

JQA APPLICATION NO.: 441-00831 Issue Date : February 22, 2001 Page 1 of 25

EMI TEST REPORT

JQA APPLICATION NO. : 441-00831

Model No. : RI-16BTY(b)

Type of Equipment : Immobilizer System

Regulations Applied : CFR 47 FCC Rules and Regulations Part 15

FCC ID : MOZRI-16BTY-B

Applicant : TOKAI RIKA CO., LTD.

Address : 260, Toyota 3-chome, Oguchi-cho, Niwa-gun, Aichi-ken 480-0195, Japan

Manufacture : TOKAI RIKA CO., LTD.

Address : 260, Toyota 3-chome, Oguchi-cho, Niwa-gun, Aichi-ken 480-0195, Japan

Received date of EUT : February 19, 2001

Final Judgment : Passed

TEST RESULTS IN THIS REPORT are obtained in use of equipment that is traceable to Electrotechnical Lab. of METI Japan and Communications Research Lab. of MPHPT Japan.

The test results only responds to the tested sample. THIS REPORT should not be reproduced, except in full, without the approval of the JQA SAFETY TESTING CENTER EMC ENGINEERING DEPT. TSURU EMC BRANCH.

FCC ID :MOZRI-16BTY-B Issue Date :February 22, 2001 Page 2 of 25

TABLE OF CONTENTS

1	Documentation	Page
	1.1 Test Regulation	3
	1.2 General Information	3
	1.3 Test Condition	4 - 8
	1.4 EUT Modifications / Deviation from Standard	9
	1.5 Test results	10
	1.6 Summary	11
	1.7 Test Configuration / Operation of EUT	12
	1.8 EUT Arrangement(Drawing)	13
	1.9 Preliminary Test and Test-setup (Drawings)	14 - 19
	1.10 EUT Arrangement (Photographs)	20

2 Test Data

2.1	AC Power Line Conducted Emission $0.45~\text{MHz}$ – 30 MHz	N / A
2.2	Radiated Emission (Electric Field)9 kHz - 30 MHz	21 - 22
2.3	Radiated Emission (Electric Field)30 MHz - 1000 MHz	23 - 24
2.4	Radiated Emission (Electric Field) Above 1 GHz	N / A
2.5	Frequency Stability	N / A
2.6	Occupied Bandwidth	N / A

1 DOCUMENTATION

1.1 TEST REGULATION

FCC Rules and Regulations Part 15 Subpart A and C (June 23, 1989) Intentional Radiators

Test procedure :

AC power line conducted emission, radiated emission, frequency stability and occupied bandwidth tests were performed according to the procedures in ANSI C63.4-1992.

1.2 GENERAL INFORMATION

1.2.1 Test facility :

- 1) Test Facility located at EMC Engineering Dept. Testing Div. :
 - No.2 and 3 Anechoic Chambers(3 meters Site).
 - Shielded Enclosure.
 - Expiration date of FCC test facility filing : June 4, 2002

TSURU EMC Branch: Open Site No.1, No.2, An Anechoic Chamber (3 m and 10 m, on common plane) and a Shielded Room (Date of Listing: March 30,1999)

2) EMC Engineering Dept. Testing Div. and TSURU EMC Branch are recognized under the National Voluntary Laboratory accreditation Program for satisfactory compliance established in title 15, Part 285 Code of Federal Regulations. NVLAP Lab Code : 200189-0 (Effective through : June 30, 2001) NVLAP Lab Code : 200192-0 (Effective through : June 30, 2001)

1.2.2 Description of the Equipment Under Test (EUT) :

1)	Type of Equipment	:	Immobilizer System
2)	Product Type	:	Production
3)	Category	:	Low Power Communication Device
			Transmitter
4)	EUT Authorization	:	Certification
5)	FCC ID	:	MOZRI-16BTY-B
6)	Trade Name	:	-
7)	Model No.	:	RI-16BTY(b)
8)	Operating Frequency Range	:	134.2 kHz
9)	Highest Frequency Used in the EUT	:	134.2 kHz
10)	Serial No.	:	-
11)	Date of Manufacture	:	-
12)	Power Rating	:	12.0 VDC
13)	EUT Grounding	:	None

1.2.3 Definitions for symbols used in this test report :

- <u>x</u> indicates that the listed condition, standard or equipment is applicable for this report.
- indicates that the listed condition, standard or equipment is not applicable for this report.

