

Page : 1 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

RADIO TEST REPORT

Test Report No.: 32LE0207-HO-01-A

Applicant : Tokai Rika Co., Ltd.

Type of Equipment : RKE Transmitter

Model No. : B95TH

Test regulation : FCC Part 15 Subpart C: 2012

FCC ID : MOZB95TH

Test Result : Complied

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Date of test:

August 30, 2012

Tested by:

Tomotaka Sasagawa Engineer of WiSE Japan, UL Verification Service

Approved by:

Shinya Watanabe Leader of WiSE Japan, UL Verification Service

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 2 of 20

: September 10, 2012

Issued date : September 10, FCC ID : MOZB95TH

CONTENTS PAGE SECTION 1: Customer information ······ 3 SECTION 2: Equipment under test (E.U.T.) 3 SECTION 4: Operation of E.U.T. during testing -------7 SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission) 8 SECTION 7: -20dB and 99% Occupied Bandwidth · · · · 10 Automatically deactivate......11 Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)......12 -20dB and 99% Occupied Bandwidth......13 APPENDIX 2:Test Instruments 17 Radiated emission _________18

Page : 3 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

SECTION 1: Customer information

Company Name : Tokai Rika Co., Ltd.

Address : 260 Toyota 3-chome, Oguchi-cho, Niwa-gun, Aichi-ken 480-0195 Japan

Telephone Number : +81-587-95-0093 Facsimile Number : +81-587-95-5471 Contact Person : Masahiro Kato

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : RKE Transmitter

Model No. : B95TH

Serial No. : Refer to Clause 4.2
Rating : DC 2.5 to 3.2V
Receipt Date of Sample : August 28, 2012

Country of Mass-production : Japan

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model No: B95TH (referred to as the EUT in this report) is the RKE Transmitter.

Radio Specification

Radio Type : Transmitter
Frequency of Operation : 314.35MHz

Modulation : ASK

Antenna type : Pattern Antenna

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 4 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C: 2012, final revised on July 23, 2012 and effective

August 22, 2012

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66 - 40.70MHz

and above 70MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks	
Conducted emission	FCC: ANSI C63.4:2003 7. AC powerline conducted emission measurements	FCC: Section 15.207	N/A	NI/A * 1 \		
Conducted emission	IC: RSS-Gen 7.2.2	IC: RSS-Gen 7.2.2	IN/A	N/A*1)	-	
Automatically Deactivate	FCC: ANSI C63.4:2003 13. Measurement of intentional radiators	FCC: Section 15.231(a)(1)	N/A	Complied	Radiated	
	IC: -	IC: RSS-210 A1.1.1		r		
Electric Field Strength	FCC: ANSI C63.4:2003 13. Measurement of intentional radiators	FCC: Section 15.231(b)	9.1dB 314.350MHz Horizontal,	Complied	Radiated	
of Fundamental Emission	IC: RSS-Gen 4.8	IC: RSS-210 A1.1.2	PK with Duty factor			
Electric Field Strength	FCC: ANSI C63.4:2003 13. Measurement of intentional radiators	FCC: Section 15.205 Section 15.209 Section 15.231(b)	4.0dB 2514.800MHz	Complied	Radiated	
of Spurious Emission	IC: RSS-Gen 4.9	IC: RSS-210 A1.1.2, 2.6, 2.7	Horizontal, PK with Duty factor			
-20dB Bandwidth	FCC: ANSI C63.4:2003 13. Measurement of intentional radiators	FCC: Section 15.231(c)	N/A	Complied	Radiated	
	IC: -	IC: Reference data		P. P		

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422. *1) The test is not applicable since the EUT does not have AC Mains.

