TSVRU EMC Branch are recognized under the National Voluntary Laboratory accreditation Program for satisfactory compliance established in title 15, Part 285 Code of Federal Regulations. NVLAP Lab Code : 200189-0 (Effective through : June 30, 2001)

NVLAP Lab Code : 200192-0 (Effective through : June 30, 2001)

1.2.2 Description of the Equipment Under Test (EUT) :

1)	Type of Equipment 🔨 📉))	: Immobilizer System	
2)	Product Type	: Production	
3)	Category	: Low Power Communication Device	
		Transmitter	
4)	EUT Authorization	: Certification	
5)	FCC ID	: MOZRI-4ATY-A	
б)	Trade Name	: -	
7)	Model No.	: RI-4ATY(a)	
8)	Operating Frequency Range	: 133.8 kHz	
9)	Highest Frequency Used in the EUT	: 133.8 kHz	
10) Serial No.	: -	
11) Date of Manufacture	: -	
12) Power Rating	: 12.0 VDC	
13) EUT Grounding	: None	

1.2.3 Definitions for symbols used in this test report :

- <u>x</u> indicates that the listed condition, standard or equipment is applicable for this report.
- ____ indicates that the listed condition, standard or equipment is not applicable for this report.

1.3 TEST CONDITION

1.3.1 The measurement of the AC Power Line Conducted Emission

- ____ was performed in the following test site.
- \underline{x} was not applicable.

Test location :

Safety Testing Center EMC Engineering Dept. Tsuru EMC Branch 2096 Ohhata, Tanbozawa, Tsuru-shi Yamanashi-ken 402-0045, JAPAN

- ____ Shielded Room No.1
- ____ Shielded Room No.2
- ____ Anechoic Chamber
- ____ Open Site No.1
- ____ Open Site No.2

Туре	Model No.	Manufacturer	Serial No.	Last	Cal.	Interval
Test Receiver	ESH-3	Rohde & Schwarz	872992/047	May.	2000	1 Year
Test Receiver	ESH-3	Ronde & Schwarz	881460/016	May.	2000	1 Year
<pre> LISN(for Peripheral)</pre>	KNW-407((Kyoritsu Electrical	8-833-5	May.	2000	1 Year
LISN(for EUT)	KNW <u>₹</u> 407 \\	Kyoritsu Electrical	8-680-14	May.	2000	1 Year
LISN	клуи-243C	Kyoritsu Electrical	8-831-1	May.	2000	1 Year
LISN	KNW-243C	Kyoritsu Electrical	8-831-2	May.	2000	1 Year
LISN	KNW-243C	Kyoritsu Electrical	8-831-3	May.	2000	1 Year
LISN	KNW-243C	Kyoritsu Electrical	8-831-4	May.	2000	1 Year
LISN	ESH 2-Z5	Rohde & Schwarz	879341/007	May.	2000	1 Year
RF Cable	3D-2W	Fujikura	No.1	May.	2000	1 Year
RF Cable	3D-2W	Fujikura	No.2	May.	2000	1 Year
RF Cable	3D-2W	Fujikura	No.3	May.	2000	1 Year
50ohm Termination	-	TDC	15406501E1	Feb.	2000	1 Year
50ohm Termination	-	-	15406502E1	Feb.	2000	1 Year

1.3.2 The measurement of the Radiated Emission(9 kHz - 30 MHz)

<u>x</u> - was performed in the following test site. <u>-</u> - was not applicable.

Test location :

Safety Testing Center EMC Engineering Dept. Tsuru EMC Branch 2096 Ohhata, Tsuru-shi, Yamanashi-ken 402-0045, JAPAN

_____ - Open Site No. 1 (3, 10 or 30 meters)
_____ - Open Site No. 2 (3, 10 or 30 meters)
_____ - Anechoic Chamber(3 or 10 meters)

Validation of Site Attenuation :

1)	Last	Confirmed	Date	:	N/A
2)	Inter	rval		:	N/A

Used test instruments :

Туре

<u>x</u>	-	Test	Receiver
	-	Test	Receiver
x	-	Loop	Antenna
	-	Loop	Antenna
x	-	RF Ca	able

Model No. Manufacturer ESH-3 Rohde & Schwarz ESH-3 Rohde & Schwarz HFH2-Z2 Rohde & Schwarz 6502 EMCO 50 2W Rujikura

Ŷ	Serial No.	Last	Cal.	Interval
	872992/047	May.	2000	1 Year
	881460/016	May.	2000	1 Year
	872994/043	May.	2000	1 Year
	8905-2347	May.	2000	1 Year
	155-21-002E0	Feb.	2000	1 Year

1.3.3 The measurement of the Radiated Emission(30 MHz - 1000 MHz)

<u>x</u> - was performed in the following test site. <u>-</u> - was not applicable.

