

RADIO TEST REPORT

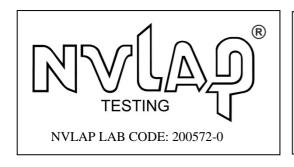
Test Report No.: 12022270H-A

Applicant	:	TOKAI RIKA CO., LTD.
Type of Equipment	:	Smart Key Box
Model No.	:	B2Y2L2L
Test regulation	:	FCC Part 15 Subpart C: 2017
FCC ID	:	MOZB2Y2L2L
Test Result	:	Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

Date of test:

Representative test engineer:


November 9 and 13, 2017

Shinya Watanabe Engineer Consumer Technology Division

Approved by:

mina Motoya Imura

Engineer Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc_accredited/

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Telephone
 : +81 596 24 8999

 Facsimile
 : +81 596 24 8124

REVISION HISTORY

Original Test Report No.: 12022270H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	12022270H-A	November 27, 2017	-	-

CONTENTS

PAGE

SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	
SECTION 3: Test specification, procedures & results	5
SECTION 4: Operation of E.U.T. during testing	8
SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)	9
SECTION 6: Automatically deactivate 1	
SECTION 7: -20 dB and 99 % Occupied Bandwidth 1	
APPENDIX 1: Test data ······ 1	1
Automatically deactivate	1
Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)	13
-20 dB and 99 % Occupied Bandwidth	8
APPENDIX 2: Test Instruments ······ 2	
APPENDIX 3: Photographs of test setup	21
Radiated emission	
Worst case position	23

Test rep	oort No. : 12022270H-A
Page	: 4 of 23
Issued d	late : November 27, 2017
FCC ID	: MOZB2Y2L2L

SECTION 1: Customer information

Company Name	:	TOKAI RIKA CO., LTD
Address	:	3-260 Toyota, Oguchi-cho, Niwa-gun, Aichi-ken, 480-0195 Japan
Telephone Number	:	+81-587-95-0093
Facsimile Number	:	+81-587-95-5471
Contact Person	:	Hiroki Unno

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment	: Sn	nart Key Box
Model No.	: B2	2Y2L2L
Serial No.	: Re	efer to Clause 4.2
Rating	: D0	C 12.0 V
Receipt Date of Sample	: Oc	ctober 31 2017
Condition of EUT	: En	gineering prototype
	(N	ot for Sale: This sample is equivalent to mass-produced items.)
Modification of EUT	: No	Modification by the test lab

2.2 Product Description

Model No: B2R2L2L (referred to as the EUT in this report) is the Electronic Key mainly performs the functions in a Smart Key System and RKE System.

General Specification

Clock frequencies in the system	:	CPU: 8 MHz(main), 32.768 kHz(sub)
		IC UHF: 18.37 MHz
Radio Specification		
Radio Type	:	Transceiver
Frequency of Operation	:	Channel1: 314.35 MHz
		Channel2: 312.10 MHz
Modulation	:	FSK
Method of Frequency Generation	:	Crystal
Antenna Type	:	Pattern Antenna, 3D Antenna
Operating Temperature Range	:	-30 deg. C to +80 deg. C
Operating Voltage Range	:	DC 8 V to 16 V
Receiving frequency of Operation	:	134.2 kHz *1)
*1) The test of receiver part was perform	ned	separately from this test report, and the conformability is confirmed.

[Bluetooth Specification]*

Frequency of Operation	:	2402 MHz - 2480 MHz
Type of Modulation	:	GFSK

*The BLE module is a FCC certificated module.

Test report No.	: 12022270H-A
Page	: 5 of 23
Issued date	: November 27, 2017
FCC ID	: MOZB2Y2L2L

SECTION 3: Test specification, procedures & results

3.1 **Test Specification**

Test Specification	:	FCC Part 15 Subpart C FCC Part 15 final revised on November 2, 2017
Title	:	FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators Section 15.231 Periodic operation in the band 40.66 - 40.70MHz and above 70MHz