1.3 TEST CONDITION

1.3.1 The measurement of the AC Power Line Conducted Emission

____ - was performed in the following test site.

x - was not applicable.

Test location :

Safety Testing Center EMC Engineering Dept. Tsuru EMC Branch 2096 Ohhata, Tanbozawa, Tsuru-shi Yamanashi-ken 402-0045, JAPAN

- Shielded Room No.1

- Shielded Room No.2
- Anechoic Chamber
- ____ Open Site No.1
- Open Site No.2

Туре	Model No.	Manufacturer	Serial No.	Last Cal.	Interval
- Test Receiver	ESH-3	Rohde & Schwarz	872992/047	May. 2000	1 Year
- Test Receiver	ESH-3	Rohde & Schwarz	881460/016	May. 2000	1 Year
LISN(for Peripheral)	KNW-407	Kyoritsu Electrical	8-833-5	May. 2000	1 Year
- LISN(for EUT)	KNW-407	Kyoritsu Electrical	8-680-14	May. 2000	1 Year
LISN	KNW-243C	Kyoritsu Electrical	8-831-1	May. 2000	1 Year
LISN	KNW-243C	Kyoritsu Electrical	8-831-2	May. 2000	1 Year
LISN	KNW-243C	Kyoritsu Electrical	8-831-3	May. 2000	1 Year
LISN	KNW-243C	Kyoritsu Electrical	8-831-4	May. 2000	1 Year
LISN	ESH 2-Z5	Rohde & Schwarz	879341/007	May. 2000	1 Year
RF Cable	3D-2W	Fujikura	No.1	May. 2000	1 Year
RF Cable	3D-2W	Fujikura	No.2	May. 2000	1 Year
RF Cable	3D-2W	Fujikura	No.3	May. 2000	1 Year
- 50ohm Termination	-	TDC	15406501E1	Feb. 2000	1 Year
– 50ohm Termination	-	-	15406502E1	Feb. 2000	1 Year

1.3.2 The measurement of the Radiated Emission(9 kHz - 30 MHz)

 \underline{x} - was performed in the following test site.

- was not applicable.

Test location :

Safety Testing Center EMC Engineering Dept. Tsuru EMC Branch 2096 Ohhata, Tsuru-shi, Yamanashi-ken 402-0045, JAPAN

<u>x</u> - Open Site No. 1 (3, 10 or 30 meters) - Open Site No. 2 (3, 10 or 30 meters) - Anechoic Chamber(3 or 10 meters)

Validation of Site Attenuation :

1)	Last	Confirmed	Date	:	N/A
2)	Inter	rval		:	N/A

	Туре	Model No.	Manufacturer	Serial No.	Last Cal.	Interval
<u>x</u> -	Test Receiver	ESH-3	Rohde & Schwarz	872992/047	May. 2000	1 Year
	Test Receiver	ESH-3	Rohde & Schwarz	881460/016	May. 2000	1 Year
<u>x</u> -	Loop Antenna	HFH2-Z2	Rohde & Schwarz	872994/043	May. 2000	1 Year
	Loop Antenna	6502	EMCO	8905-2347	May. 2000	1 Year
<u>x</u> -	RF Cable	5D-2W	Fujikura	155-21-002E0	Feb. 2000	1 Year

1.3.3 The measurement of the Radiated Emission(30 MHz - 1000 MHz)

 \underline{x} - was performed in the following test site.

- was not applicable.