Test location :

Safety Testing Center EMC Engineering Dept. Tsuru EMC Branch 2096 Ohhata, Tsuru-shi, Yamanashi-ken 402-0045, JAPAN

<u>x</u> - Open Site No. 1 (3, 10 or 30 meters) - Open Site No. 2 (3, 10 or 30 meters) - Anechoic Chamber(3 or 10 meters)

Validation of Site Attenuation :

1)	Last	Confirmed	Date	:May,	2000
2)	Inte	rval		:1 yea	ar

Туре	Model No.	Manufacturer	Serial No.	Last	Cal.	Interval
<u>x</u> - Test Receiver	ESV	Rohde & Schwarz	863796/015	May.	2000	1 Year
Test Receiver	ESVS10	Ronde & Schwarz	843744/018	May.	2000	1 Year
Test Receiver	ESVS10 ((Rohde & Schwarz	84231/004	May.	2000	1 Year
<u>x</u> - Biconical Antenna	BBA9106	Schwarzbeck	11905065-2	May.	2000	1 Year
Biconical Antenna	BBA9106	Schwarzbeck	11905065-3	May.	2000	1 Year
Biconical Antenna	BBA9106	Schwarzbeck	G4397001	May.	2000	1 Year
<u>x</u> - Log-Periodic Antenna	UHALP9107	/\$chwarzbeck	91071212	May.	2000	1 Year
Log-Periodic Antenna	UHALP9107	Schwarzbeck	9107915	May.	2000	1 Year
Log-Periodic Antenna	UHALP9107	Schwarzbeck	G43597003	May.	2000	1 Year
Dipole Antenna	KBA-511A	Kyoritsu Electrical	0-195-5	May.	2000	1 Year
Dipole Antenna	KBA-511A	Kyoritsu Electrical	0-230-6	May.	2000	1 Year
Dipole Antenna	KBA-611	Kyoritsu Electrical	0-196-8	May.	2000	1 Year
Dipole Antenna	KBA-611	Kyoritsu Electrical	0-228-13	May.	2000	1 Year
<u>x</u> - RF Cable	20D/5D-2W	Fujikura	No.1	May.	2000	1 Year
RF Cable	20D/5D-2W	Fujikura	No.2	May.	2000	1 Year
RF Cable	20D/5D-2W	Fujikura	No.3	May.	2000	1 Year

1.3.4 The measurement of the Radiated Emission(Above 1000 MHz)

____ - was performed in the following test site. _x - was not applicable.

Test location :

Safety Testing Center EMC Engineering Dept. Tsuru EMC Branch 2096 Ohhata, Tsuru-shi, Yamanashi-ken 402-0045, JAPAN

_____ - Open Site No. 1 (3, 10 or 30 meters)
_____ - Open Site No. 2 (3, 10 or 30 meters)
_____ - Anechoic Chamber(3 or 10 meters)

Validation of Site Attenuation :

Last Confirmed Date : N/A
 Interval : N/A

_					•
Туре	Model No.	Manufacturer	Serial No.	Last Cal.	Interval
Spectrum Analyzer	8563E	Newlett Packard	3438A00756	May. 2000	1 Year
Spectrum Analyzer	R4131C ((Advantest	717201249	May. 2000	1 Year
Log-Periodic Antenna	94612	Rohde & Schwarz	97062301	May. 2000	1 Year
RF Amplifier	WJ-6611-513	Watkins-Johnson	0288	May. 2000	1 Year
RF Amplifier	WJ-6682-834	Watkins-Johnson	0052	May. 2000	1 Year
RF Amplifier	WJ-6870-506	Watkins-Johnson	0018	May. 2000	1 Year
RF Cable(7m)	SUCOFLEX 104	Suhner	52146/4	May. 2000	1 Year
RF Cable(3m)	SUCOFLEX 104	Suhner	52053/4	May. 2000	1 Year
RF Cable(2m)	SUCOFLEX 104	Suhner	39934/4	May. 2000	1 Year
RF Cable(1m)	SUCOFLEX 104	Suhner	35687/4	May. 2000	1 Year

1.3.5 The measurement of the Frequency Stability

____ - was performed.

 \underline{x} - was not applicable.