3.2 **Procedures and results**

: ANSI C63.10:2013 ndard test methods RSS-Gen 8.8	FCC: Section 15.207 IC: RSS-Gen 8.8	- N/A	N/A*1)	
SS-Gen 8.8	IC: RSS-Gen 8.8	-N/A	N/A*1)	
			N/A*1)	-
: ANSI C63.10:2013 ndard test methods	FCC: Section 15.231(a)(1)	N/A	Complied	Radiated
	IC: RSS-210 A1.1			
: ANSI C63.10:2013 ndard test methods RSS-Gen 6.12	FCC: Section 15.231(b) IC: RSS-210 A1.2	1.9 dB 314.350 MHz - Vertical, PK with Duty Factor	Complied	Radiated
ANSI C63.10:2013 ndard test methods	FCC: Section 15.205 Section 15.209 Section 15.231(b)	4.4 dB 628.700 MHz Vertical PK with Duty factor	Complied	Radiated
	RSS-Gen 8.9	<314.35 MHz>		
ndard test methods	IC: Reference data	_N/A	Complied	Radiated
	ANSI C63.10:2013 ndard test methods RSS-Gen 6.12 ANSI C63.10:2013 ndard test methods RSS-Gen 6.13 ANSI C63.10:2013 ndard test methods	Indard test methodsIC: RSS-210 A1.1IC: RSS-210 A1.1FCC: Section 15.231(b)Indard test methodsIC: RSS-210 A1.2IC: RSS-210 A1.2IC: RSS-210 A1.2IC: RSS-210 A1.2FCC: Section 15.205 Section 15.209 Section 15.231(b)IC: RSS-210 A1.2, 4.4 RSS-Gen 8.9IC: RSS-210 A1.2, 4.4 RSS-Gen 8.9IC: RSS-210 A1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2,	Indard test methodsN/AIC: RSS-210 A1.1N/AIC: RSS-210 A1.11.9 dB 314.350 MHzRSS-Gen 6.12IC: RSS-210 A1.2IC: RSS-210 A1.2Vertical, PK with Duty FactorIC: RSS-210 A1.2FCC: Section 15.205 Section 15.209 Section 15.231(b)RSS-Gen 6.13IC: RSS-210 A1.2, 4.4 RSS-Gen 8.9IC: RSS-210 A1.2, 4.4 RSS-Gen 8.9K with Duty factor <314.35 MHz>IC: RSS-210 A1.2, 4.4 RSS-Gen 8.9K with Duty factor <314.35 MHz>IC: RSS-210 A1.2, 4.4 RSS-Gen 8.9N/A	ndard test methodsN/ACompliedIC: RSS-210 A1.1IC: RSS-210 A1.1Complied: ANSI C63.10:2013 ndard test methodsFCC: Section 15.231(b)1.9 dB 314.350 MHz Vertical, PK with Duty FactorComplied: ANSI C63.10:2013 ndard test methodsFCC: Section 15.205 Section 15.209 Section 15.231(b)4.4 dB 628.700 MHz Vertical Vertical PK with Duty factor <314.35 MHz>Complied: ANSI C63.10:2013 ndard test methodsFCC: Section 15.231(c) RSS-Gen 8.94.4 dB 628.700 MHz Vertical Vertical N/AComplied

<u>FCC Part 15.31 (e)</u> This EUT provides stable voltage (DC 3.3 V) constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % Occupied Bandwidth	IC: RSS-Gen 6.6	IC: RSS-210 A1.3	N/A	Complied	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

		Radiated emissi	on (Below 1 GHz)	
Polarity	(3 m	*)(+/-)	(10 m *)(+/-)	
	30 MHz to 200 MHz	200 MHz to 1000 MHz	30 MHz to 200 MHz	200 MHz to 1000 MHz
Horizontal	5.0 dB	5.3 dB	5.0 dB	5.0 dB
Vertical	5.2 dB	6.3 dB	5.0 dB	5.0 dB

Radiated emission (Above 1 GHz)					
(3 m*)(+/-)		(1 m*)(+/-)		(10 m*)(+/-)	
1 GHz to 6 GHz	6 GHz to 18 GHz	10 GHz to 26.5 GHz	26.5 GHz to 40 GHz	1 GHz to 18 GHz	
5.2 dB	5.5 dB	5.5 dB	5.4 dB	5.5 dB	

* Measurement distance

Radiated emission test(3 m)

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

Test report No.	: 12022270H-A
Page	: 7 of 23
Issued date	: November 27, 2017
FCC ID	• MOZB2Y2L2L

3.5 Test Location

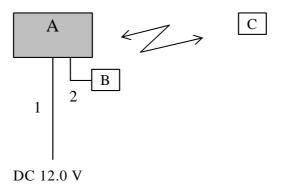
UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124 NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	N/A	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

* Size of vertical conducting plane (for Conducted Emission test) : 2.0 m x 2.0m for No.1, No.2, No.3, and No.4 semianechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up.

Refer to APPENDIX.