Test location :

Safety Testing Center EMC Engineering Dept. Tsuru EMC Branch 2096 Ohhata, Tsuru-shi, Yamanashi-ken 402-0045, JAPAN

- Open Site No. 1 (3, 10 or 30 meters)
- Open Site No. 2 (3, 10 or 30 meters)
x - Anechoic Chamber(3 or 10 meters)

Validation of Site Attenuation :

Last Confirmed Date :May, 2000
 Interval :1 year

Туре	Model No.	Manufacturer	Serial No.	Last Cal.	Interval
- Test Receiver	ESV	Rohde & Schwarz	863796/015	May. 2000	1 Year
- Test Receiver	ESVS10	Rohde & Schwarz	843744/018	May. 2000	1 Year
<u>x</u> - Test Receiver	ESVS10	Rohde & Schwarz	84231/004	May. 2000	1 Year
- Biconical Antenna	BBA9106	Schwarzbeck	11905065-2	May. 2000	1 Year
- Biconical Antenna	BBA9106	Schwarzbeck	11905065-3	May. 2000	1 Year
<u>x</u> - Biconical Antenna	BBA9106	Schwarzbeck	G4397001	May. 2000	1 Year
Log-Periodic Antenna	UHALP9107	Schwarzbeck	91071212	May. 2000	1 Year
Log-Periodic Antenna	UHALP9107	Schwarzbeck	9107915	May. 2000	1 Year
<u>x</u> - Log-Periodic Antenna	UHALP9107	Schwarzbeck	G43597003	May. 2000	1 Year
– Dipole Antenna	KBA-511A	Kyoritsu Electrical	0-195-5	May. 2000	1 Year
– Dipole Antenna	KBA-511A	Kyoritsu Electrical	0-230-6	May. 2000	1 Year
Dipole Antenna	KBA-611	Kyoritsu Electrical	0-196-8	May. 2000	1 Year
– Dipole Antenna	KBA-611	Kyoritsu Electrical	0-228-13	May. 2000	1 Year
RF Cable	20D/5D-2W	Fujikura	No.1	May. 2000	1 Year
RF Cable	20D/5D-2W	Fujikura	No.2	May. 2000	1 Year
<u>x</u> - RF Cable	20D/5D-2W	Fujikura	No.3	May. 2000	1 Year

1.3.4 The measurement of the Radiated Emission(Above 1000 MHz)

____ - was performed in the following test site.

 \underline{x} - was not applicable.

Test location :

Safety Testing Center EMC Engineering Dept. Tsuru EMC Branch 2096 Ohhata, Tsuru-shi, Yamanashi-ken 402-0045, JAPAN

- Open Site No. 1 (3, 10 or 30 meters)
- Open Site No. 2 (3, 10 or 30 meters)
- Anechoic Chamber(3 or 10 meters)

Validation of Site Attenuation :

1)	Last	Confirmed	Date	:	N/A
2)	Inte	rval		:	N/A

Туре	Model No.	Manufacturer	Serial No.	Last Cal.	Interval
- Spectrum Analyzer	8563E	Hewlett Packard	3438A00756	May. 2000	1 Year
Spectrum Analyzer	R4131C	Advantest	717201249	May. 2000	1 Year
Log-Periodic Antenna	94612-1	Rohde & Schwarz	97062301	May. 2000	1 Year
- RF Amplifier	WJ-6611-513	Watkins-Johnson	0288	May. 2000	1 Year
RF Amplifier	WJ-6682-834	Watkins-Johnson	0052	May. 2000	1 Year
- RF Amplifier	WJ-6870-506	Watkins-Johnson	0018	May. 2000	1 Year
RF Cable(7m)	SUCOFLEX 104	Suhner	52146/4	May. 2000	1 Year
- RF Cable(3m)	SUCOFLEX 104	Suhner	52053/4	May. 2000	1 Year
RF Cable(2m)	SUCOFLEX 104	Suhner	39934/4	May. 2000	1 Year
RF Cable(1m)	SUCOFLEX 104	Suhner	35687/4	May. 2000	1 Year

1.3.5 The measurement of the Frequency Stability

- was performed.
- x was not applicable.

Used test instruments :

Туре	Model No.	Manufacturer	Serial No.	Last Cal.	Interval
- Frequency Counter	53131A	Hewlett Packard	3546A11807	May 2000	1 Year
– Oven	-	Ohnishi Co. Ltd.	-	Aug. 1999	1 Year
- DC Power Supply	6628A	Hewlett Packard	3224A00284	July 2000	1 Year

1.3.6 The measurement of the Occupied Bandwidth

- was performed.
- <u>x</u> was not applicable.