Used test instruments :

Туре	Model No	. Manufacturer	Serial No.	Last Cal.	Interval
Frequency Counter	53131A	Hewlett Packard	3546A11807	May 2000	1 Year
Oven	-	Ohnishi Co. Ltd.	-	Aug. 1999	1 Year
DC Power Supply	6628A	Hewlett Packard	3224A00284	July 2000	1 Year

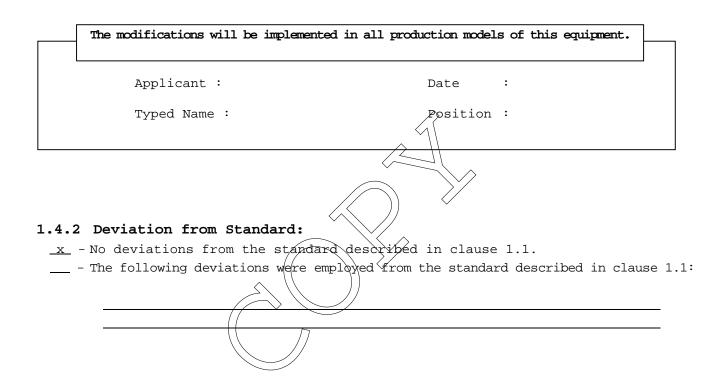
1.3.6 The measurement of the Occupied Bandwidth

____ - was performed.

 \underline{x} - was not applicable.

Туре	Model No.	M
Spectrum Analyzer	8560E	H
Spectrum Analyzer	8563E	H
Spectrum Analyzer	8566B	Æ
Spectrum Analyzer	8566в ((F
Function Generator	3325A	\F
FM Linear Detector	MSEIA	Y
Level Meter	ML422C	F
	Type Spectrum Analyzer Spectrum Analyzer Spectrum Analyzer Function Generator FM Linear Detector Level Meter	Spectrum Analyzer 8560E Spectrum Analyzer 8563E Spectrum Analyzer 8566B Spectrum Analyzer 8566B Function Generator 3325A FM Linear Detector MS61A

	\frown
del No.	Manufacturer
50E	Hewlett Packard
53E	Hewlett Packard
56в /	Hewlett Packard
56в ((Hewlett Packard
25A \	Hewlett Packard
3IA V	Anritsu Corp.
422C	Anritsu Corp.
	//


$\setminus \vee /$			
Serial No.	Last	Cal.	Interval
3240A00189	Sep.	1999	1 Year
3221A00201	May.	2000	1 Year
2140A01091	Apr.	2000	1 Year
2747A05855	May.	2000	1 Year
2512A21776	May.	2000	1 Year
M77486	Sep.	1999	1 Year
M87571	June	2000	1 Year

1.4 EUT MODIFICATION / Deviation from Standard

1.4.1 EUT MODIFICATION

<u>x</u> -No modifications were conducted by JQA to achieve compliance to Class B levels.
 <u>-</u> To achieve compliance to Class B levels, the following changes were made by JQA during the compliance test.

FCC ID :MOZRI-4ATY-A Issue Date :July 25, 2000

1.5 TEST RESULTS

AC Power Line Conducted Emission	Applicable	\underline{x} - NOT Applicable
The requirements are	PASSED	NOT PASSED
Remarks :		
Radiated Emission [§15.209(a)(b)]	<u>x</u> - Applicable	NOT Applicable
The requirements are	<u>x</u> - PASSED	NOT PASSED
Remarks:	\wedge	
Frequency Stability	- Applicable	<u>x</u> - NOT Applicable
The requirements are	PASSED	NOT PASSED
Remarks:	\rightarrow	
	/	
Occupied Bandwidth	Applicable	<u>x</u> - NOT Applicable
The requirements are	PASSED	NOT PASSED
Remarks:		

1.6 SUMMARY

General Remarks :

The EUT was tested according to the requirements of FCC Rules and Regulations Part 15 Subpart A and C (June 23, 1989) under the test configuration, as shown in clause 1.7 to 1.10.