FCC 15.31 (e)

This test was performed with the New Battery (DC 3.0V) and the constant voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 5 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied Bandwidth	IC: RSS-Gen 4.6.1	IC: RSS-Gen 4.6.1	N/A	Complied	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test room		Radiated emission										
(semi-		(3m*)((<u>+</u> dB)		(1m*)	$(0.5m*)(\underline{+}dB)$						
anechoic	9kHz	30MHz	300MHz	1GHz	10GHz	18GHz	26.5GHz					
chamber)	-30MHz	-300MHz	-1GHz	-10GHz	-18GHz	-26.5GHz	-40GHz					
No.1	4.3dB	5.0dB	5.1dB	4.9dB	5.8dB	4.4dB	4.3dB					
No.2	4.3dB	5.2dB	5.1dB	5.0dB	5.7dB	4.3dB	4.2dB					
No.3	4.6dB	5.0dB	5.1dB	5.0dB	5.7dB	4.5dB	4.2dB					
No.4	4.8dB	5.2dB	5.0dB	5.0dB	5.7dB	5.2dB	4.2dB					

^{*3}m/1m/0.5m = Measurement distance

Radiated emission test (3m)

[Electric Field Strength of Fundamental Emission]

The data listed in this test report has enough margin, more than the site margin.

[Electric Field Strength of Spurious Emission]

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 6 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

3.5 Test Location

UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

	FCC	IC Registration	Width x Depth x	Size of	Other
	Registration Number	Number	Height (m)	reference ground plane (m) / horizontal conducting plane	rooms
No.1 semi-anechoic chamber	313583	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	655103	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	148738	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	134570	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	-	4.0 x 4.5 x 2.7m	4.75 x 5.4 m	-
No.6 measurement room	-	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	-	8.0 x 4.5 x 2.8m	2.0 x 2.0m	-
No.10 measurement room	-	-	2.6 x 2.8 x 2.5m	2.4 x 2.4m	-
No.11 measurement room	-	-	3.1 x 3.4 x 3.0m	2.4 x 3.4m	-

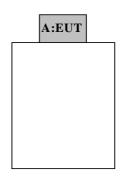
^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test set up, Data of EMI, Test instruments.

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 7 of 20


Issued date : September 10, 2012 FCC ID : MOZB95TH

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

4.1 Operating wodes							
Test Item*	Mode						
Automatically Deactivate	Normal use mode						
Duty Cycle							
Electric Field Strength of Fundamental Emission	Transmitting mode (Tx)						
Electric Field Strength of Spurious Emission							
-20dB & 99% Occupied Bandwidth							
* The system was configured in typical fashion (as a customer would normally use it) for testing.							

4.2 Configuration and peripherals

^{*} Test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	RKE Transmitter	B95TH	1 *1)	Tokai Rika Co., Ltd.	EUT
			2 *2)		

^{*1)} Used for Normal use mode

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Used for Transmitting mode

Page : 8 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

<u>SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)</u>

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 0.5m by 1.0m, raised 0.8m above the conducting ground plane. The EUT was set on the center of the tabletop.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Photographs of the set up are shown in Appendix 1.

[Transmitting mode]

(Below 30MHz)

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

(Above 30MHz)

The Radiated Electric Field Strength has been measured on Semi anechoic chamber with a ground plane and at a distance of 3m. The measuring antenna height was varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver/spectrum analyzer.

Test Antennas are used as below;

Frequency	Below 30MHz	30MHz to 300MHz	300MHz to 1GHz	Above 1GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

	From 9kHz to	From	From	From	From 30MHz	Above 1GHz
	90kHz and	90kHz to	150kHz	490kHz to	to 1GHz	
	From 110kHz to	110kHz	to 490kHz	30MHz		
	150kHz					
Detector	Peak	Peak	Peak	Peak	Peak and	Peak and
Type					Peak with	Peak with
					Duty factor	Duty factor
IF	200Hz	200Hz	9kHz	9kHz	120kHz	PK: S/A:RBW
Bandwidth						1MHz,
						VBW:3MHz

^{*}For the test below 30MHz, the noise was not detected when it was confirmed with PK detect.

With the position, the noise levels of all the frequencies was measured.

This EUT has two modes which mechanical key is folded in or out. The worst case was confirmed that mechanical key is folded in and out, as a result, the test which mechanical key was folded out was the worst case. Therefore the test was performed under the worst condition.

*The result is rounded off to the second decimal place, so some differences might be observed.

