

MEASUREMENT AND TECHNICAL REPORT

SONIK TECHNOLOGIES CORPORATION
2310 Cousteau Court
Vista, CA 92083

DATE: 27 February 2002

This Report Concerns: Original Grant: X Class II Change:

Equipment Type: Three Channel RFO Paging Station, Model PT 1055

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? Yes: No: X
Defer until:

*Company Name agrees to notify the Commission by: N/A
of the intended date of announcement of the product so that the grant can be issued on that date.*

Transition Rules Request per 15.37? Yes: *No: X

() FCC Part 2, Paragraphs 2.1046; 2.1049; 2.1051; 2.1053; 2.1055; Part 24, Paragraph 24, Paragraphs 24.132©; 24.133(a)(1)(i) and 24.133(a)(1)(ii)*

Report Prepared by:

**TÜV PRODUCT SERVICE
10040 Mesa Rim Road
San Diego, CA 92121-2912
Phone: 858 546 3999
Fax: 858 546 0364**

PREFACE

This report documents product testing conducted to verify compliance of the specified EUT with applicable standards and requirements as identified herein. The reader is referred to the applicable test standards for detailed procedures. The following table summarizes the test results obtained during this evaluation.

SUMMARY

Purpose of Test: To demonstrate compliance with the ANSI C63.4 setup.

TEST	STANDARD	FREQUENCY RANGE	RESULT
RF Power	Part 2, Para. 2.1046; Part 24, Para. 24.132(c)	929.02 – 940.98	Pass
Occupied Bandwidth	Part 2, Para 2.1049; Part 24, Para. 24.131	929.02 – 940.98	Pass
Spurious Emissions at Antenna Terminals	Part 2, Para. 2.1051, Part 24, Para. 24.133(a)(1)(i); (ii)	30 MHz – 10 GHz	Pass
Field Strength of Spurious Radiation	Part 2, Para. 2.1053; Part 24, Para. 24.133(a)(1)(ii)	929.02 - 940.98	Pass

TABLE OF CONTENTS

	Pages
1 GENERAL INFORMATION	4
1.1 Product Description	4
1.2 Related Submittal Grant	7
1.3 Tested System Details	7
1.4 Test Methodology	7
1.5 Test Facility	7
1.6 Part 2 Requirements	8
2 SYSTEM TEST CONFIGURATION	14
2/1 Justification	14
2.2 EUT Exercise Software	14
2.3 Special Accessories	14
2.4 Equipment Modifications	14
2.5 Configuration of Tested System	14
3 RF Power Output	15
4 Occupied Bandwidth	18
5 Spurious Emissions at Antenna Terminals	22
6 Field Strength of Spurious Radiation	43
6.1 Field Strength Calculation	48
7 Attestation Statement	50

1 GENERAL INFORMATION

1.1 Product Description

EUT Description: RF Orchestra Paging Station

EUT Name: Three Channel RFO! Paging Station

Model No.: PT 1055 Serial No.: 11023NV

Configurations to be tested: Transmitter (Power Amplifiers, Power Supplies, Interface Control)

EUT Specifications and Requirements

Length: 25 " Width: 23.5 " Height: 83.5" Weight: 680 lbs.

Power Requirements

Regulations require testing to be performed at typical power ratings in the countries of intended use. (i.e., European power is typically 230 VAC 50 Hz or 400 VAC 50 Hz, single and three phase, respectively)

Voltage: 196-254 VAC @ 60 Hz (If battery powered, make sure battery life is sufficient to complete testing.)

of Phases: 1

Current (Amps/phase(max)): 20 Current (Amps/phase(nominal)): 7.5

Typical Installation and/or Operating Environment

Remote unattended indoor Site

EUT Power Cable

Permanent OR Removable Length (in meters): 3.56
 Shielded OR Unshielded
 Not Applicable

EUT Software.

Revision Level: N/A

Description: Standard Hyperterminal

EUT Operating Modes to be Tested --

1. Low/High Power Transmission with single Carrier
2. Low/High Power Transmission with 3 Carriers.

EUT System Components --

Description	Model #	Serial #	FCC ID #
Motorola EX(Orchestra)	912EX2GBT01		
Motorola EX(Baton)	N/A	N/A	
Sonik Power Amplifier #1	4B467-2	0151-212	
Sonik Power Amplifier #2	4B467-2	0151-116	
Sonik Power Amplifier #3	4B467-2	0151-118	
Sonik 3-Way Combiner	3C490-1	N/A	
Sonik SPI Spoofers	6A628	N/A	
Detector	O180503R06	260459-189	
Detector	O180503R06	258477-056	
Harmonic Filter	LB-1367	002691	
3-Way Splitter (Mini-Circuits)	15542	N/A	
Celwave Coupler	5882568WO4	388733-063	
Celwave Coupler	5882568WO3	195029-017	
Sonik Power Supply #1	4B466-1	N/A	
Sonik Power Supply #2	4B466-1	N/A	
Sonik Power Supply #3	4B466-1	N/A	
Sonik Rack Shelf, rectifier	4B466-2	N/A	

Support Equipment -- List and describe all support equipment which is not part of the EUT. (i.e. peripherals, simulators, etc)

Description	Model #	Serial #	FCC ID #
500 Watt RF Load	8431	380	
Termaline Coaxial Resistor			
HP Single Channel Power Meter	HP E4418B(437B)	3125U21450	
HP 8591E Spectrum Analyzer		3639A05688	
HP 8481H Power Sensor -15 TO 35 dBm		1926AC1157	
Celwave Characterized Coupler (attenuation: -40.30 Reverse, -40.47 Forward)	5882568U03	192079-007	

Oscillator Frequencies

<i>Frequency</i>	<i>Derived Frequency</i>	<i>Component # / Location</i>	<i>Description of Use</i>
VCO	929-941 mHz	Local Oscillator/Exciter Module	Provides the RF Carrier Frequencies to each of (3) Amplifiers.
2.1 mHz	-6.25 kHz, -12.5 kHz	Synthesizer/Exciter Module	Provides base modulation frequencies.

Power Supply

<i>Manufacturer</i>	<i>Model #</i>	<i>Serial #</i>	<i>Type</i>
Magnetek (28V @ 50 AMP) (3)	901PS6	0024 0010 0044	<input type="checkbox"/> Switched-mode: (Frequency) _____ <input checked="" type="checkbox"/> Linear <input type="checkbox"/> Other: _____
			<input type="checkbox"/> Switched-mode: (Frequency) _____ Linear <input type="checkbox"/> Other: _____

1 GENERAL INFORMATION (continued)

1.2 Related Submittal/Grant

None

1.3 Tested System Details

The FCC IDs for all equipment, plus descriptions of all cables used in the tested system are:

None

1.4 Test Methodology

Both Conducted and radiated testing were performed according to the procedures in FCC/ANSI C63.4 and CSA 108.8 - M1983. Radiated testing was performed at an antenna-to-EUT distance of 3 meters (1 - 10 GHz).

1.5 Test Facility

The open area test site and conducted measurement data were tested by:

TÜV PRODUCT SERVICE
10040 Mesa Rim Road
San Diego, CA 92121-2912
Phone: 858 546 3999
Fax: 858 546 0364

The Test Site Data and performance comply with ANSI 63.4 and are registered with the FCC, 7435 Oakland Mills Rd, Columbia Maryland 21046. All Measurement Data is acquired according to the content of FCC Measurement Procedure and ANSI C63.4, unless supplemented with additional requirements as noted in the test report.

1.6 Part 2 Requirements

Names and Addresses.

(The full name and mailing address of the manufacturer of the device and the applicant for certification.)

Mr. John Sonnenberg
Sonik Technologies Corporation
2310 Costeau Court
Vista, CA 92083

Equipment Specifications.

Frequency Range on MHz: **929-941**
Rated RF Power in Watts: **400 Total Avg Power**
Frequency Tolerance: **+/- 1%**
Microprocessor Model #: **MC68EN36CRC25C**

Type or types of emission.

8K00F1D
6K40F1D

Frequency Range.

(Range of Operating Power values or specific operating power levels;
and description of any means provided for variation of operating power.)

40-155 watts per subchannel. Power control is accomplished via RF output levels of the exciter module during the active keyed state depending on the RF output of the Power Amplifiers through the internal wattmeter sensor.

Maximum power rating.

400 Watts Total Avg Power, 1200 Watts Peak Power

DC voltages.

(List of DC voltages applied to and dc currents into the several elements of the final Radio frequency amplifying device for normal operation over the power range.)

28 VDC @ 8-96 Amperes

Schematic diagram and a description(s).

....of all circuitry and devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation, and for limiting power.

Submit a Parts List if not visible on the schematics.

Means for frequency stabilization: The station reference circuitry consists of a phase-locked loop comprised of a high stability VCXO(16.8 MHz), an ultra high stability oscillator (UHSO) (10 MHz), and a PLL IC. The VCXO and the PLL IC are located on the Station Control Module and the UHSO is located on the reference module. The VCXO(16.8 MHz) operates in a closed loop mode and the frequency is continually being controlled by the control voltage of the PLL IC referenced to the 10 MHz UHSO source. The output of this loop is a 16.5 MHz square wave signal which is fed to the divide-by-8 counter on the Station Control Module where it is divided down to 2.1 MHz. The 2.1 MHz square wave signal is routed to the Exciter Module as the station reference.