Test report No.	: 12022270H-A
Page	: 8 of 23
Issued date	: November 27, 2017
FCC ID	: MOZB2Y2L2L

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

Test Item*	Mode		
Automatically Deactivate	Normal use mode *2)		
Electric Field Strength of Fundamental Emission	Transmitting mode (Tx) *1), *3)		
Electric Field Strength of Spurious Emission	Transmitting mode under BLE communication *1), *4)		
-20 dB & 99 % Occupied Bandwidth	Transmitting mode (Tx)		
* The system was configured in typical fashion (as a user would normally use it) for testing.			
*1) End users cannot change the settings of the output power of the product.			
*2) Once UHF transmission from Smartphone operating			
*3) UHF continuous transmission (stand-alone)			
*4) UHF continuous transmission under pairing the S	mart phone		

4.2 Configuration and peripherals

*Item: iPhone was set on the corner in the anechoic chamber. * Test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
А	Smart Key Box	B2Y2L2L	001 *1)	TOKAI RIKA CO., LTD	EUT
			002 *2)		
В	Control Switch	-	-	-	-
С	iPhone	MG472J/A	FFPQ5DS2G5MN	Apple	-

*1) Used for Transmitting mode only.

*2) Used for Normal use mode only.

List of cables used

No.	Name	Length (m)	Shield		Remark
			Cable	Connector	
1	DC Cable	1.50	Unshielded	Unshielded	-
2	Signal Cable	0.02	Unshielded	Unshielded	-

Test report No. Page	: 12022270H-A : 9 of 23
Issued date	: November 27, 2017
FCC ID	: MOZB2Y2L2L

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)

Test Procedure and conditions

[For below 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Photographs of the set up are shown in Appendix 3.

[Transmitting mode]

(Below 30 MHz)

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

(Above 30 MHz)

The Radiated Electric Field Strength has been measured on Semi anechoic chamber with a ground plane and at a distance of 3 m.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

		г	Г	Г	Г	
	From 9 kHz	From	From	From	From	Above 1 GHz
	to 90 kHz	90 kHz to	150 kHz	490 kHz	30 MHz	
	and	110 kHz	to 490 kHz	to 30 MHz	to 1 GHz	
	From 110 kHz					
	to 150 kHz					
Detector	Peak	Peak	Peak	Peak	Peak and	Peak and
Туре					Peak with	Peak with
					Duty factor	Duty factor
IF	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz,

- The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

*The result is rounded off to the second decimal place, so some differences might be observed.

Measurement range	: 9 kHz - 3.2 GHz
Test data	: APPENDIX
Test result	: Pass

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

Test report No. Page Issued date FCC ID	: 12022270H-A : 10 of 23 : November 27, 2017 : MOZB2Y2L2L
TCCID	. MIOZD212E2E

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

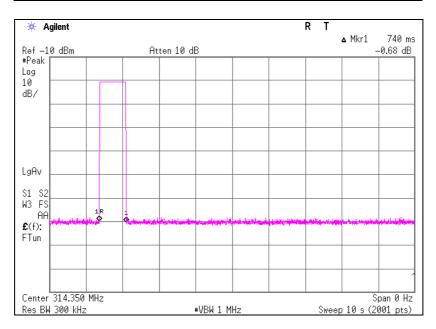
Test data	: APPENDIX
Test result	: Pass

SECTION 7: -20 dB and 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	150 kHz	1.5 kHz	5.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Peak hold was applied as Worst-case measurement.							


Test data	: APPENDIX
Test result	: Pass

APPENDIX 1: Test data

Automatically deactivate 314.35 MHz

Test place	Ise EMC Lab. No.1 Measurement Room
Report No.	12022270H
Date	11/09/2017
Temperature/ Humidity	21 deg. C / 51 % RH
Engineer	Shinya Watanabe
Mode	Normal use mode (314.35 MHz)

Time of	Limit	Result
Transmitting		
[sec]	[sec]	
0.74	5.00	Pass

* The test was performed by a request signal (BLE) from Smart phone operation as representative, because the EUT transmits UHF when LF signal is received from a vehicle or a request signal (BLE) from Smart phone is received, and the UHF transmission is stopped within 5 seconds even when receiving LF signal from vehicle. (Refer to Theory of operation-specification.)

Automatically deactivate 312.10 MHz

Test place Report No. Date Temperature/ Humidity Engineer Mode	Ise EMC Lab. No.1 Measurement Room 12022270H 11/09/2017 21 deg. C / 51 % RH Shinya Watanabe Normal use mode (312.10 MHz)					
Time of	Limit	Result				
Transmitting						
[sec]	[sec]					
0.74	5.00	Pass				
* Agilent	R	T				
Ref —10 dBm	Atten 10 dB	⊿ Mkr1 740 ms 1.37 dB				
#Peak						
Log 10						
dB/						
LgAv						
S1 S2 W3 FS						
AA 18 🕹		staat the show and the same set to the shoke				
£ (f): FTun		ann an Lu in an Anna a bhair an an an Anna a' an Anna a				
		1				
Center 312.100 MHz		Span 0 Hz				
Res BW 300 kHz	#VBW 1 MHz	Sweep 10 s (2001 pts)				

* The test was performed by a request signal (BLE) from Smart phone operation as representative, because the EUT transmits UHF when LF signal is received from a vehicle or a request signal (BLE) from Smart phone is received, and the UHF transmission is stopped within 5 seconds even when receiving LF signal from vehicle. (Refer to Theory of operation-specification.)