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

⁻ The carrier level was measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Page : 9 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

[Limit Calculation Method in dBuV/m at 3m According to section 15.231(b)]

1)Electric Field Strength of Fundamental Emission

Limit(Peak)=Linit(Peak with Duty factor)+20dB [dBuV/m]

Limit(Peak with Duty factor)

 $=20Log{3750+((12500-3750) \times (314.35-260)/(470-260))}$

[dBuV/m]

2) Electric Field Strength of Spurious Emission

Limit(Peak)=Linit(Peak with Duty factor)+20dB [dBuV/m]

Limit(Peak with Duty factor)

=20Log{375+((1250-375) x (314.35-260)/(470-260)) }

[dBuV/m]

Measurement range : 9kHz-3.2GHz
Test data : APPENDIX

Test result : Pass

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 10 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20dB and 99% Occupied Bandwidth

Test Procedure

The measurement was performed in the antenna height to gain the maximum of Electric field strength.

Test data : APPENDIX

Test result : Pass

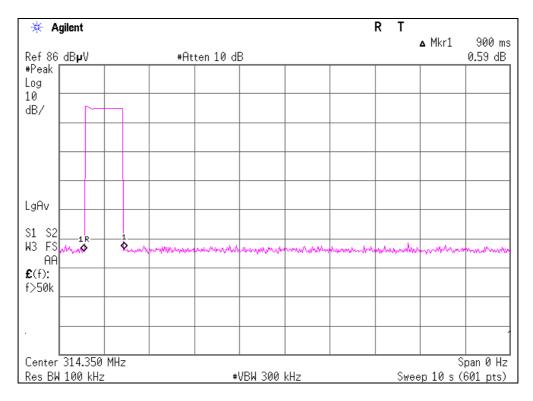
Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 11 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

APPENDIX 1: Data of EMI test


Automatically deactivate

Test place Head Office EMC Lab. No.4 Semi Anechoic Chamber

Report No. 32LE0207-HO-01
Date 08/30/2012
Temperature/ Humidity 22 deg. C / 57% RH
Engineer Tomotaka Sasagawa

Engineer Tomotaka Sasagawa Mode Normal use mode

Time of	Limit	Result
Transmitting		
[sec]	[sec]	
0.9	5.00	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 12 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Test place Head Office EMC Lab. No.4 Semi Anechoic Chamber

Report No. 32LE0207-HO-01
Date 08/30/2012
Temperature/ Humidity 22 deg.C / 57% RH
Engineer Tomotaka Sasagawa
Mode Transmitting mode

QP or PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
314.350	PK	77.7	70.9	16.3	9.7	32.0	-	71.7	64.9	95.5	23.8	30.6	Carrier
628.700	PK	47.8	46.8	21.0	11.6	32.1	-	48.3	47.3	75.5	27.2	28.2	Outside
943.050	PK	40.9	36.8	25.2	13.0	31.1	-	48.0	43.9	75.5	27.5	31.6	Outside
1257.400	PK	45.0	49.5	25.0	1.8	34.1	-	37.7	42.2	75.5	37.8	33.3	Outside
1571.750	PK	45.4	46.5	25.7	2.0	33.3	-	39.8	40.9	73.9	34.1	33.0	Inside
1886.100	PK	46.5	45.2	27.2	2.1	32.7	-	43.1	41.8	75.5	32.4	33.7	Outside
2200.450	PK	52.9	53.2	27.6	2.3	32.4	-	50.4	50.7	73.9	23.5	23.2	Inside
2514.800	PK	59.0	58.1	27.5	2.5	32.2	-	56.8	55.9	75.5	18.7	19.6	Outside
2829.150	PK	54.1	52.8	28.2	2.6	32.1	-	52.8	51.5	73.9	21.1	22.4	Inside
3143.500	PK	54.0	52.6	28.7	2.8	31.9	-	53.6	52.2	75.5	21.9	23.3	Outside

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier)