The conclusion for the test items of which are required by the applied regulation is indicated under the final judgment.

Final Judgment :

The "as received" sample;

- \underline{x} fulfill the test requirements of the regulation mentioned on clause 1.1.
- ____ fulfill the test requirements of the regulation mentioned on clause 1.1, but with certain qualifications.
- ____ doesn't fulfill the test regulation mentioned on clause 1.1.

2000

: July 8, 2000

Begin of testing : July 8,

End of testing

- JAPAN QUALITY ASSURANCE ORGANIZATION -Approved by:

Signatories: Issued by:

Yuichi Fukumoto Manager Tsuru EMC Branch JQA EMC Engineering Dept.

Takaharu Kada

Takaharu Hada Director Tsuru EMC Branch JQA EMC Engineering Dept.

1.7 TEST CONFIGURATION / OPERATION OF EUT

1.7.1 Test Configuration

The equipment under test (EUT) consists of :

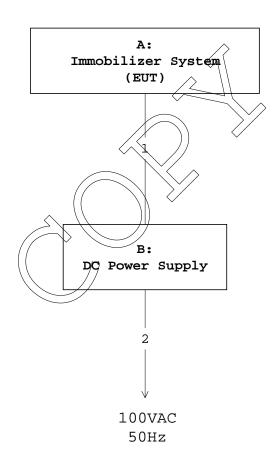
Symbol	Item	Manufacturer	Model No.	FCC ID	Serial No.
A	Immobilizer Sustem	TOKAI RIKA CO., LTD.	RI-4ATY(a)	MOZRI-4ATY-A	-

The measurement was carried out with the following support equipment connected :

Symbo 1	Item	Manufacturer	Model No.	FCC ID	Serial No.
В	DC Power Supply	KIKUSUI ELECTRONICS	PAB 18-2.5DU	N/A	30079912

Type of Cable :

Symbol	Description	Identification (Manufacturer etc.)	Shielded YES / NO	Ferrite Core	Connector type Shielded YES / NO	Length (m)
1	DC Power Cable(for EUT)	-	NO	NO	NO	1.0
2	AC Power Cable	-	\ NO	NO	NO	1.8

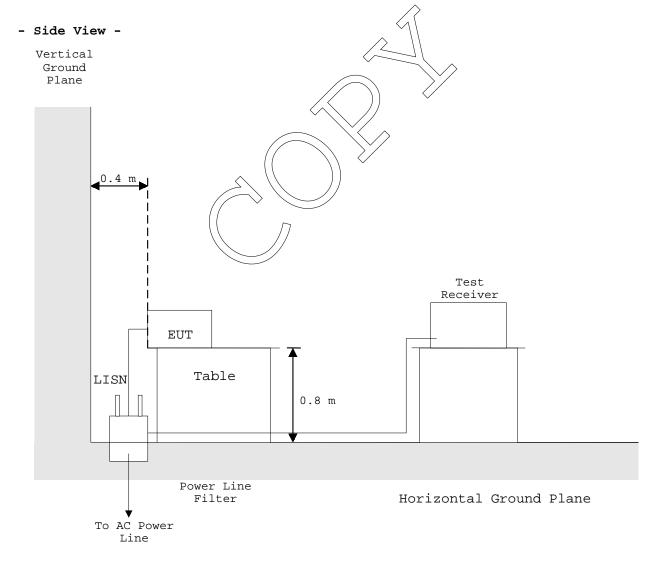

1.7.2 Operating condition

Power supply Voltage : 12.0 VDC(from DC Power Supply) The tests have been carried out under the transmitting condition.