Туре	Model No.	Manufacturer	Serial No.	Last Cal.	Interval
 Spectrum Analyzer	8560E	Hewlett Packard	3240A00189	Sep. 1999	1 Year
 Spectrum Analyzer	8563E	Hewlett Packard	3221A00201	May. 2000	1 Year
 Spectrum Analyzer	8566B	Hewlett Packard	2140A01091	Apr. 2000	1 Year
 Spectrum Analyzer	8566B	Hewlett Packard	2747A05855	May. 2000	1 Year
 Function Generator	3325A	Hewlett Packard	2512A21776	May. 2000	1 Year
 FM Linear Detector	MS61A	Anritsu Corp.	M77486	Sep. 1999	1 Year
 Level Meter	ML422C	Anritsu Corp.	M87571	June 2000	1 Year

1.4 EUT MODIFICATION / Deviation from Standard

1.4.1 EUT MODIFICATION

x -No modifications were conducted by JQA to achieve compliance to Class B levels.
 -To achieve compliance to Class B levels, the following changes were made by JQA during the compliance test.

The modifications will be implement	ted in all production models of this equipment.	
Applicant :	Date :	
Typed Name :	Position :	

1.4.2 Deviation from Standard:

<u>x</u> - No deviations from the standard described in clause 1.1.

____ - The following deviations were employed from the standard described in clause 1.1:

FCC ID :MOZRI-16BTY-B Issue Date :February 22, 2001 Page 10 of 25

1.5 TEST RESULTS

AC Power Line Conducted Emission	Applicable	\underline{x} - NOT Applicable
The requirements are	- PASSED	NOT PASSED
Remarks :		
Radiated Emission [§15.209(a)(b)]	<u>x</u> - Applicable	NOT Applicable
The requirements are	x - PASSED	NOT PASSED
Remarks:		
Frequency Stability	Applicable	<u>x</u> - NOT Applicable
The requirements are	PASSED	- NOT PASSED
Remarks:		
Occupied Bandwidth	Applicable	<u>x</u> - NOT Applicable
The requirements are	PASSED	NOT PASSED
Remarks:		

FCC ID :MOZRI-16BTY-B Issue Date :February 22, 2001 Page 11 of 25

1.6 SUMMARY

General Remarks :

The EUT was tested according to the requirements of FCC Rules and Regulations Part 15 Subpart A and C (June 23, 1989) under the test configuration, as shown in clause 1.7 to 1.10.

The conclusion for the test items of which are required by the applied regulation is indicated under the final judgment.

Final Judgment :

The "as received" sample;

- x fulfill the test requirements of the regulation mentioned on clause 1.1.
- ____ fulfill the test requirements of the regulation mentioned on clause 1.1, but with certain qualifications.
- doesn't fulfill the test regulation mentioned on clause 1.1.

Begin of testing: February 19, 2001

End of testing : February 19, 2001

- JAPAN QUALITY ASSURANCE ORGANIZATION - Approved by:

Signatories: Issued by:

Yuichi Fukumoto Manager Tsuru EMC Branch JQA EMC Engineering Dept.

Takaharu Bada

Takaharu Hada Director Tsuru EMC Branch JQA EMC Engineering Dept.

1.7 TEST CONFIGURATION / OPERATION OF EUT

1.7.1 Test Configuration

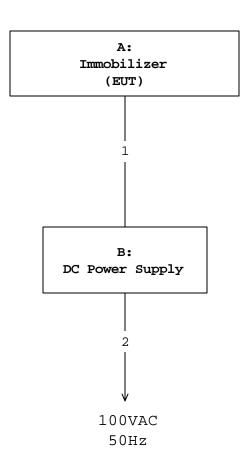
The equipment under test (EUT) consists of :

Symbol	Item	Manufacturer	Model No.	FCC ID	Serial No.
A	Immobilizer System	TOKAI RIKA CO., LTD.	RI-16BTY(b)	MOZRI-16BTY-B	-

The measurement was carried out with the following support equipment connected :

Symbol	Item	Manufacturer	Model No.	FCC ID	Serial No.
В	DC Power Supply	KIKUSUI ELECTRONICS	PAB 18-2.5DU	N/A	30079912