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
314.350	PK	77.7	70.9	16.3	9.7	32.0	-5.3	66.4	59.6	75.5	9.1	15.9	Carrier
628.700	PK	47.8	46.8	21.0	11.6	32.1	-5.3	43.0	42.0	55.5	12.5	13.5	Outside
943.050	PK	40.9	36.8	25.2	13.0	31.1	-5.3	42.7	38.6	55.5	12.8	16.9	Outside
1257.400	PK	45.0	49.5	25.0	1.8	34.1	-5.3	32.4	36.9	55.5	23.1	18.6	Outside
1571.750	PK	45.4	46.5	25.7	2.0	33.3	-5.3	34.5	35.6	53.9	19.4	18.3	Inside
1886.100	PK	46.5	45.2	27.2	2.1	32.7	-5.3	37.8	36.5	55.5	17.7	19.0	Outside
2200.450	PK	52.9	53.2	27.6	2.3	32.4	-5.3	45.1	45.4	53.9	8.8	8.5	Inside
2514.800	PK	59.0	58.1	27.5	2.5	32.2	-5.3	51.5	50.6	55.5	4.0	4.9	Outside
2829.150	PK	54.1	52.8	28.2	2.6	32.1	-5.3	47.5	46.2	53.9	6.4	7.7	Inside
3143.500	PK	54.0	52.6	28.7	2.8	31.9	-5.3	48.3	46.9	55.5	7.2	8.6	Outside

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier) + Duty factor (Refer to Duty factor data sheet)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

^{*} The test above 1GHz was performed with PK detect. Average emission measurements were calculated with PK detect and Duty cycle factor.

^{*} Duty Factor was calculated with the assumption of the worst condition in 100msec.

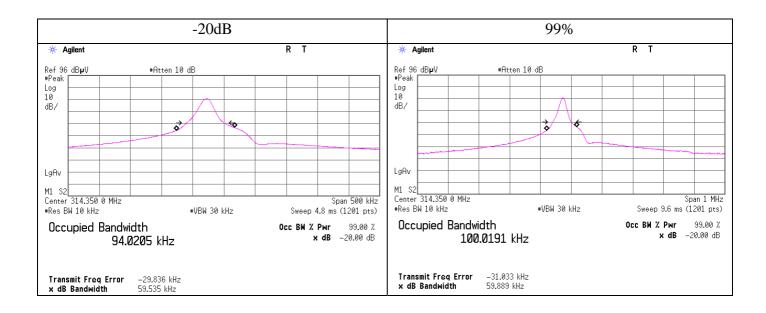
^{*} The noise measured with PK detect was pulse emission.

Page : 13 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

-20dB and 99% Occupied Bandwidth

Test place Head Office EMC Lab. No.4 Semi Anechoic Chamber


Report No. 32LE0207-HO-01
Date 08/30/2012
Temperature/ Humidity 22 deg.C / 57% RH
Engineer Temperature Secondary

Engineer Tomotaka Sasagawa Mode Transmitting mode

Bandwidth Limit: Fundamental Frequency 314.35 MHz x 0.25% = 785.88 kHz

-20dB Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
59.54	785.88	Pass

99% Occupied Bandwidth	Bandwidth Limit	Result	
[kHz]	[kHz]		
100.02	785.88	Pass	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 14 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

Duty Cycle

Test place Head Office EMC Lab. No.4 Semi Anechoic Chamber

Report No. 32LE0207-HO-01
Date 08/30/2012
Temperature/ Humidity 22 deg. C / 57% RH
Engineer Temperature Sassagaya

Engineer Tomotaka Sasagawa Mode Noraml use mode

		ON time(One pulse)	ON time(in 100ms)	
Type	Times	[ms]	[ms]	
A	56	0.500	28	
В	28	0.900	25.2	
C	1	1.300	1.3	