Test report No.	: 12022270H-A
Page	: 13 of 23
Issued date	: November 27, 2017
FCC ID	: MOZB2Y2L2L

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission) 314.35 MHz

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.1	No.3
Report No.	12022270H	
Date	11/09/2017	11/13/2017
Temperature / Humidity	21 deg. C / 51 % RH	23 deg. C / 49 % RH
Engineer	Shinya Watanabe	Shinya Watanabe
	(Below 1 GHz)	(Above 1 GHz)
Mode	Transmitting mode 314.	35 MHz

РК

Frequency	Detector	Read	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
314.350	РК	86.1	87.9	13.8	10.6	38.7	-	71.8	73.6	95.5	23.7	21.9	Carrier
628.700	РК	53.9	57.0	19.3	12.9	38.1	-	48.0	51.1	75.5	27.5	24.4	Outside
943.050	PK	41.4	39.2	22.4	14.7	37.8	-	40.7	38.5	75.5	34.8	37.0	Outside
1257.400	РК	45.2	46.3	25.2	5.3	34.3	-	41.4	42.5	75.5	34.1	33.0	Outside
1571.750	РК	43.9	43.6	25.8	5.6	33.5	-	41.8	41.5	73.9	32.1	32.4	Inside
1886.100	РК	42.3	43.0	26.6	5.7	32.9	-	41.7	42.4	75.5	33.8	33.1	Outside
2200.450	PK	43.1	42.3	27.3	5.9	32.5	-	43.8	43.0	73.9	30.1	30.9	Inside
2514.800	РК	45.0	44.4	27.9	6.1	32.4	-	46.6	46.0	75.5	28.9	29.5	Outside
2829.150	PK	46.3	46.2	28.7	6.3	32.2	-	49.1	49.0	73.9	24.8	24.9	Inside
3143.500	РК	43.0	43.4	29.2	6.4	32.1	-	46.5	46.9	75.5	29.0	28.6	Outside

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter) - Gain (Amprifier)$

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
314.350	PK	86.1	87.9	13.8	10.6	38.7	0.0	71.8	73.6	75.5	3.7	1.9	Carrier
628.700	PK	53.9	57.0	19.3	12.9	38.1	0.0	48.0	51.1	55.5	7.5	4.4	Outside
943.050	РК	41.4	39.2	22.4	14.7	37.8	0.0	40.7	38.5	55.5	14.8	17.0	Outside
1257.400	РК	45.2	46.3	25.2	5.3	34.3	0.0	41.4	42.5	55.5	14.1	13.0	Outside
1571.750	РК	43.9	43.6	25.8	5.6	33.5	0.0	41.8	41.5	53.9	12.1	12.4	Inside
1886.100	РК	42.3	43.0	26.6	5.7	32.9	0.0	41.7	42.4	55.5	13.8	13.1	Outside
2200.450	РК	43.1	42.3	27.3	5.9	32.5	0.0	43.8	43.0	53.9	10.1	10.9	Inside
2514.800	PK	45.0	44.4	27.9	6.1	32.4	0.0	46.6	46.0	55.5	8.9	9.5	Outside
2829.150	PK	46.3	46.2	28.7	6.3	32.2	0.0	49.1	49.0	53.9	4.8	4.9	Inside
3143.500	PK	43.0	43.4	29.2	6.4	32.1	0.0	46.5	46.9	55.5	9.0	8.6	Outside

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter) - Gain(Amprifier) + Duty \ factor$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Sample calculation:

Result of PK = Reading + Ant Factor + Loss (Cable + Attenuator + Filter) - Gain (Amplifier) Result of PK with Duty factor = Reading + Ant Factor + Loss (Cable + Attenuator + Filter) - Gain (Amplifier) + Duty factor

For above 1GHz: Distance Factor: $20 \times \log (4.45 \text{ m}/3.0 \text{ m}) = 3.42 \text{ dB}$ *Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Since the peak emission result satisfied the average limit, duty factor was omitted. The result of AV (PK with Duty factor) was calculated by applying Duty 100%.