Means for limiting modulation: The FSK (frequency shift keying) baseband modulation signal is created in a digital signal processor (DSP) using a table lookup algorithm. The AM based modulation is processed in the digital domain through a peak-to-average limiting algorithm that prevents the modulation from exceeding 100%. This baseband signal is also passed through a low pass filter to ensure compliance with the occupied bandwidth requirements. The transmitter uses a Cartesian feedback system which samples the transmitted signal and feeds it back to the transmitter linearization IC. This IC automatically performs phase and amplitude training by continually adjusting the attenuators internal to the IC to maintain the required occupied bandwidth and output power level.

Means for limiting power: The transmitter Power Control incorporates a built in power monitoring system and a set of attenuators to continuously monitor and regulate transmitter output power. The power metering is factory calibrated to 5% accuracy and cannot be adjusted in the field. The power metering system consists of a bi-directional coupler, an RF detector module, and a DSP/Host control module. The coupler/detector pair located near the transmitter output generates a DC voltage which is directly proportional to the transmitter output power. This voltage (VF internal) is fed back to the control module, digitized and processed back to the Host. The host compares the monitored power level to the desired and adjusts attenuators in the Exciter Module to change the output level of the Exciter. These attenuators have a minimum resolution of 0.1 dB. This controlled output of the Exciter module drives the Power Amplifier Chain (PAC) . The PAC amplifies the Exciter Module output and the coupler couples a small portion of that signal to the detector module which, in turn, provides a DC level back to the DCP/Host control module. This feedback system continually limits the transmitter output power.

The UHSO steering line will be adjusted to verify that the station 10 MHz reference can be disciplined by the GPS. GPS disciplining will be monitored, then the UHSO will be steered to 10 MHz +/- 5ppb.

Execute the following commands via the BCM FIPS session:

Check steering line.

w 800 0; verify 10,000,002 Hz < reference frequency < 100,000,006 Hz
w 800 4095; verify 9,999,993 Hz < reference frequency < 9,999,997 Hz

Monitor the GPS steering activity.

a 192 SASM 34

Watch the UHSO frequency and the BCM FIPS session. Verify that after 2 minutes maximum the UHSO frequency changes and the BCM FIPS session displays that the steering line has been adjusted down towards 1900. This verifies that UHSO is being disciplined by the GPS

Align the UHSO to 10,000,000.00 +/- .05 Hz adjusting **w 800** between **0** and **4095**; typical level is 1890. Eventually the GPS will discipline the UHSO better than 1 ppb stability (10 MHz +/- 0.01 Hz)

Report No. 108116-08 (FCC ID: MNT0006068662)

Turn off trace by executing the BCM command : **a 193 SASM 34**

GPS Operation Verification

Verify that LED 6 (GPS okay) is active.

The following BCM commands should be executed to record GPS status:

- a 200:** Latitude
- a 201:** Longitude
- a 202:** Height
- a 203:** XDOP type.
- a 204:** XDOP value.
- a 207:** application type
- a 208:** records GPS receiver status and satellite condition.
- a 213:** Position hold mode.
- a 214:** Date
- a 215:** Time (GMT Time Zone – London)
- a 218:** Self test should show "PASS" after each test (Note: Reset the station after self-test has been performed).

Power Out Set

Consult Chart 2.0 "STD" column for the appropriate power level to set the station. These are pre-cavity settings. The Power Reference must be connected to the pre-cavity point.

Generate an FM transmission 10/11 frames.

(BCM) **a 195 1 2 3 4**

(BCM) **a 196 1**

(BCM) **a 176 0 8 0 0 0 1 10 4 1**

Measure Power Out and adjust register 974 until Chart 2.0 STD value +/- 3 Watts is achieved. Use the following 974 equation: $974(\text{new}) = 974(\text{old}) + \{ 10 \log(P(\text{old})/P(\text{new})) * 26 \text{ counts}/\text{dB} \}$. Increment or decrement 974 until Chart 2.0 STD value +/- # Watts is achieved. Record pre-cavity panel power. Note that decreasing 974 increases power out.

Leave transmitter keyed for next measurement.

Internal Power Meter Alignment

This procedure will align the RFO! Power meter to a reference power meter. The reference must be at least 3% accurate and traceable to the National Institute of Standards (NIST). Any errors in the reference will be passed on to the RFO! Power meter.

All connections will be referenced to Figure 1.

Initialize the cal factor on the OCM with the command : **a 72 0 0 0 0**.

Reset the OCM

Connect the reference power meter to the RF cable at the cavity input. If no X263 Option, then connect to the antenna port at the top of the station.

Key the transmitter for 10/11 blocks with the BCM command : **a 176 0 8 0 0 0 1 10 5 1**

Power should be set to 75 watts with the above command.

Increase the power to 200 watts by adjusting the OCM register 2054 to $[11680 * (200/Po)^{1/2}](19200)$. The power meter must be calibrated at 200 watts +/- 5%.

Read the RFO! Power meter using the OCM command: **a 79 0**.

Using the "Last power read" verify that the RFO! Power meter and the reference power meter are within +/- 20%.

Align the internal power meter to the reference power meter by sending the OCM command: **a 71 0 xxx**, where xxx is the reading of the reference power meter and "0" indicates the internal power meter.

Calibration takes a maximum of 75 seconds. Verify that calibration takes place by noting the calibration factor.

Dekey radio using the BCM command: **a 117**

Return OCM register 2054 to 11680: **w 2054 11680**

Reset OCM (**a 117**). The RFO! Internal power meter will be calibrated on the return from reset.

Transmitter Frequency Check and Microphonic Screen

The Spectrum Analyzer will be used to verify that the transmitter is on the desired frequency. It must be using an external reference with a stability > .5 pbb. Switch the Spectrum Analyzer to "external reference" via the "Aux cntl/Rear panel" key.

Set deviation to 0 Hz by executing OCM command: **w 2053 0**. The default is 4800.

Set analyzer RBW, VBW and Sweep to "auto".

Set analyzer center frequency and marker to subchannel frequency.

Transmitter should be keyed from the previous test. If not, execute the BCM command: **a 177** to stop data from the last key and then execute the key command **a 176 0 8 0 0 0 1 11 4 1**.

Hit "Marker Delta" and then "Peak Search" when the Tx is keyed.

Set analyzer span to 500 Hz.

The indicated Delta frequency should be < +/- 10 Hz.

Verify that discrete spurious signals (not noise) are at least 30 dB below carrier > +/- 100 Hz from the carrier.

Leave the transmitter keyed for the next measurement.

Carrier Feed-through (CFT) and Image Null

The **carrier feed-through** is an undesired by-product of the I/Q modulator. The carrier is nulled by alternately adjusting the DC-offset on the I cahnnel and the DC offset on the Q channel via the OCM FIPS using the **w 979** and **w 980** commands respectively.

- 1) Using the OCM command **w 2053 1** set this value to 1.
- 2) Set the analyzer span to 20 kHz and RBW to 300 Hz; center remains on Tx center.
- 3) Transmitter should be keyed from previous test. If not, execute the OCM command: **a 177**. To stop the data from the last key and then execute the key command **:176 0 8 0 0 0 1 11 4 1**.
- 4) Hit "Marker Normal" then "Peak Search" while transmitting to capture the +0 Hz deviated subchannel. This is used as a level reference.
- 5) Move the "Marker Delta" over to the carrier by pressing "Mkr Delta " and then "Next Peak Left" Verify that this is the center of the channel. If not, dial over to the carrier feed through spur. This is approximately -6.25 to -6.27 kHz from the subchannel.
- 6) Adjust the I DC offset using **w 979** until a minimum point is achieved. Default is 0 and the optimum point could be between -3000 and + 3000. Try increments of 200. If outside of this range, fail the exciter.
- 7) Adjust the Q-channel offset using the **w 980** command until a minimum is achieved and then go back a re-adjust the I offset at smaller increments. Try initial increments of 200.
- 8) Continue adjustment until CFT is < -60 dBc. Record CFT level, 979 setting, 980 setting, and 974 setting.
- 9) Small changes in ambient temperature can cause large changes in the carrier feed-thru. Any subsequent testing using the same r 974, r 779, r 980 values will be needed to meet the minimum spec of -45 dBc.

Image Null- An image of the desired channel is also an undesired by-product. This image is reduced by the “w 981” command between –5.0 and +5.0.

- 1) Set Marker Delta over-to image(-12.5 kHz)
- 2) Adjust “w 981” until image is < -40 dBc. Record image and 981 value.
- 3) If further measurements are desired leave transmitter keyed.

Equipment employing digital modulation techniques.

Detailed description of the modulation system to be used, including the response characteristics (frequency, phase and amplitude) of any filters provided.