Type of Cable :


Symbol	Description	Identification (Manufacturer etc.)	Shielded YES / NO	Ferrite Core	Connector type Shielded YES / NO	Length (m)
1	DC Power Cable(for EUT)	-	NO	NO	NO	1.0
2	AC Power Cable	-	NO	NO	NO	1.8

1.7.2 Operating condition

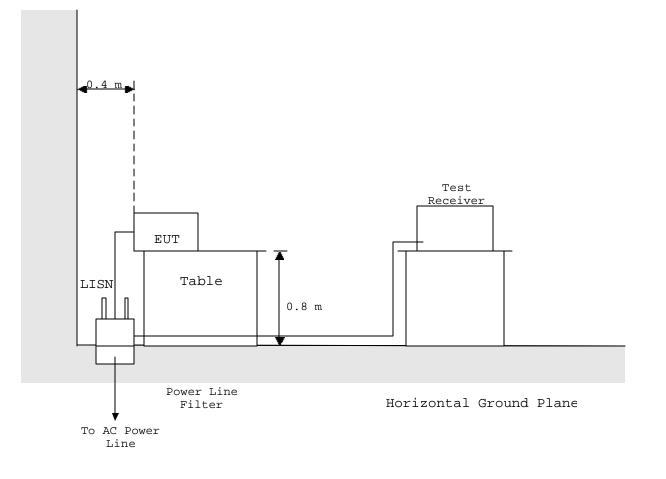
Power supply Voltage : 12.0 VDC(from DC Power Supply) The tests have been carried out under the transmitting condition.

1.8 EUT ARRANGEMENT (DRAWINGS)

1.9 PRELIMINARY TEST AND TEST-SETUP (DRAWINGS)

1.9.1 AC Power Line Conducted Emission (450 kHz - 30 MHz) :

According to description of ANSI C63.4-1992 sec.13.1.3.1, the AC power line preliminary conducted emissions measurements were carried out.

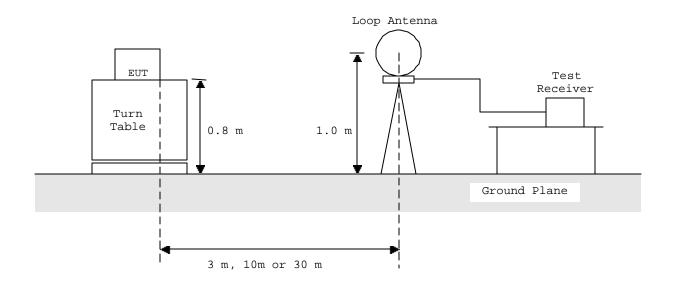

The preliminary conducted measurements were performed using the spectrum analyzer to observe the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for final AC power line conducted emissions measurements.

Shielded Enclosure

- Side View -

Vertical Ground Plane

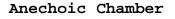


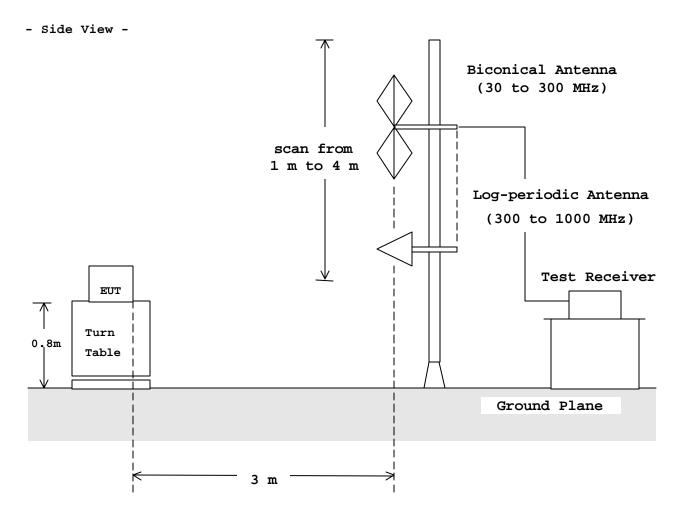
1.9.2 Radiated Emission (9 kHz - 30 MHz) :

According to description of ANSI C63.4-1992 sec.13.1.4.1, the preliminary radiated emissions measurement were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.