Test report No.	: 12022270H-A
Page	: 14 of 23
Issued date	: November 27, 2017
FCC ID	: MOZB2Y2L2L

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission) 314.35 MHz under BLE communication

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.1	No.3
Report No.	12022270H	
Date	11/09/2017	11/13/2017
Temperature / Humidity	21 deg. C / 51 % RH	23 deg. C / 49 % RH
Engineer	Shinya Watanabe	Shinya Watanabe
	(Below 1 GHz)	(Above 1 GHz)
Mode	Transmitting mode 314.	35 MHz under BLE communication

РК

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
314.350	PK	85.1	86.6	13.8	10.6	38.7	-	70.8	72.3	95.5	24.7	23.2	Carrier
628.700	PK	54.5	56.6	19.3	12.9	38.1	-	48.6	50.7	75.5	26.9	24.8	Outside
943.050	PK	39.2	39.1	22.4	14.7	37.8	-	38.5	38.4	75.5	37.0	37.1	Outside
1257.400	PK	45.2	44.4	25.2	5.3	34.3	-	41.4	40.6	75.5	34.1	34.9	Outside
1571.750	PK	43.3	43.7	25.8	5.6	33.5	-	41.2	41.6	73.9	32.7	32.3	Inside
1886.100	PK	42.8	43.4	26.6	5.7	32.9	-	42.2	42.8	75.5	33.3	32.7	Outside
2200.450	PK	29.9	43.2	27.3	5.9	32.5	-	30.6	43.9	73.9	43.3	30.0	Inside
2514.800	PK	43.9	43.6	27.9	6.1	32.4	-	45.5	45.2	75.5	30.0	30.3	Outside
2829.150	PK	45.7	45.5	28.7	6.3	32.2	_	48.5	48.3	73.9	25.4	25.6	Inside
3143.500	PK	43.2	43.1	29.2	6.4	32.1	-	46.7	46.6	75.5	28.8	28.9	Outside

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier)

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
314.350	PK	85.1	86.6	13.8	10.6	38.7	0.0	70.8	72.3	75.5	4.7	3.2	Carrier
628.700	PK	54.5	56.6	19.3	12.9	38.1	0.0	48.6	50.7	55.5	6.9	4.8	Outside
943.050	PK	39.2	39.1	22.4	14.7	37.8	0.0	38.5	38.4	55.5	17.0	17.1	Outside
1257.400	PK	45.2	44.4	25.2	5.3	34.3	0.0	41.4	40.6	55.5	14.1	14.9	Outside
1571.750	PK	43.3	43.7	25.8	5.6	33.5	0.0	41.2	41.6	53.9	12.7	12.3	Inside
1886.100	PK	42.8	43.4	26.6	5.7	32.9	0.0	42.2	42.8	55.5	13.3	12.7	Outside
2200.450	PK	29.9	43.2	27.3	5.9	32.5	0.0	30.6	43.9	53.9	23.3	10.0	Inside
2514.800	PK	43.9	43.6	27.9	6.1	32.4	0.0	45.5	45.2	55.5	10.0	10.3	Outside
2829.150	PK	45.7	45.5	28.7	6.3	32.2	0.0	48.5	48.3	53.9	5.4	5.6	Inside
3143.500	PK	43.2	43.1	29.2	6.4	32.1	0.0	46.7	46.6	55.5	8.8	8.9	Outside

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB). Sample calculation:

Result of PK = Reading + Ant Factor + Loss (Cable + Attenuator + Filter) - Gain (Amplifier) Result of PK with Duty factor = Reading + Ant Factor + Loss (Cable + Attenuator + Filter) - Gain (Amplifier) + Duty factor

For above 1GHz: Distance Factor: $20 \times \log (4.45 \text{ m}/3.0 \text{ m}) = 3.42 \text{ dB}$ *Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Since the peak emission result satisfied the average limit, duty factor was omitted. The result of AV (PK with Duty factor) was calculated by applying Duty 100%.

Test report No.	: 12022270H-A
Page	: 15 of 23
Issued date	: November 27, 2017
FCC ID	: MOZB2Y2L2L

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission) 312.10 MHz

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.1	No.3
Report No.	12022270H	
Date	11/09/2017	11/13/2017
Temperature / Humidity	21 deg. C / 51 % RH	23 deg. C / 49 % RH
Engineer	Shinya Watanabe	Shinya Watanabe
	(Below 1 GHz)	(Above 1 GHz)
Mode	Transmitting mode 312.	10 MHz