Description of the modulating wave train for the maximum rated conditions under which the equipment will be operated.

Digital modulation techniques: The linear transmitter modulates at any particular instant one of two types of signals: FSK(Frequency Shift Keyed) signals that are used to communicate with and control the messaging unit, or AM that contains the message information. Three channels of FSK data can be transmitted simultaneously within the 45 KHz of authorized bandwidth. The FSK data can be transmitted as much as 3200 symbols/second with symbol deviations of 2400, 800, -8, and –2400 Hz. Independent AM signals will be transmitted simultaneously in up to four of the seven available 6.25 kHz sub-channels. Both the FSK and AM signals are modulated at baseband by DSP,s and provided to the exciter D/A converter as I/Q data streams. Significant filtering is undertaken by the DSPs to help ensure that the transmitted signal remains within spectral limits.

2. SYSTEM TEST CONFIGURATION

2.1 Justification

The EUT was initially tested for FCC emission in the following configuration:

See Block Diagram.

2.2 EUT Exercise Software

None

2.3 Special Accessories

None

2.4 Modification

None

2.5 Configuration of Tested System

See Block Diagram.

3 RF POWER OTUPUT. FCC PART 2, PARAGRAPH 2.1046 and PART 24, PARAGRAPH 24.132(c)

See following page(s).

FCC CFR 47 PART 2.1046 RF POWER OUTPUT

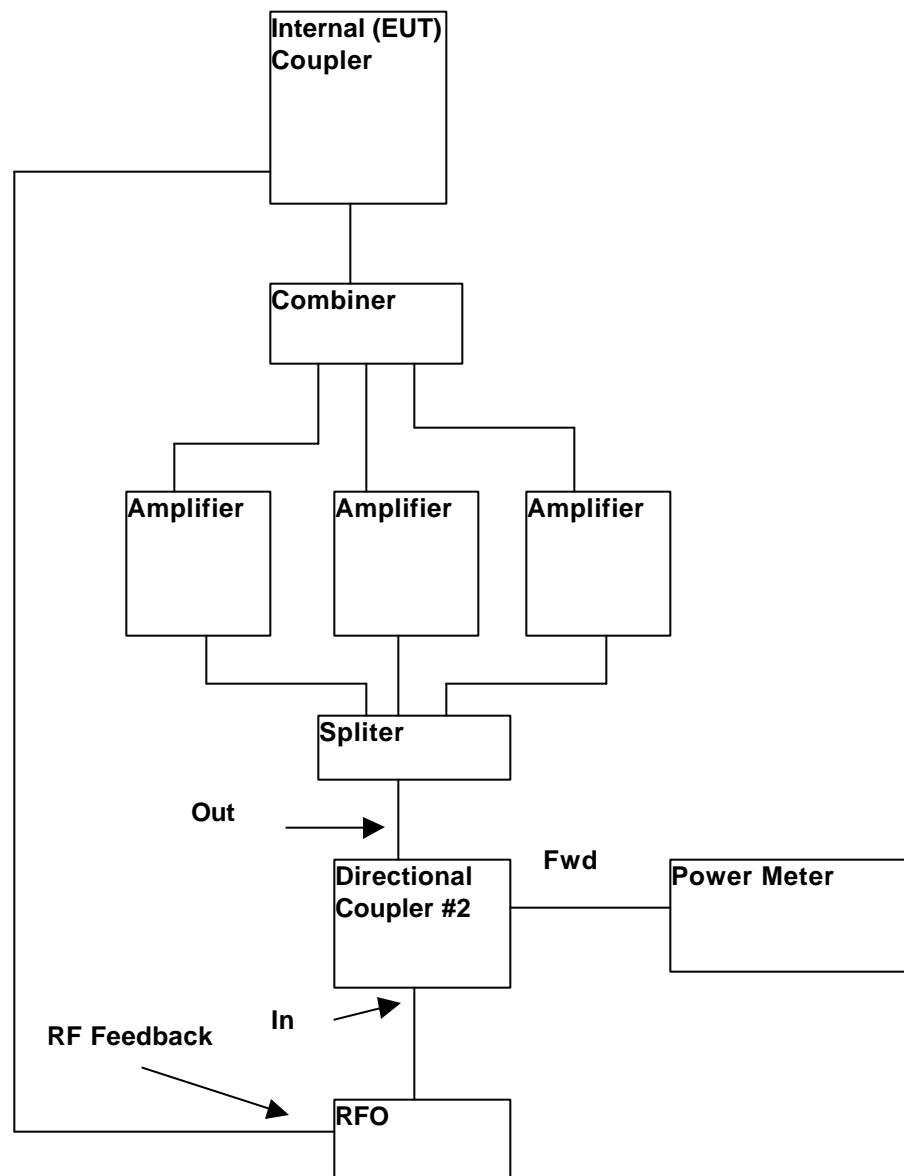
FCC CFR 47 PART 24.132 (c) POWER LIMITS

Base stations transmitting into the 930--931 MHz and 940--941 MHz bands are limited to 3500 watts e.r.p. per authorized channel...Power measured is less than Power Limit allowed.

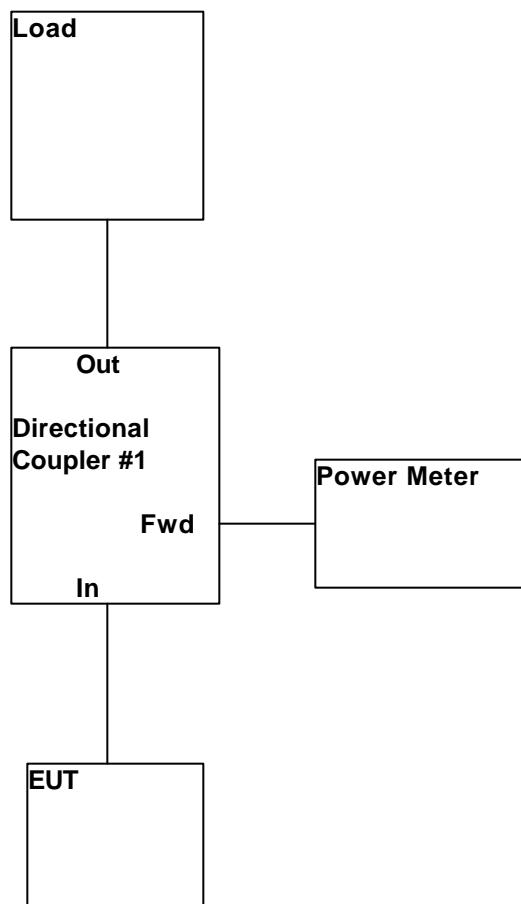
	Power In	Power Out	Gain (dB)
930--931 MHz			
930.5 MHz	10.2 mW	400 W	45.9
940--941 MHz			
940.5 MHz	9.3 mW	400 W	46.3

EQUIPMENT USED

Power Meter	Hewlett Packard	hp437B	sn: 4236U21450	Due for Cal. 2/10/02
Power Sensor	Hewlett Packard	hp8481H	sn: 1926A01157	Due for Cal. 9/24/02
Directional Coupler				
#1	Cellwave	588256B1J03	sn: 192079-007	
#2	Hewlett Packard	778D	sn: 1144A07633	


Tech: A. Laudani

TR2 TEST Room 2/ photos taken of this setup


Feb. 18, 2002

Input Setup

4

Output Setup

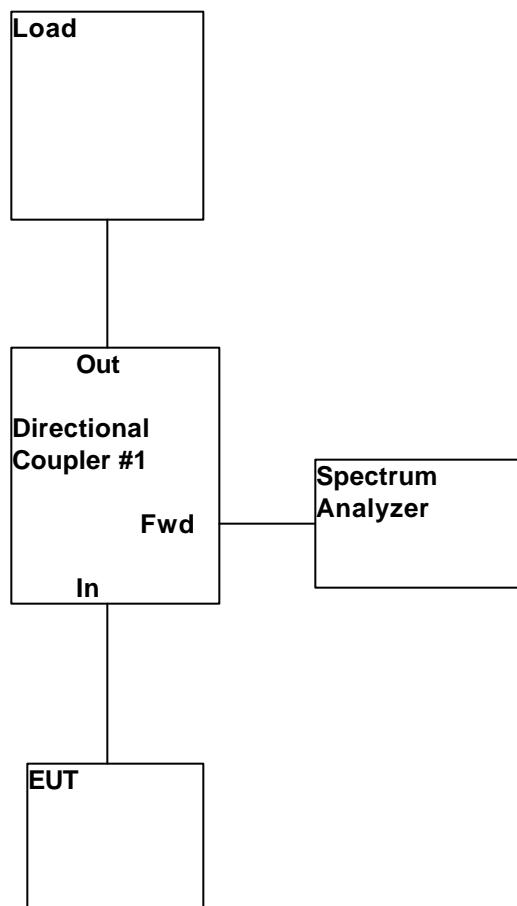
4 OCCUPIED BANDWIDTH, FCC PART 2, PARAGRAPH 2.1049 and PART 24, PARAGRAPH 24.131

See following page(s).