- Side View -

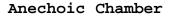


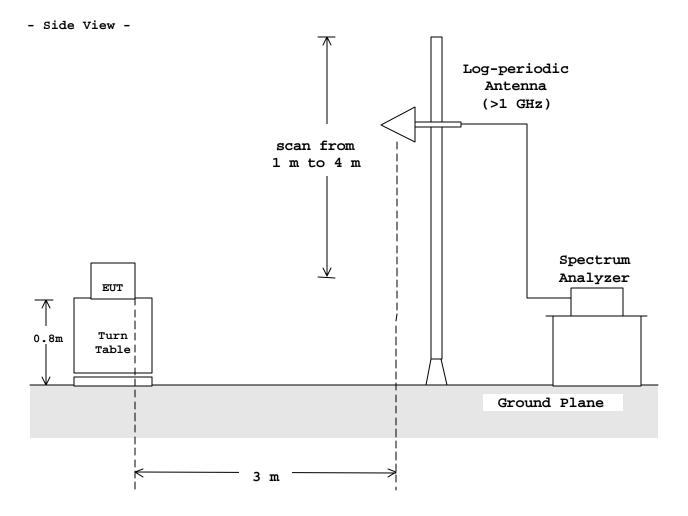


1.9.3 Radiated Emission (30 MHz - 1000 MHz) :

According to description of ANSI C63.4-1992 sec.13.1.4.1, the preliminary radiated emissions measurement were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.

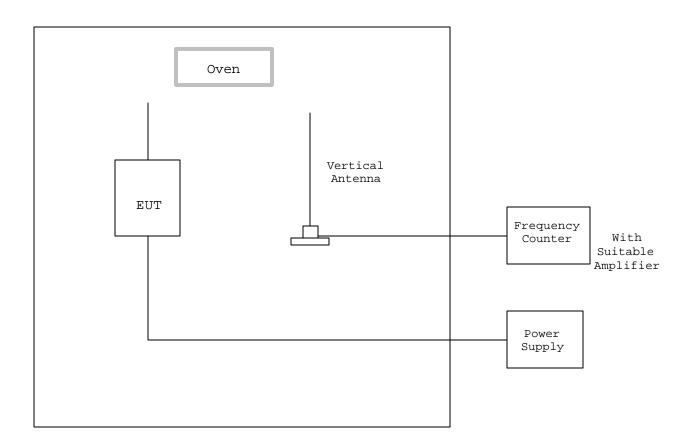




1.9.4 Radiated Emission (Above 1 GHz) :

According to description of ANSI C63.4-1992 sec.13.1.4.1, the preliminary radiated emissions measurements were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

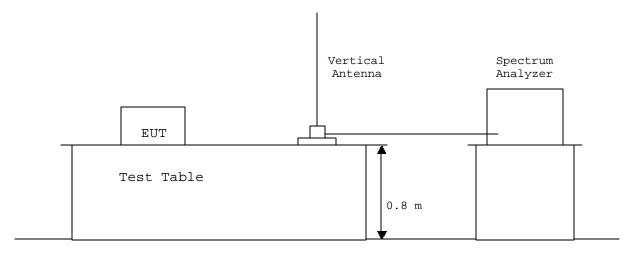
The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.



1.9.5 Frequency Stability :

According to description of ANSI C63.4-1992 sec.13.1.5 and sec.13.1.6, the frequency stability measurements were carried out. By using frequency counter with suitable RF amplifier, the carrier frequency of the transmitter under test was measured with a temperature variation of -20 °C to +50 °C at the normal supply voltage, and if required, with a variation in the primary voltage from 85 % to 115 % the rated supply voltage at the temperature of +20 °C.

These measurements were carried out after allow sufficient time (approximately 1 hour) for the temperature of the chamber to stabilize.



1.9.6 Occupied Bandwidth :

According to description of ANSI C63.4-1992 sec.13.1.7, the occupied bandwidth measurements were carried out. By using a spectrum analyzer with a vertical antenna for picking up the signal, the measurements of the emission were made under the transmitting modes of the EUT.