PK

Frequency	Detector	Read	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
312.100	PK	84.7	85.8	13.8	10.6	38.7	-	70.4	71.5	95.4	25.0	23.9	Carrier
624.200	PK	54.5	56.7	19.3	12.9	38.1	-	48.6	50.8	75.4	26.8	24.6	Outside
936.300	PK	41.6	37.2	22.3	14.6	37.8	-	40.7	36.3	75.4	34.7	39.1	Outside
1248.400	PK	44.9	44.9	25.2	5.3	34.3	-	41.1	41.1	75.4	34.3	34.3	Outside
1560.500	PK	44.0	44.0	25.8	5.6	33.5	-	41.9	41.9	73.9	32.0	32.0	Inside
1872.600	PK	41.8	42.3	26.6	5.7	32.9	-	41.2	41.7	75.4	34.2	33.7	Outside
2184.700	PK	42.5	42.8	27.3	5.9	32.5	-	43.2	43.5	75.4	32.2	31.9	Outside
2496.800	PK	44.4	44.8	27.8	6.1	32.4	-	45.9	46.3	73.9	28.0	27.6	Inside
2808.900	PK	45.4	46.2	28.6	6.3	32.2	-	48.1	48.9	73.9	25.8	25.0	Inside
3121.000	PK	42.3	41.2	29.2	6.4	32.1	-	45.8	44.7	75.4	29.6	30.7	Outside

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter) - Gain(Amprifier)$

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
312.100	PK	84.7	85.8	13.8	10.6	38.7	0.0	70.4	71.5	75.4	5.0	3.9	Carrier
624.200	PK	54.5	56.7	19.3	12.9	38.1	0.0	48.6	50.8	55.4	6.8	4.6	Outside
936.300	PK	41.6	37.2	22.3	14.6	37.8	0.0	40.7	36.3	55.4	14.7	19.1	Outside
1248.400	PK	44.9	44.9	25.2	5.3	34.3	0.0	41.1	41.1	55.4	14.3	14.3	Outside
1560.500	PK	44.0	44.0	25.8	5.6	33.5	0.0	41.9	41.9	53.9	12.0	12.0	Inside
1872.600	PK	41.8	42.3	26.6	5.7	32.9	0.0	41.2	41.7	55.4	14.2	13.7	Outside
2184.700	PK	42.5	42.8	27.3	5.9	32.5	0.0	43.2	43.5	55.4	12.2	11.9	Outside
2496.800	PK	44.4	44.8	27.8	6.1	32.4	0.0	45.9	46.3	53.9	8.0	7.6	Inside
2808.900	PK	45.4	46.2	28.6	6.3	32.2	0.0	48.1	48.9	53.9	5.8	5.0	Inside
3121.000	PK	42.3	41.2	29.2	6.4	32.1	0.0	45.8	44.7	55.4	9.6	10.7	Outside

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Cable + Attenuator + Filter) - Gain (Amprifier) + Cable + Filter) - Filter + Filter) - Filter + Filter) - Filter + Filter) - Filter + Filter + Filter + Filter) - Filter + Filter +$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Sample calculation:

Result of PK = Reading + Ant Factor + Loss (Cable + Attenuator + Filter) - Gain (Amplifier) Result of PK with Duty factor = Reading + Ant Factor + Loss (Cable + Attenuator + Filter) - Gain (Amplifier) + Duty factor

For above 1GHz: Distance Factor: $20 \times \log (4.45 \text{ m}/3.0 \text{ m}) = 3.42 \text{ dB}$ *Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Since the peak emission result satisfied the average limit, duty factor was omitted. The result of AV (PK with Duty factor) was calculated by applying Duty 100%.

Test report No.	: 12022270H-A
Page	: 16 of 23
Issued date	: November 27, 2017
FCC ID	: MOZB2Y2L2L

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission) 312.10 MHz under BLE communication

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.1	No.3
Report No.	12022270H	
Date	11/09/2017	11/13/2017
Temperature / Humidity	21 deg. C / 51 % RH	23 deg. C / 49 % RH
Engineer	Shinya Watanabe	Shinya Watanabe
	(Below 1 GHz)	(Above 1 GHz)
Mode	Transmitting mode 312.	10 MHz under BLE communication