The authorized bandwidth for the RFO PAGING STATION is 45 kHz as it has a 50 kHz channel.
This is evident as the -26 dB points are less than 40 kHz.

EQUIPMENT USED

Spectrum Analyzer


Hewlett Packard hp8566B sn: 2610A02913 Cal. 11/17/2002

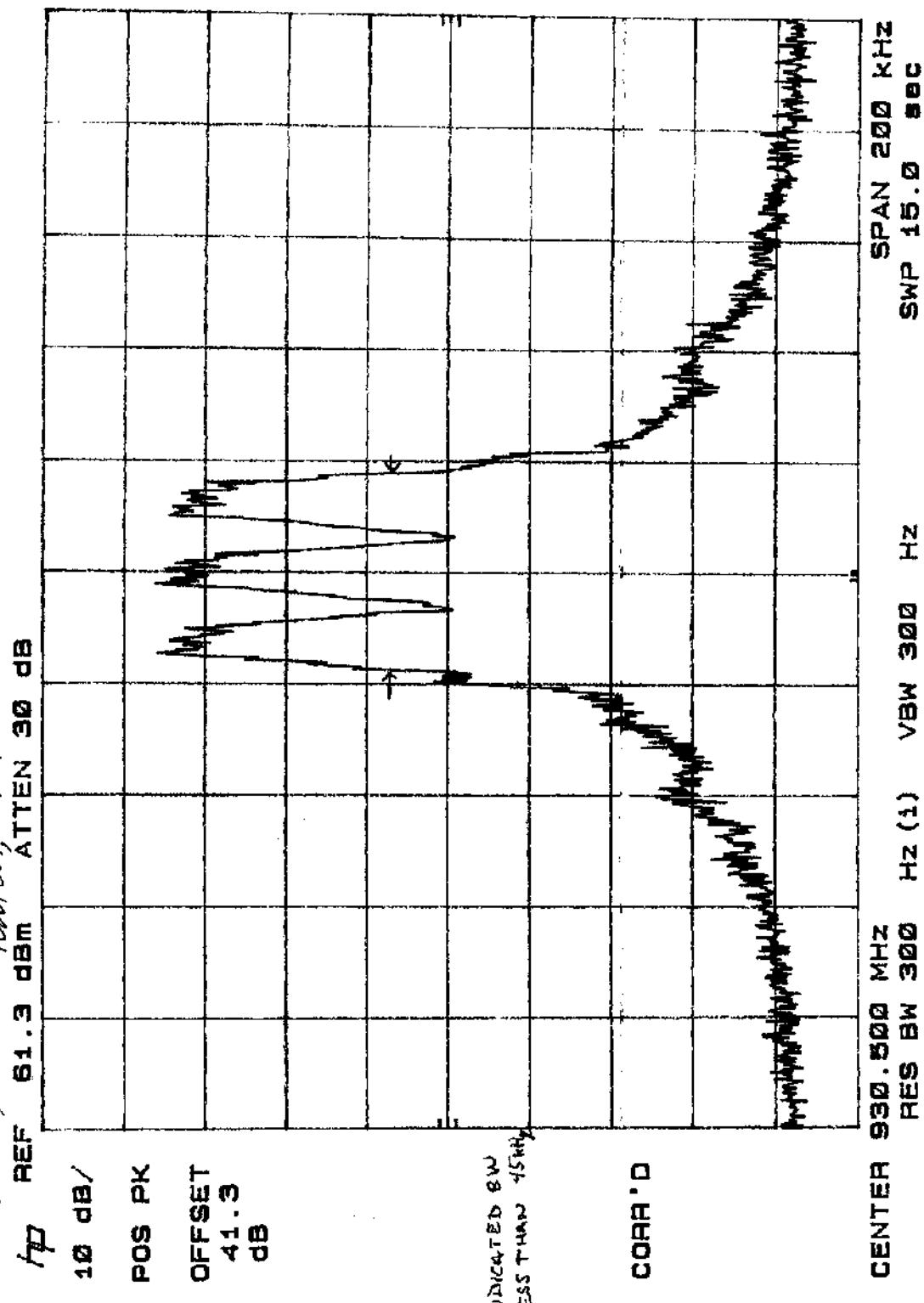
Directional Coupler
#1

Cellwave 588256B1J03 sn: 192079-007

Tech: A. Laudani
TR2 TEST Room 2/ photos taken of this setup
Feb. 18, 2002

Occupied Bandwidth Setup

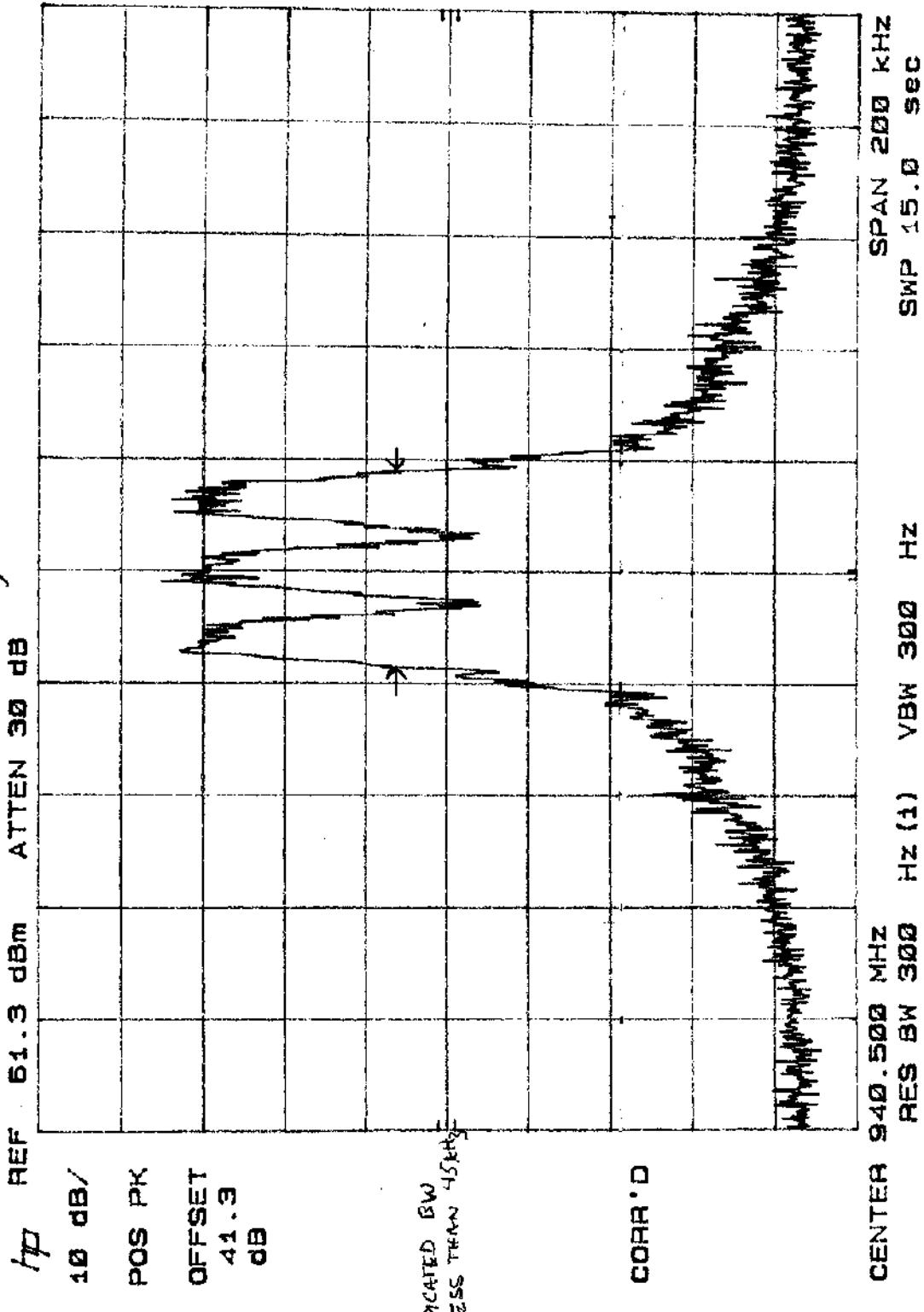
NOTES:


1. 1. FWD insertion loss of coupler at measured frequencies is 40.5 dB.
2. 2. Offset included coupler insertion loss plus cable loss(coupler to spectrum analyzer).

SC-108116
SONIK TECHNOLOGIES CORP.
FCC CFR 47 PART 2.1049 OCCUPIED BANDWIDTH

FEB. 26, 2002
TECH/ENGR: AAL

PT 1055 THREE CHANNEL RFO PAGING STATION


Port 24, 24, 131

SC-108116
SONIK TECHNOLOGIES CORP.
FCC CFR 47 PART 2.1049 OCCUPIED BANDWIDTH

PT 1055 THREE CHANNEL RFO PAGING STATION
Part 24, 24.1.3/

FEB. 26, 2002
TECH/ENGR: AAL

5 SPURIOUS EMISSIONS AT ANTENNA TERMINALS, FCC PART 2, PARAGRAPH 2.1051 and PART 24, PARAGRAPH 24.133(a)(1)(i); (ii)

See following page(s).