The resolution bandwidth of spectrum analyzer was set to the value specified in sec.13.1.7.

1.10 TEST ARRANGEMENT (PHOTOGRAPHS)

PHOTOGRAPHS OF EUT CONFIGURATION FOR RADIATED EMISSIONS MEASUREMENT Photograph present configuration with maximum emission

Rear View -

Date : February 19, 2001

TEST DATA

2.1 AC Power Line Conducted Emission Measurement(0.45 MHz - 30 MHz)

Note : This test was not applicable.

2.2 Radiated Emissions Measurement(9 kHz - 30 MHz)

		Temp.:	12 °C	Humi.:	30 %
Operating Frequency: 134.2 kHzDistance of Measurement: 30 meters					
Frequency	Meter Reading	Field Strengt	ch		
(MHz)	(dBµV/m)	(dBµV/m)			
Fundamental					
0.1340	< 30.0	< 30.0			
Harmonic Freque	ncy				
0.2680	< 33.2	< 33.2			
0.4020	< 31.4	< 31.4			
0.5360	< 30.1	< 30.1			
0.6700	< 29.0	< 29.0			
0.8040	< 28.1	< 28.1			
0.9380	< 27.3	< 27.3			
1.0720	< 27.0	< 27.0			
1.2060	< 27.0	< 27.0			
1.3400	< 27.0	< 27.0			

Note : The fundamental field strength was found undetectable weak of the field strength meter.

Tested by :

7. hakajima

Yoichi Nakajima Testing Engineer

The distance of measurements was reduced to 10 meters.

			Date :	Februa	ry 19, 20	01
			Temp.:	24 °C	Humi.:	30 %
Operating Fr	equency	: 134.2 kHz				
		: 10 meters				
Frequer	ncy Meter Read	ina Fie	eld Strengt	h		
(MHz)			(dBµV/m)			
Fundament	•		(abµv) iii)			
0.134	0 43.9		43.9			
Harmonic	Frequency					
0.268	0 < 33.2		< 33.2			
0.402	0 < 31.4		< 31.4			
0.536	0 < 30.1		< 30.1			
0.670	0 < 29.0		< 29.0			
0.804	0 < 28.1		< 28.1			
0.938	0 < 27.3		< 27.3			
1.072	0 < 27.0		< 27.0			
1.206	0 < 27.0		< 27.0			
1.340	0 < 27.0		< 27.0			
f 2. 1	eterreading value s actor. The symbol of "<" m Measuring Instrumen	eans "or les		ause the [.]	value incl	udes antenna
	Frequency Range Detector Function IF Band width		z to 490 k e	Hz		
	Frequency Range Detector Function IF Band width		kHz to 134 Quasi-peak	-		
using the f	ntal, the measured f ormula that field s of distance).	5	-			
Calculation	. :					
43.9 dBµV/	m - 20log ₁₀ ((300/10		9 - 59.1 5.2 dBµV/m	at 300 n	neters	

Limits for fundamental(\$15.209(a)) = $20\log_{10}(2400/134.0)$ = 25.1 dBµV/m

7. hakajima

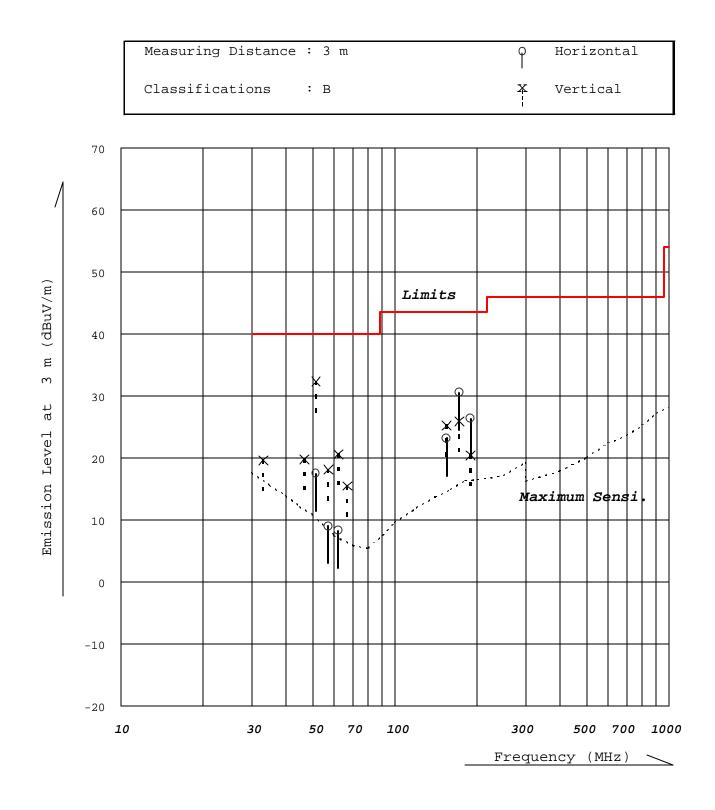
Tested by :