РК

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
312.100	РК	84.6	85.9	13.8	10.6	38.7	-	70.3	71.6	95.4	25.1	23.8	Carrier
624.200	РК	54.6	56.6	19.3	12.9	38.1	-	48.7	50.7	75.4	26.7	24.7	Outside
936.300	РК	41.1	37.1	22.3	14.6	37.8	-	40.2	36.2	75.4	35.2	39.2	Outside
1248.400	PK	45.0	45.5	25.2	5.3	34.3	-	41.2	41.7	75.4	34.2	33.7	Outside
1560.500	PK	44.4	44.5	25.8	5.6	33.5	-	42.3	42.4	73.9	31.6	31.5	Inside
1872.600	PK	41.9	41.8	26.6	5.7	32.9	-	41.3	41.2	75.4	34.1	34.2	Outside
2184.700	PK	42.4	43.0	27.3	5.9	32.5	-	43.1	43.7	75.4	32.3	31.7	Outside
2496.800	PK	44.5	44.8	27.8	6.1	32.4	-	46.0	46.3	73.9	27.9	27.6	Inside
2808.900	PK	46.2	44.6	28.6	6.3	32.2	_	48.9	47.3	73.9	25.0	26.6	Inside
3121.000	PK	41.5	42.5	29.2	6.4	32.1	-	45.0	46.0	75.4	30.4	29.4	Outside

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter) - Gain(Amprifier)$

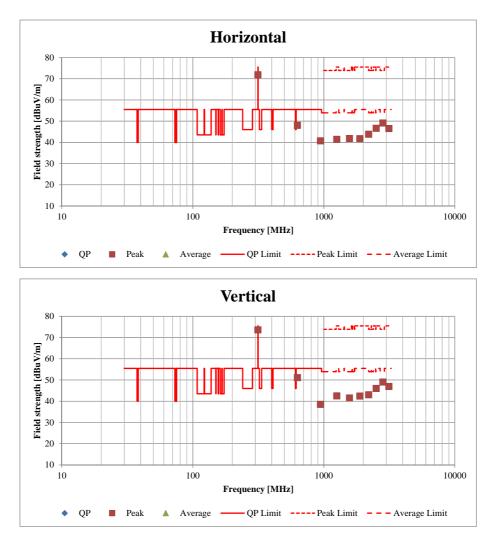
PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
312.100	PK	84.6	85.9	13.8	10.6	38.7	0.0	70.3	71.6	75.4	5.1	3.8	Carrier
624.200	PK	54.6	56.6	19.3	12.9	38.1	0.0	48.7	50.7	55.4	6.7	4.7	Outside
936.300	PK	41.1	37.1	22.3	14.6	37.8	0.0	40.2	36.2	55.4	15.2	19.2	Outside
1248.400	PK	45.0	45.5	25.2	5.3	34.3	0.0	41.2	41.7	55.4	14.2	13.7	Outside
1560.500	PK	44.4	44.5	25.8	5.6	33.5	0.0	42.3	42.4	53.9	11.6	11.5	Inside
1872.600	РК	41.9	41.8	26.6	5.7	32.9	0.0	41.3	41.2	55.4	14.1	14.2	Outside
2184.700	РК	42.4	43.0	27.3	5.9	32.5	0.0	43.1	43.7	55.4	12.3	11.7	Outside
2496.800	PK	44.5	44.8	27.8	6.1	32.4	0.0	46.0	46.3	53.9	7.9	7.6	Inside
2808.900	PK	46.2	44.6	28.6	6.3	32.2	0.0	48.9	47.3	53.9	5.0	6.6	Inside
3121.000	PK	41.5	42.5	29.2	6.4	32.1	0.0	45.0	46.0	55.4	10.4	9.4	Outside

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Duty \ factor + Cable + Attenuator + Filter) - Gain (Amprifier) + Cable + Attenuator + Filter) - Gain (Amprifier) + Cable + Filter) - Filter + Filter) - Filter + Filter) - Filter + Filter) - Filter + Filter + Filter + Filter) - Filter + Filter +$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Sample calculation:


Result of PK = Reading + Ant Factor + Loss (Cable + Attenuator + Filter) - Gain (Amplifier) Result of PK with Duty factor = Reading + Ant Factor + Loss (Cable + Attenuator + Filter) - Gain (Amplifier) + Duty factor

For above 1GHz: Distance Factor: $20 \times \log (4.45 \text{ m}/3.0 \text{ m}) = 3.42 \text{ dB}$ *Other frequency noises omitted in this report were not seen or had enough margin (more than 20dB).

Since the peak emission result satisfied the average limit, duty factor was omitted. The result of AV (PK with Duty factor) was calculated by applying Duty 100%.

Radiated Spurious Emission (Plot data, Worst case)

Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.1	No.3
Report No.	12022270H	
Date	11/09/2017	11/13/2017
Temperature / Humidity	21 deg. C / 51 % RH	23 deg. C / 49 % RH
Engineer	Shinya Watanabe	Shinya Watanabe
	(Below 1 GHz)	(Above 1 GHz)
Mode	Transmitting mode 314.3	35 MHz

*These plots data contains sufficient number to show the trend of characteristic features for EUT.