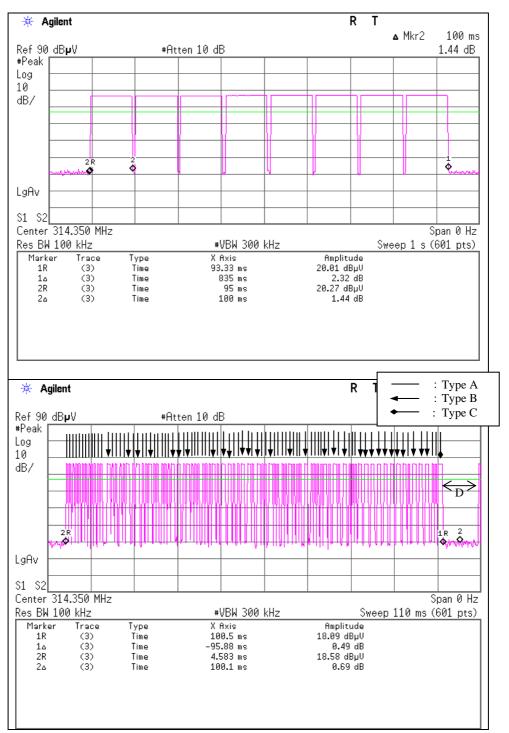
^{*1)}ON time(in 100ms) = Times * ON time(One pulse)

(Total)

ON time	Cycle	Duty	Duty
[ms]	[ms]	(On time/Cycle)	[dB]
54.50	100.00	0.55	-5.3

^{*3)}ON time = Type A's ON time (in 100ms) + Type B's ON time (in 100ms)

Head Office EMC Lab.


4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

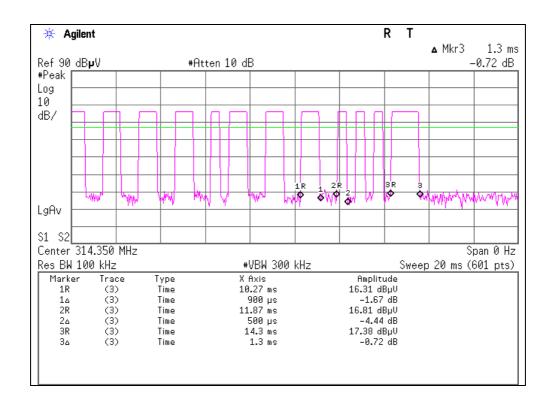
^{*4)}Duty = 20log10(ON time/Cycle)

Page : 15 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

Duty Cycle

D: Intentional off time


Head Office EMC Lab.

 $4383\text{-}326 \; Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$

Page : 16 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

Duty Cycle

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 17 of 20

Issued date : September 10, 2012 FCC ID : MOZB95TH

APPENDIX 2:Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-04	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2012/02/29 * 12
MOS-15	Thermo-Hygrometer	Custom	CTH-180	-	RE	2012/02/06 * 12
MJM-07	Measure	PROMART	SEN1955	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-05	Spectrum Analyzer	Advantest	R3273	160400285	RE	2011/11/23 * 12
MTR-07	Test Receiver	Rohde & Schwarz	ESCI	100635	RE	2012/04/05 * 12
MBA-05	Biconical Antenna	Schwarzbeck	BBA9106	1302	RE	2011/11/16 * 12
MLA-08	Logperiodic Antenna	Schwarzbeck	UKLP9140-A	N/A	RE	2011/11/16 * 12
MCC-50	Coaxial Cable	UL Japan	-	-	RE	2012/06/01 * 12
AT-38	Attenuator	Anritsu	MP721B	6200961025	RE	2011/12/08 * 12
MPA-14	Pre Amplifier	SONOMA INSTRUMENT	310	260833	RE	2012/03/05 * 12
MHA-21	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	9120D-557	RE	2012/08/17 * 12
MCC-141	Microwave Cable	Junkosha	MWX221	1203S212(1m) /	RE	2012/04/23 * 12
				1204S062(5m)		
MPA-12	MicroWave System Amplifier	Agilent	83017A	MY39500780	RE	2012/03/28 * 12
MLPA-01	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	RE	2011/10/19 * 12
MCC-113	Coaxial cable	Fujikura/Suhner/ TSJ	5D-2W(10m)/ SFM141(5m)/ 421-010(1m)/ sucoform141-PE(1m)/ RFM-E121(Switcher)	-/04178	RE	2012/07/12 * 12
MCC-31	Coaxial cable	UL Japan	-	-	RE	Pre Check

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Radiated emission, 99% Occupied Bandwidth, -20dB bandwidth, Automatically deactivate and Duty cycle tests

 $4383\text{-}326 \; Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$