The RFO modulation is all data for Narrowband PCS paging only.

The carrier consists of three sub-channels modulated in time--lock, four-level FSK within a 45 kHz bandwidth.

The transmitter is only capable of servicing a single 50 kHz channel.

The RFO's signal is split into 3 and fed into 3 equivalent amplifiers whose output is combined into a coupler which samples the RF for feedback for the RFO before feeding the filter and then to the antenna.

Emission Mask: For frequencies outside the authorized bandwidth (45 kHz) and removed from the edge of the authorized bandwidth by a displacement frequency Fd up to and including 40 kHz.	Fd	= 60 - 116 LOG((Fd+10)/6.1)
	0	35.1
	2	25.9
	4	18.1
	6	11.4
For Fd greater than 14 kHz, attenuation was 70 dB, see display line (-10 dB).	8	5.5
	10	0.2
For Fd between 0 and 14 kHz the table at right was used to sketch an emission mask.	12	-4.6
	14	-9.0

Emissions were found to be well within the masked values

equipment used

Spectrum Analyzer

Hewlett Packard hp8566B sn: 2610A02913 Due for Cal. 11/17/2002

Directional Coupler

#1

Cellwave sn: 192079-007

Tech: A. Laudani

TR2 TEST Room 2/ photos taken of this setup

Feb. 26, 2002

The carrier consists of three sub-channels modulated in time--lock, four-level FSK within a 45 kHz bandwidth. Emissions were investigated from 30 MHz through 10 GHZ, enough to demonstrate 10 harmonics of the operating frequency. The second harmonic was found and featured below the limit. For Fd greater than 14 kHz, attenuation was 70 dB, see display line (-10 dB).

Emissions were found to be well within the masked values

equipment used

Spectrum Analyzer

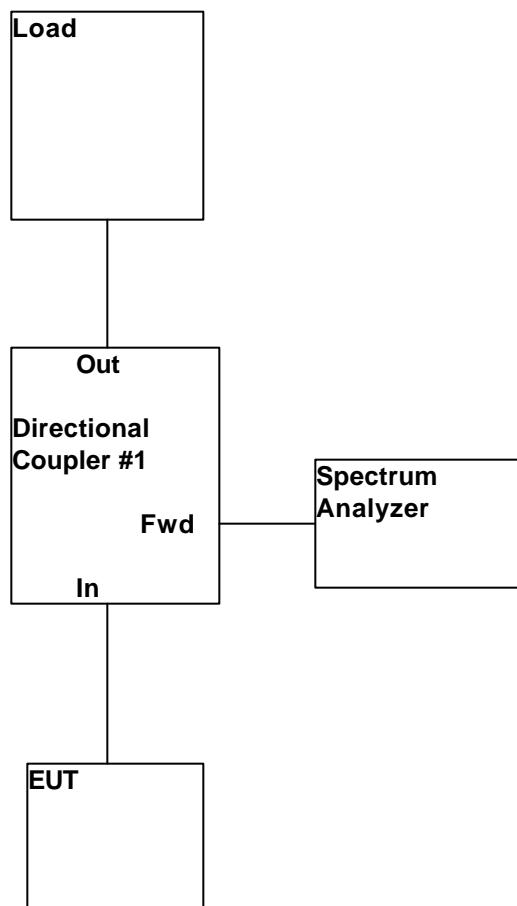
	Hewlett Packard	hp8566B	sn: 2311A02209	Cal. 12/17/2002
--	-----------------	---------	----------------	-----------------

RF Preselector

	Hewlett Packard	85685A	sn: 2610A02913	Cal. 2/14/03
--	-----------------	--------	----------------	--------------

Directional Coupler

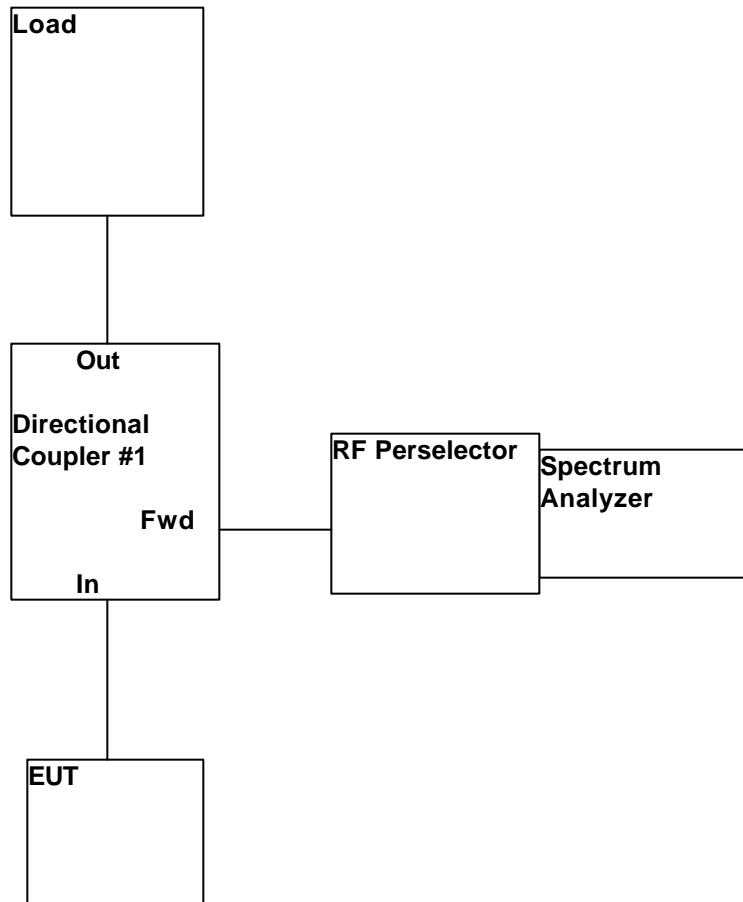
#1


	Cellwave	588256B1J03	sn: 192079-007
--	----------	-------------	----------------

Tech: A. Laudani

TR2 TEST Room 2/ photos taken of this setup

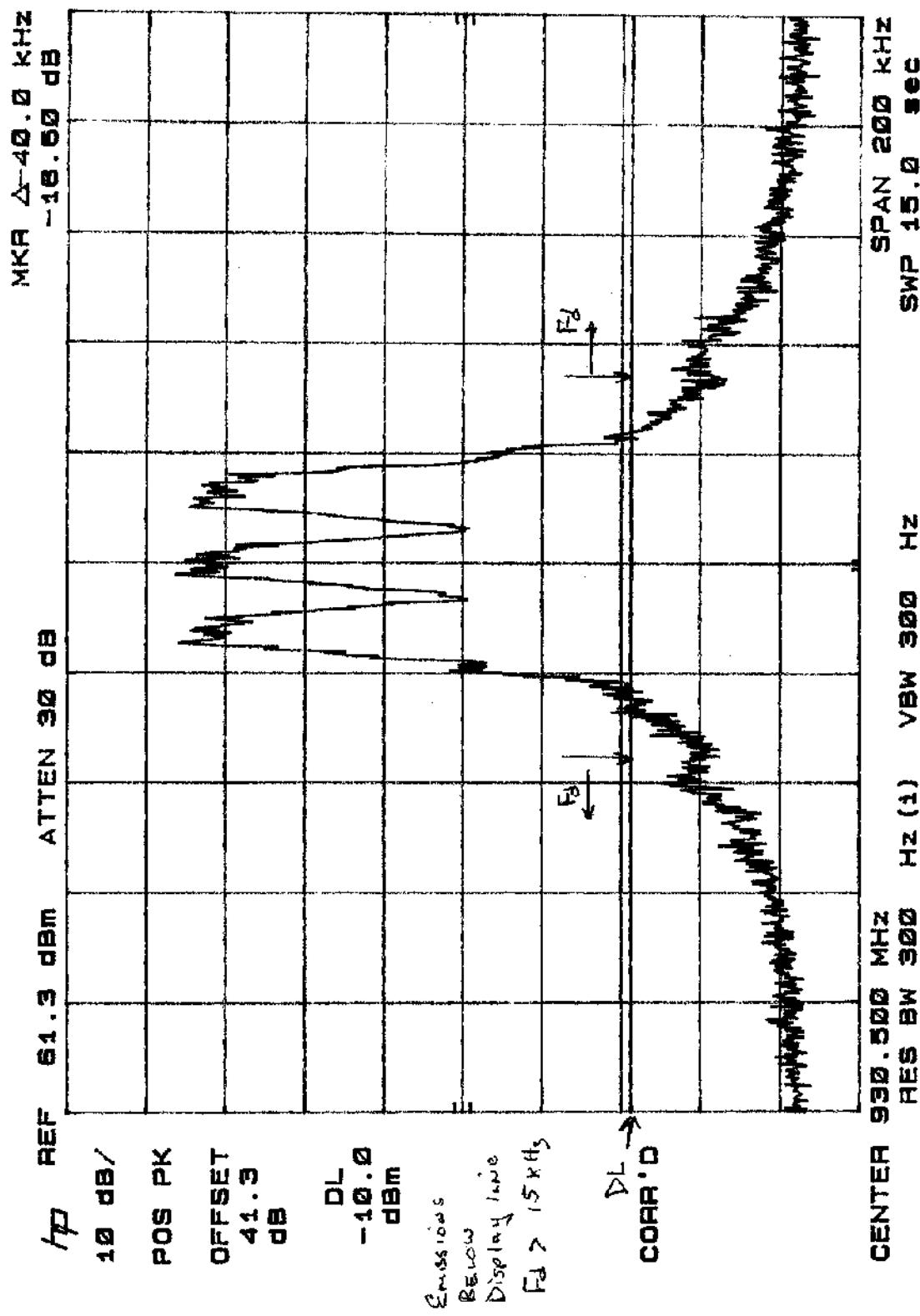
Feb. 26, 2002


RF Conducted Emissions Setup1

NOTES:

1. 5. FWD insertion loss of coupler at measured frequencies is 40.5 dB.
2. 6. Offset included coupler insertion loss plus cable loss(coupler to spectrum analyzer).

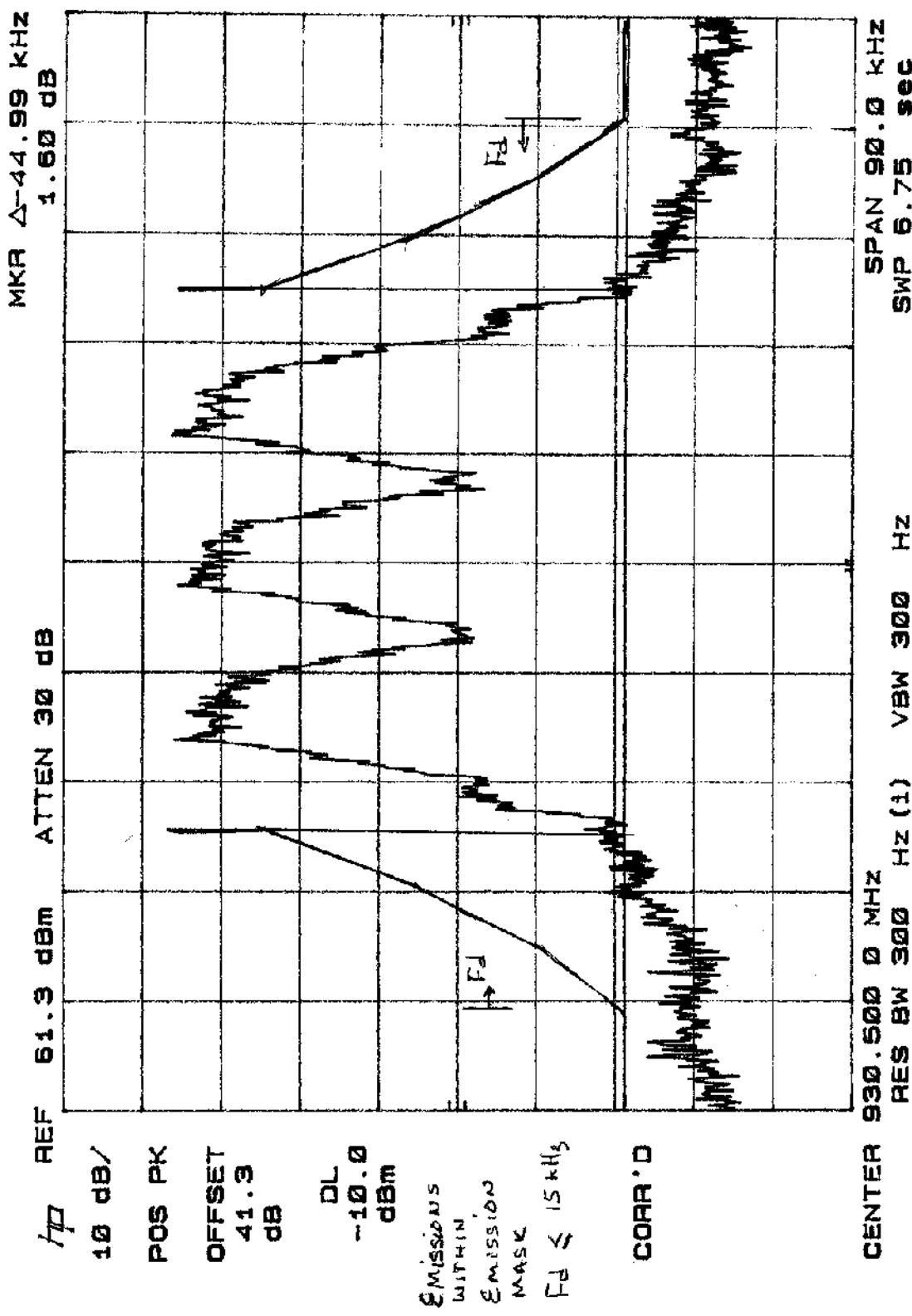
RF Conducted Emissions Setup2


NOTES:

1. 3. FWD insertion loss of coupler at measured frequencies is 40.5 dB.
2. 4. Offset included coupler insertion loss plus cable loss (coupler to preselector).

SC-108116
SONIK TECHNOLOGIES CORP.
FCC CFR 47 PART 24.133 (1) (i) CONDUCTED EMISSIONS, PART 2, 2.105P

PT 1055 THREE CHANNEL RFO PAGING STATION


FEB. 26, 2002
TECH/ENGR: AAL

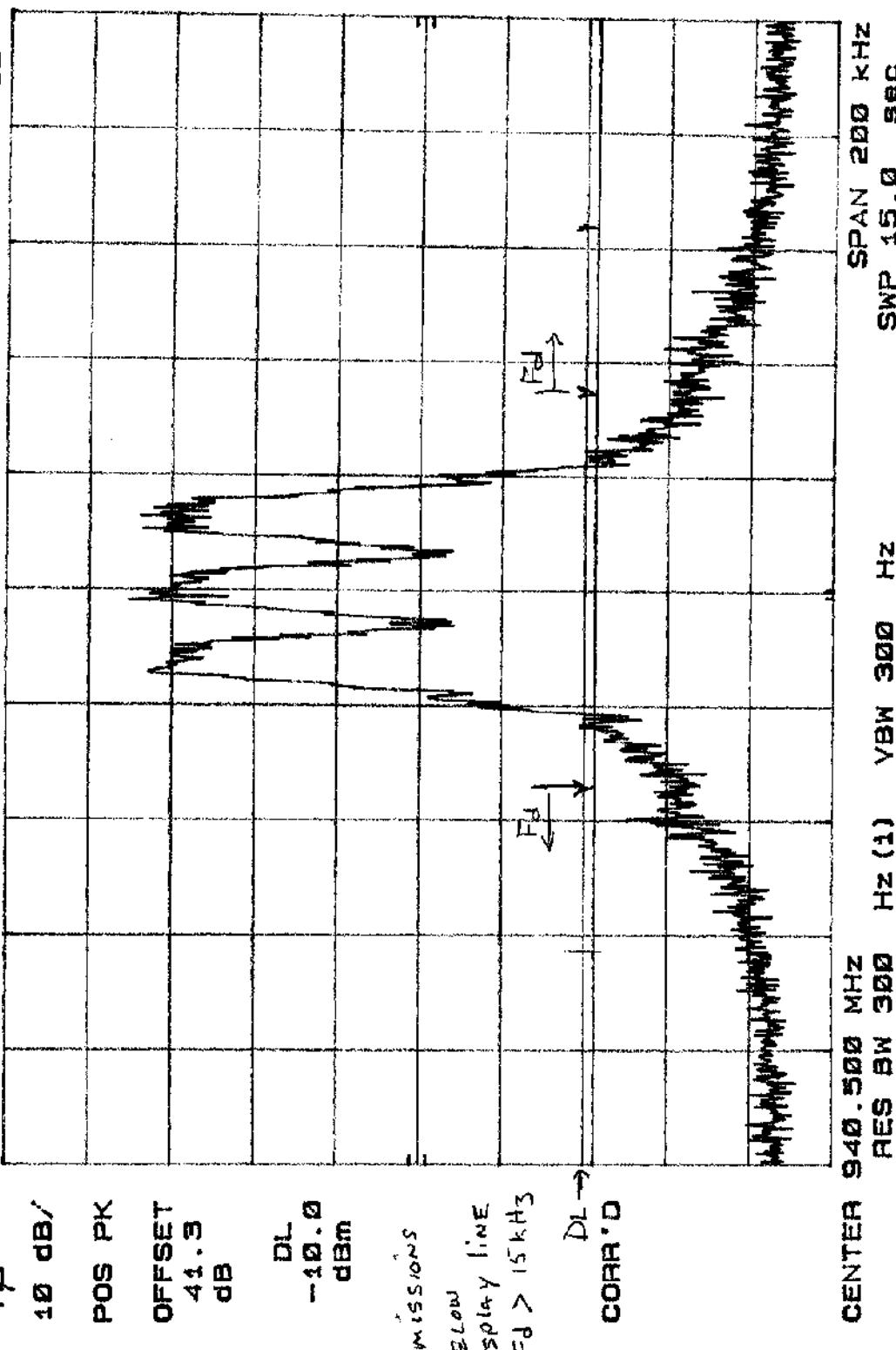
SC-108116
SONIK TECHNOLOGIES CORP.
FCC CFR 47 PART 24.133 (1)(i) CONDUCTED EMISSIONS, PART 2, 2.1051

FEB. 26, 2002
TECH/ENGR: AAL

PT 1055 THREE CHANNEL RFO PAGING STATION

PT 1055 THREE CHANNEL RFO PAGING STATION

FEB. 26,


SONIK TECHNOLOGIES CORP.