<u>-20 dB and 99 % Occupied Bandwidth</u> 314.35 MHz / 312.10 MHz

Test place	Ise EMC Lab. No.1 Measurement Room
Report No.	12022270H
Date	11/09/2017
Temperature/ Humidity	21 deg. C / 51 % RH
Engineer	Shinya Watanabe
Mode	Transmitting mode 314.35 MHz / 312.10 MHz

Bandwidth Limit : Fundamental Frequency 312.10 MHz x 0.25% = 780.250 kHz

* The above limit was calculated from more stringent nominal frequency.

* Method of KDB 926416 for systems employing non sweeping frequencies was referred.

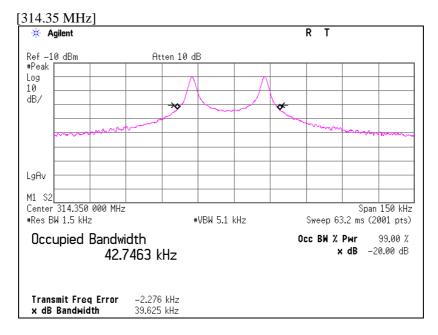
314.35 MHz

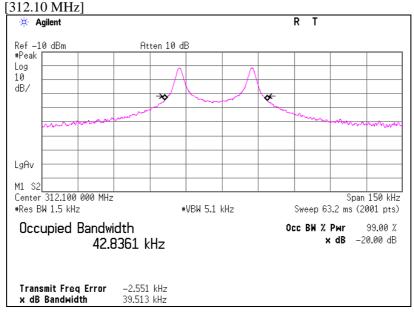
-20 dB Bandwidth
[kHz]
39.625

312.10 MHz -20 dB Bandwidth [kHz] 39.513

-20 dB Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
39.625 + 39.513 = 79.138	780.250	Pass

Bandwidth Limit : Fundamental Frequency 314.35 MHz x 0.25% = 785.875 kHz


99 % Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
42.7463	785.8750	Pass


Bandwidth Limit : Fundamental Frequency **312.10** MHz x 0.25% = 780.250 kHz

99 % Occupied Bandwidth [kHz]	Bandwidth Limit [kHz]	Result		
42.8361	780.2500	Pass		

<u>-20 dB and 99 % Occupied Bandwidth</u> 314.35 MHz / 312.10 MHz

Test place	Ise EMC Lab. No.1 Measurement Room
Report No.	12022270Н
Date	11/09/2017
Temperature/ Humidity	21 deg. C / 51 % RH
Engineer	Shinya Watanabe
Mode	Transmitting mode 314.35 MHz / 312.10 MHz

APPENDIX 2: Test Instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-01	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	RE	2017/09/30 * 12
MOS-27	Thermo-Hygrometer	CUSTOM	CTH-201	A08Q26	RE	2017/01/20 * 12
MJM-25	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MTR-09	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	RE	2017/06/27 * 12
KBA-05	Biconical Antenna	Schwarzbeck	BBA9106	2513	RE	2016/11/23 * 12
MLA-20	Logperiodic Antenna(200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-189	RE	2017/01/05 * 12
MAT-08	Attenuator(6dB)	Weinschel Corp	2	BK7971	RE	2016/11/28 * 12
MCC-02	Coaxial Cable	Suhner/storm/Agilent/ TSJ		-	RE	2017/09/26 * 12
MPA-19	Pre Amplifier	MITEQ	MLA-10K01-B01-35	1237616	RE	2017/02/08 * 12
MMM-03	Digital Tester	Fluke	FLUKE 26-3	78030621	RE	2017/08/07 * 12
MRENT-140	Spectrum Analyzer	KEYSIGHT	E4440A	MY46187752	RE	2017/11/01 * 12
MAEC-03	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2017/10/31 * 12
MOS-13	Thermo-Hygrometer	Custom	CTH-180	1301	RE	2017/01/20 * 12
MJM-16	Measure	KOMELON	KMC-36	-	RE	-
MSA-10	Spectrum Analyzer	Agilent	E4448A	MY46180655	RE	2017/08/22 * 12
MHA-20	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	258	RE	2017/05/22 * 12
MCC-167	Microwave Cable	Junkosha	MWX221	1404S374(1m) / 1405S074(5m)	RE	2017/05/29 * 12
MPA-11	MicroWave System Amplifier	Agilent	83017A	MY39500779	RE	2017/03/21 * 12
MMM-08	DIGITAL HITESTER	Hioki	3805	051201197	RE	2017/01/19 * 12
MLPA-07	Loop Antenna	UL Japan	-	-	RE	Pre Check

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Radiated emission, 99 % Occupied Bandwidth, -20 dB bandwidth and Automatically deactivate tests