FCC ID :MOZRI-4ATY-A Issue Date :July 25, 2000 Page 13 of 25

1.8 EUT ARRANGEMENT (DRAWINGS)

1.9 PRELIMINARY TEST AND TEST-SETUP (DRAWINGS)

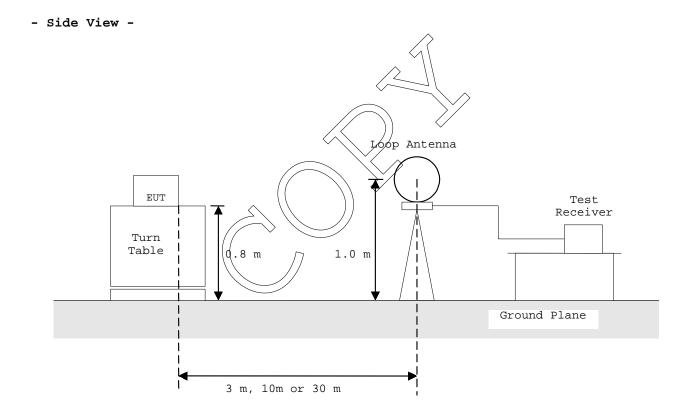

1.9.1 AC Power Line Conducted Emission (450 kHz - 30 MHz) :

According to description of ANSI C63.4-1992 sec.13.1.3.1, the AC power line preliminary conducted emissions measurements were carried out.

The preliminary conducted measurements were performed using the spectrum analyzer to observe the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for final AC power line conducted emissions measurements.

Shielded Enclosure

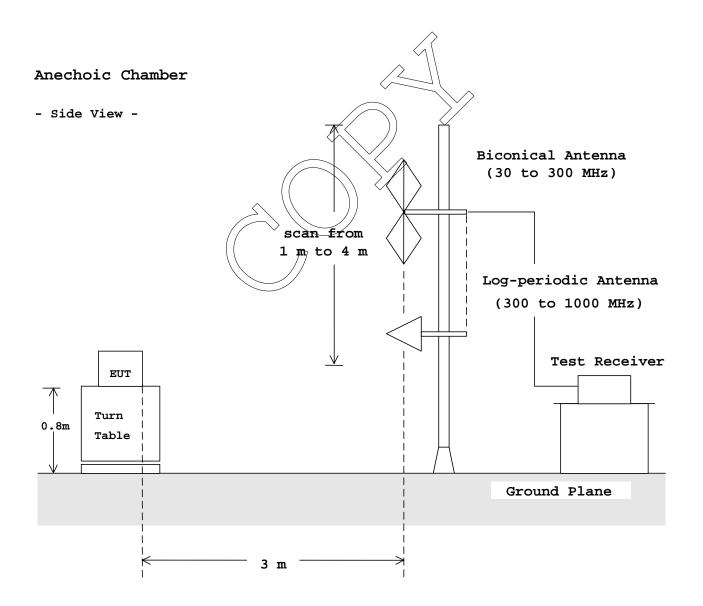


FCC ID :MOZRI-4ATY-A Issue Date :July 25, 2000 Page 15 of 25

1.9.2 Radiated Emission (9 kHz - 30 MHz) :

According to description of ANSI C63.4-1992 sec.13.1.4.1, the preliminary radiated emissions measurement were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.



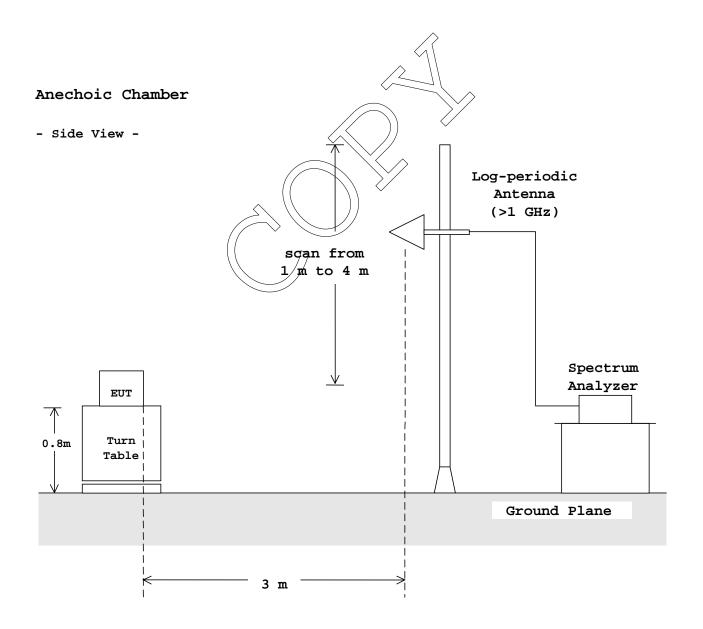
FCC ID :MOZRI-4ATY-A Issue Date :July 25, 2000 Page 16 of 25

1.9.3 Radiated Emission (30 MHz - 1000 MHz) :

According to description of ANSI C63.4-1992 sec.13.1.4.1, the preliminary radiated emissions measurement were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.