Yoichi Nakajima Testing Engineer

2.3 Radiated Emissions Measurement(30 MHz - 1000 MHz)

Date :	February	7 19, 20	01
Temp.:	24 °C 1	Humi.:	30 %

Frequency	Factor	(dBuV)		(dBuV/m)	(dB)
(MHz)	(dB/m)	Horiz. Ver.	(dBuV/m)	Horiz. Ver.	Horiz. Ver.
33.0 46.7 51.5 57.0 62.2		<pre>< -2.0 1.3 < -2.0 6.1 5.2 20.0 -1.4 7.7 -0.8 11.5</pre>	40.0 40.0 40.0 40.0 40.0	< 16.3 19.6 < 11.7 19.8 17.5 32.3 9.0 18.1 8.3 20.6	<pre>> 23.7 20.4 > 28.3 20.2 22.5 7.7 31.0 21.9 31.7 19.4</pre>
66.9 80.0 120.1 154.3 171.7	7.4 14.0	<pre>< -2.0 7.1 < -2.0 < -2.0 < -2.0 < -2.0 6.5 8.6 13.1 8.5</pre>	40.0	< 6.4 15.5 < 5.4 < 5.4 < 12.0 < 12.0 23.1 25.2 30.5 25.9	<pre>> 33.6 24.5 > 34.6 > 34.6 > 31.6 > 31.6 20.4 18.3 13.0 17.6</pre>
188.7 200.0 250.0 300.0 400.0	19.1 21.3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	46.0 46.0	26.3 20.4 < 16.5 < 16.5 < 17.1 < 17.1 < 19.3 < 19.3 < 17.9 < 17.9	17.2 23.1 > 27.0 > 27.0 > 28.9 > 28.9 > 26.7 > 26.7 > 28.1 > 28.1
500.0 600.0 700.0 800.0 1000.0	24.3 25.6 27.2 30.1	<pre>< -2.0 < -2.0 < -2.0 < -2.0</pre>	46.0 46.0 46.0 54.0	<pre>< 20.1 < 20.1 < 22.3 < 22.3 < 23.6 < 23.6 < 25.2 < 25.2 < 28.1 < 28.1 able loss for 33</pre>	<pre>> 23.7 > 23.7 > 22.4 > 22.4 > 20.8 > 20.8 > 25.9 > 25.9</pre>
 4) Antenna factor includes the cable loss for 33 meter. 5) The symbol of "<" means "or less". 6) The symbol of ">" means "more than". 7) A sample calculation was made at 33.0 MHz <pre>Af + Mr = 18.3 + 1.3 = 19.6 dBuV/m Af : Antenna Factor Mr : Meter Reading</pre> 8) Setting of measuring instrument : Detector Function : CISPR Quasi-Peak <pre>IF Bandwidth : 120 kHz</pre> 					


7. hakajima

Tested by :

Yoichi Nakajima Testing Engineer

Radiated Emissions Measurements (30 MHz - 1000 MHz)

2.4 Radiated Emissions Measurement(Above 1 GHz)

Note : This test was not applicable.

2.5 Frequency Stability Measurement

Note : This test was not applicable.

2.6 Occupied Bandwidth Measurement

Note : This test was not applicable.