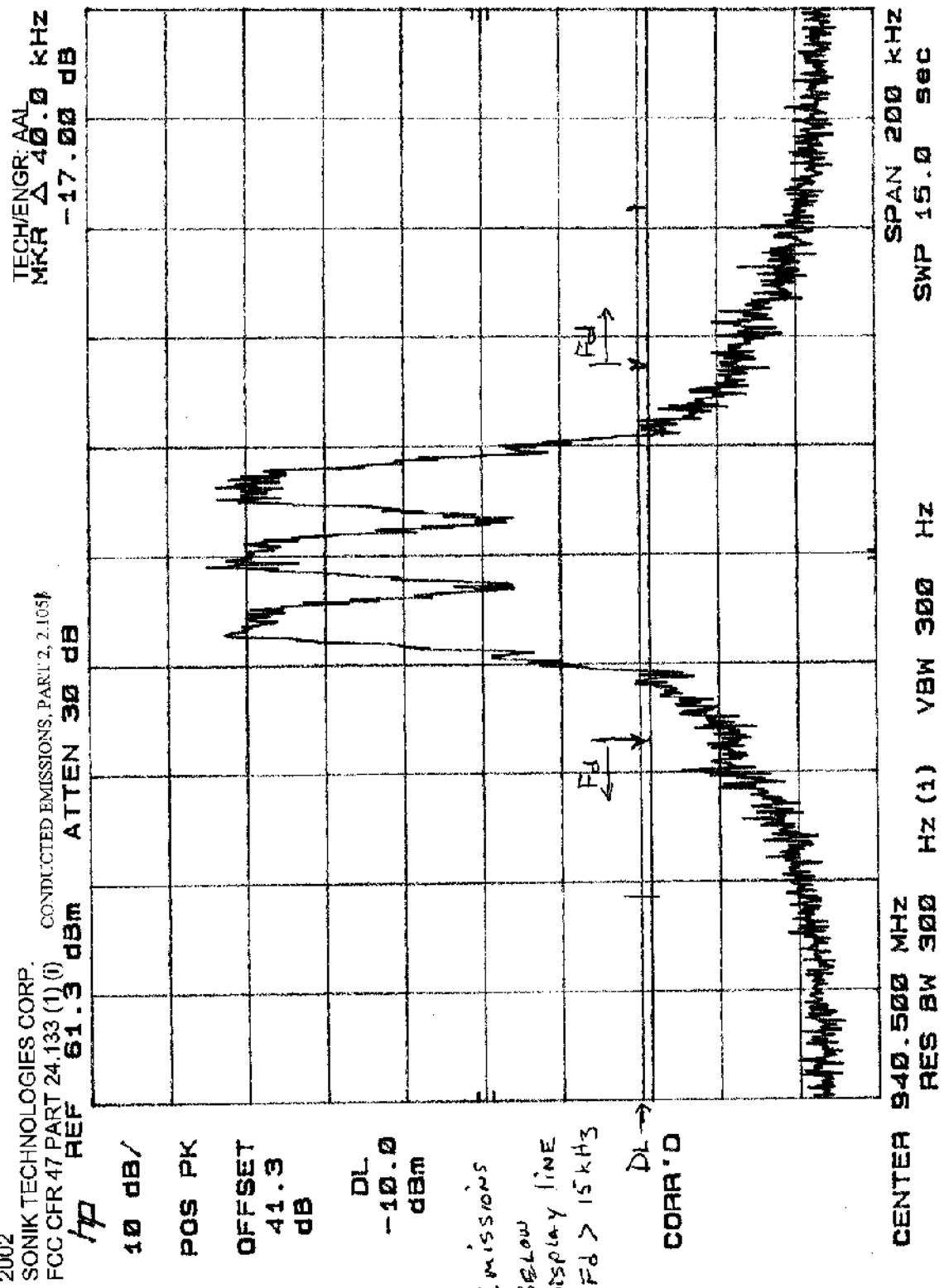
FCC CFR 47 PART 24.133 (1) CONDUCTED EMISSIONS, PART 2, 2.105