JAPAN QUALITY ASSURANCE ORGANIZATION



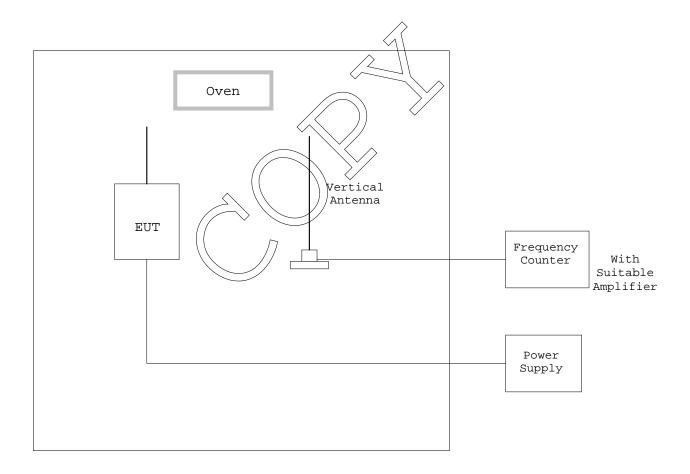
FCC ID :MOZRI-4ATY-A Issue Date :July 25, 2000 Page 17 of 25

1.9.4 Radiated Emission (Above 1 GHz) :

According to description of ANSI C63.4-1992 sec.13.1.4.1, the preliminary radiated emissions measurements were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.

JAPAN QUALITY ASSURANCE ORGANIZATION

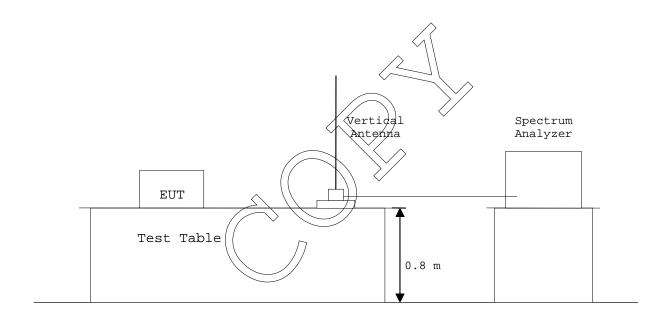


FCC ID :MOZRI-4ATY-A Issue Date :July 25, 2000 Page 18 of 25

1.9.5 Frequency Stability :

According to description of ANSI C63.4-1992 sec.13.1.5 and sec.13.1.6, the frequency stability measurements were carried out. By using frequency counter with suitable RF amplifier, the carrier frequency of the transmitter under test was measured with a temperature variation of -20 °C to +50 °C at the normal supply voltage, and if required, with a variation in the primary voltage from 85 % to 115 % the rated supply voltage at the temperature of +20 °C.

These measurements were carried out after allow sufficient time (approximately 1 hour) for the temperature of the chamber to stabilize.

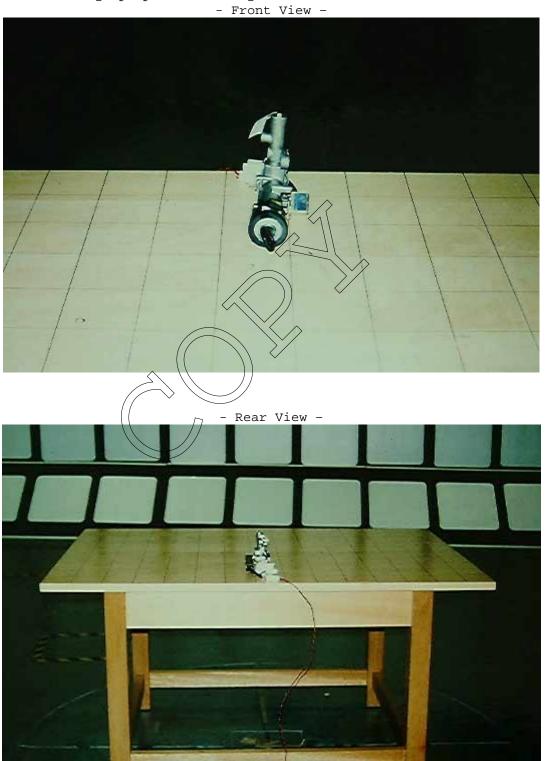


FCC ID :MOZRI-4ATY-A Issue Date :July 25, 2000 Page 19 of 25

1.9.6 Occupied Bandwidth :

According to description of ANSI C63.4-1992 sec.13.1.7, the occupied bandwidth measurements were carried out. By using a spectrum analyzer with a vertical antenna for picking up the signal, the measurements of the emission were made under the transmitting modes of the EUT.

The resolution bandwidth of spectrum analyzer was set to the value specified in sec.13.1.7.



FCC ID :MOZRI-4ATY-A Issue Date :July 25, 2000

1.10 TEST ARRANGEMENT (PHOTOGRAPHS)

PHOTOGRAPHS OF EUT CONFIGURATION FOR RADIATED EMISSIONS MEASUREMENT Photograph present configuration with maximum emission

TEST DATA

2.1 AC Power Line Conducted Emission Measurement(0.45 MHz - 30 MHz)

Note : This test was not applicable.

2.2 Radiated Emissions Measurement(9 kHz - 30 MHz)

Date : _	<u>July 8, 2000</u>	
Temp.:	<u> 19 °C</u> Humi.:	38 %

Operating Frequency: 133.8 kHzDistance of Measurement: 30 meters

Frequency	Meter Reading	Field Strength
(MHz)	(dBµV/m)	(dBhA/w)
Fundamental		2
0.1338	< 30.0	30,0
Harmonic Frequ	iency	
0.2676	< 33.2)) < 33.2
0.4014	< 31.4	< 31.4
0.5352	< 30.1	< 30.1
0.6690	< 29.0	< 29.0
0.8028	< 28.1))	< 28.1
0.9366	27.3	< 27.3
1.0704	< 27.0	< 27.0
1.2042	< 27/.0	< 27.0
1.3380	< 27.0	< 27.0
	\sim \sim	

Note : The fundamental field strength was found undetectable weak of the field strength meter.

Tested by :

7. hakajima

Yoichi Nakajima Testing Engineer

The distance of measurements was reduced to 3 meters. Date : ______ July 8, 2000 Temp.: <u>19 °C</u> Humi.: <u>38 %</u> **Operating Frequency** : 133.8 kHz Distance of Measurement : 10 meters Meter Reading Field Strength Frequency (MHz) $(dB\mu V/m)$ $(dB\mu V/m)$ Fundamental 0.1338 54.2 54.2 Harmonic Frequency 0.2676 < 33.2 < 33.2 0.4014 < 31.4 < 31.4 0.5352 < 30.1 30.1 < 29.0 29.0 0.6690 0.8028 < 28.1 28.1 0.9366 < 27.3 27/3 1.0704 < 27.0 *27*.0 1.2042 < 27.0 27.0 < 1.3380 < 27.0 < 27.0 1. Meter reading value shows ξ yield strength, because the value includes Note: antenna factor

- 2. The symbol of "t means "or less".
- 3. Measuring Instrument Setting:

Frequency Range Detector Function IF Band width	:	110 kHz to 490 kHz Average 10 kHz
Frequency Range Detector Function IF Band width	:	536.8 kHz to 1340 kHz CISPR Quasi-peak Peak 9 kHz

For fundamental, the measured field strength was extrapolated to distance 300 meters, using the formula that field strength varies as the inverse distance square(40 dB per decade of distance).

Calculation :

54.2 $dB\mu V/m - 20\log_{10}((300/10)^2) = 54.2 - 59.1$ = -4.9 $dB\mu V/m$ at 300 meters

Limits for fundamental(\$15.209(a)) = $20\log_{10}(2400/133.8)$ = 25.1 dB μ V/m

, hakajima

Tested by :

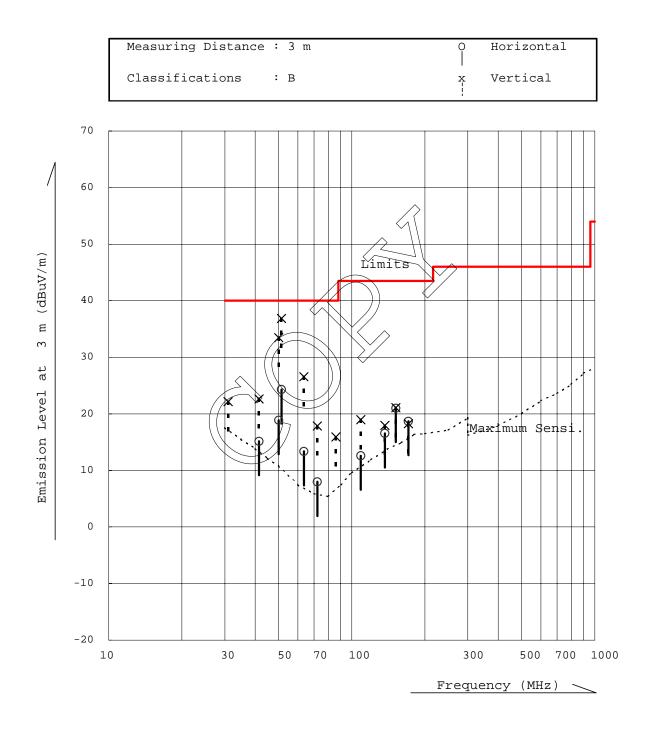
Yoichi Nakajima Testing Engineer

JAPAN QUALITY ASSURANCE ORGANIZATION

2.3 Radiated Emissions Measurement(30 MHz - 1000 MHz)

Date :	July 8,	2000	
Temp.:	19 °C	Humi.:	38 %

	Ver.
	7.8
31.0 19.2 < -2.0 3.0 40.0 < 17.2 22.2 > 22.8 17	
41.5 15.4 -0.2 7.3 40.0 15.2 22.7 24.8 17	7.3
50.0 12.8 6.1 20.7 40.0 18.9 33.5 21.1 6	6.5
51.4 12.3 12.0 24.6 40.0 24.3 36.9 15.7 3	3.1
63.5 8.9 4.5 17.7 40.0 13.4 26.6 26.6 13	3.4
72.2 7.8 0.2 10.1 40.0 8.0 17.9 32.0 22	2.1
86.0 8.7 < -2.0 7.2 40.0 < 6.7 15.9 > 33.3 24	4.1
109.0 12.7 -0.1 6.3 43.5 12.6 29.0 30.9 24	4.5
136.8 15.4 1.1 2.5 43.5 16.5 🗸 7.9 27.0 25	5.6
151.9 16.5 4.5 4.6 43.5 21.0 21.1 22.5 22	2.4
171.1 17.4 1.3 0.9 43.5 18.7 18.3 24.8 25	5.2
200.0 18.5 < -2.0 < -2.0 43.5 < 16.5 < 16.5 > 27.0 > 27	7.0
230.0 18.7 < -2.0 < -2.0 46.9 < 16.7 < 16.7 > 29.3 > 29	9.3
260.0 19.6 < -2.0 < -2.0 46_{10} < $17/6$ < 17.6 > 28.4 > 28	8.4
300.0 21.3 < -2.0 < -2.0 46.0 < 19.3 < 19.3 > 26.7 > 26	6.7
400.0 19.9 < -2.0 < -2.0 46.0 < 17.9 < 17.9 > 28.1 > 28	8.1
500.0 22.1 < -2.0 < -2.0 (46.0) < 20.1 < 20.1 > 25.9 > 25	5.9
600.0 24.3 < -2.0 < 2.0 < 46.0 < 22.3 < 22.3 > 23.7 >	3.7
800.0 27.2 < -2.0 46.0 < 25.2 < 25.2 > 20.8 > 20	0.8
1000.0 30.1 < -2.0 < -2.0 < -2.0 < 28.1 < 28.1 > 25.9 > 25	5.9

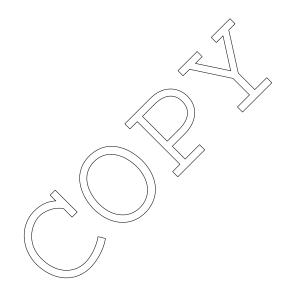

7. hakajima

Yoichi Nakajima Testing Engineer

Tested by : _

Radiated Emissions Measurements (30 MHz - 1000 MHz)

2.4 Radiated Emissions Measurement(Above 1 GHz)


Note : This test was not applicable.

2.5 Frequency Stability Measurement

Note : This test was not applicable.

2.6 Occupied Bandwidth Measurement

Note : This test was not applicable.