REF 61.3 dBm ATEN 30 dB

TECH/ENGR: AAL
MRKH Δ 40.0 kHz

-17.00 dB

PT 1055 THREE CHANNEL RFO PAGING STATION

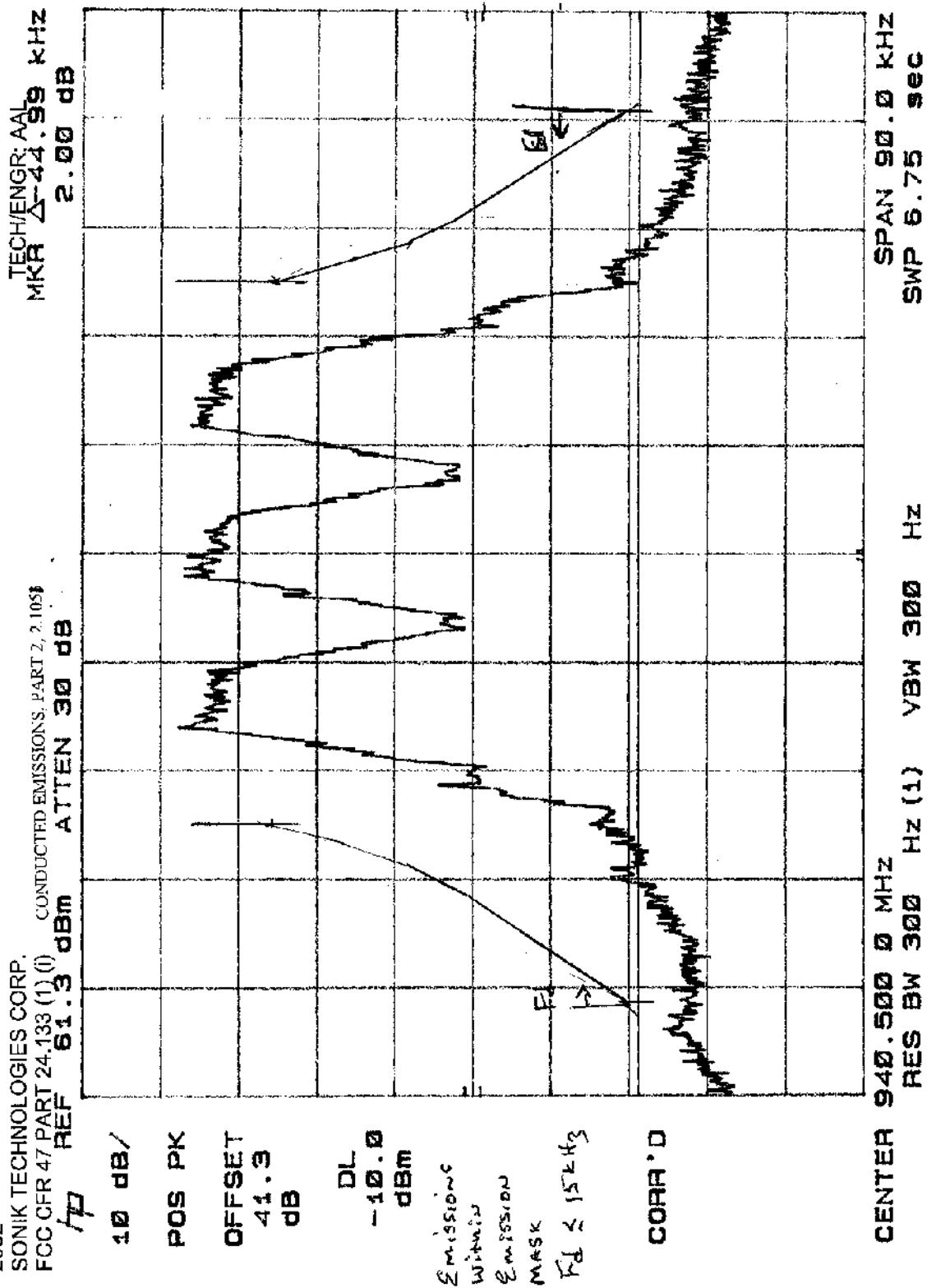

FEB. 26,

SC-108116

2002

 SONIK TECHNOLOGIES CORP.
 FCC CFR 47 PART 24.133 (1) (i)
 REF 61.3 dBm ATEN 30 dB

CONDUCTED EMISSIONS, PART 2, 2.1051

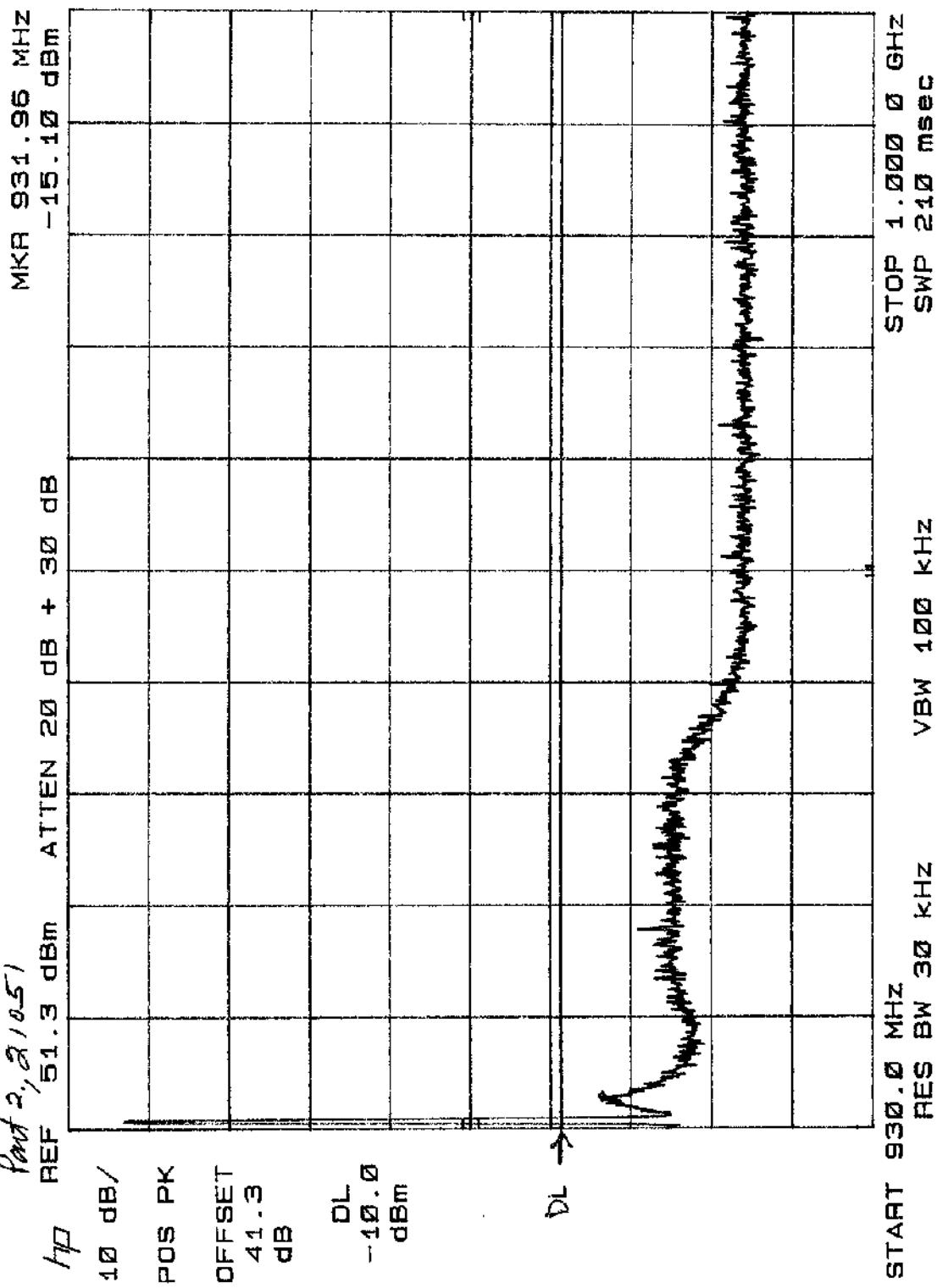

SC-108116

2002

 SONIK TECHNOLOGIES CORP.
 FCC CFR 47 PART 24.133 (1) (i) CONDUCTED EMISSIONS PART 2, 2.105
 REF 61.3 dBm

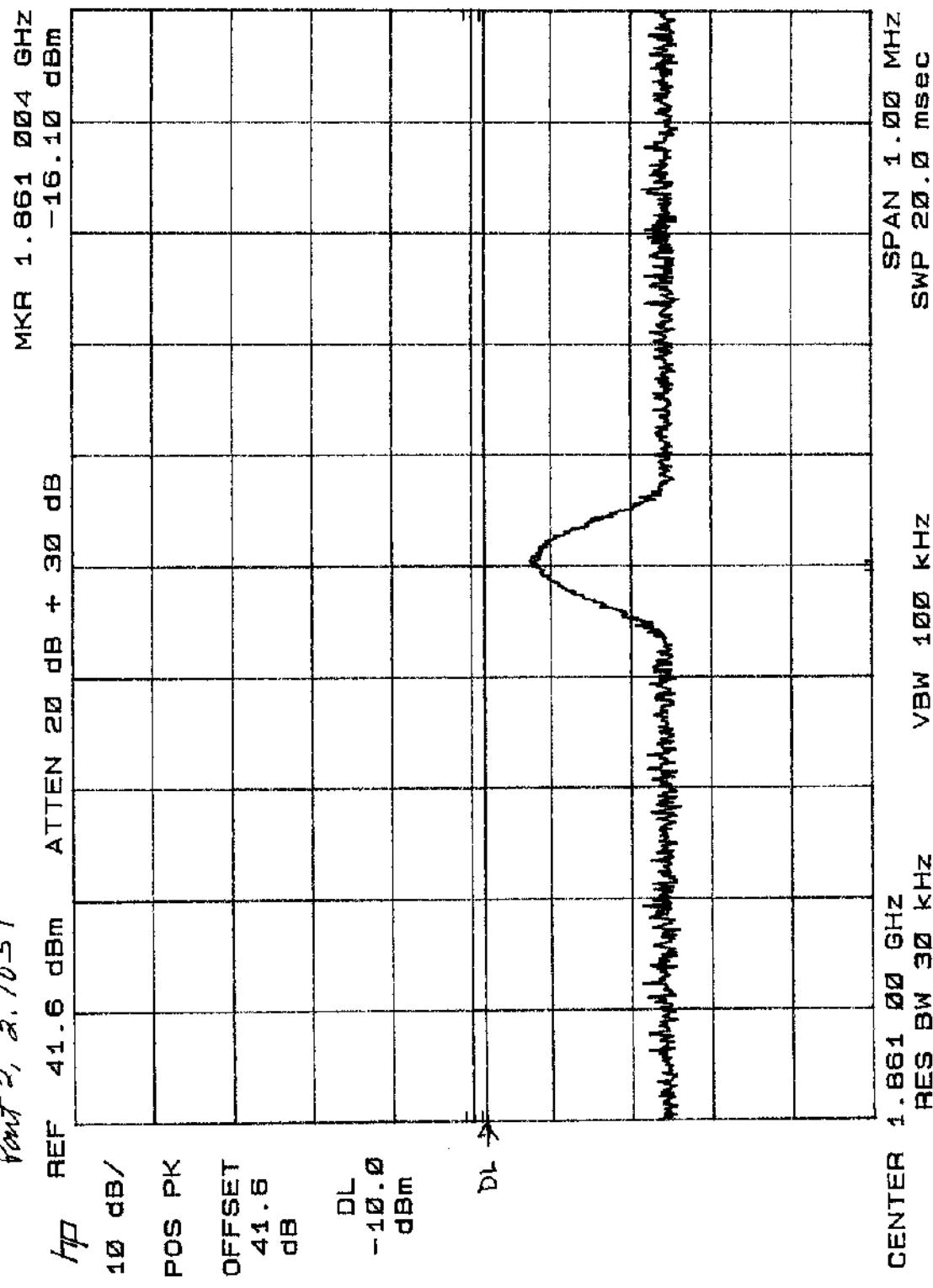
PT 1055 THREE CHANNEL RFO PAGING STATION

FEB. 26,



SC-108116
SONIK TECHNOLOGIES CORP.
FCC CFR 47 PART 24.133 (1) (ii) EMISSION LIMITS CONDUCTED EMISSIONS,

Part 2, 21.051


PT 1055 THREE CHANNEL RFO PAGING STATION
FEB. 26, 2002
TECH/ENGR: AAL

PT 1055 THREE CHANNEL RFO PAGING STATION

SC-108116
SONIK TECHNOLOGIES CORP.
FCC CFR 47 PART 24.133 (1) (ii) EMISSION LIMITS
Point 2, 2.10.51

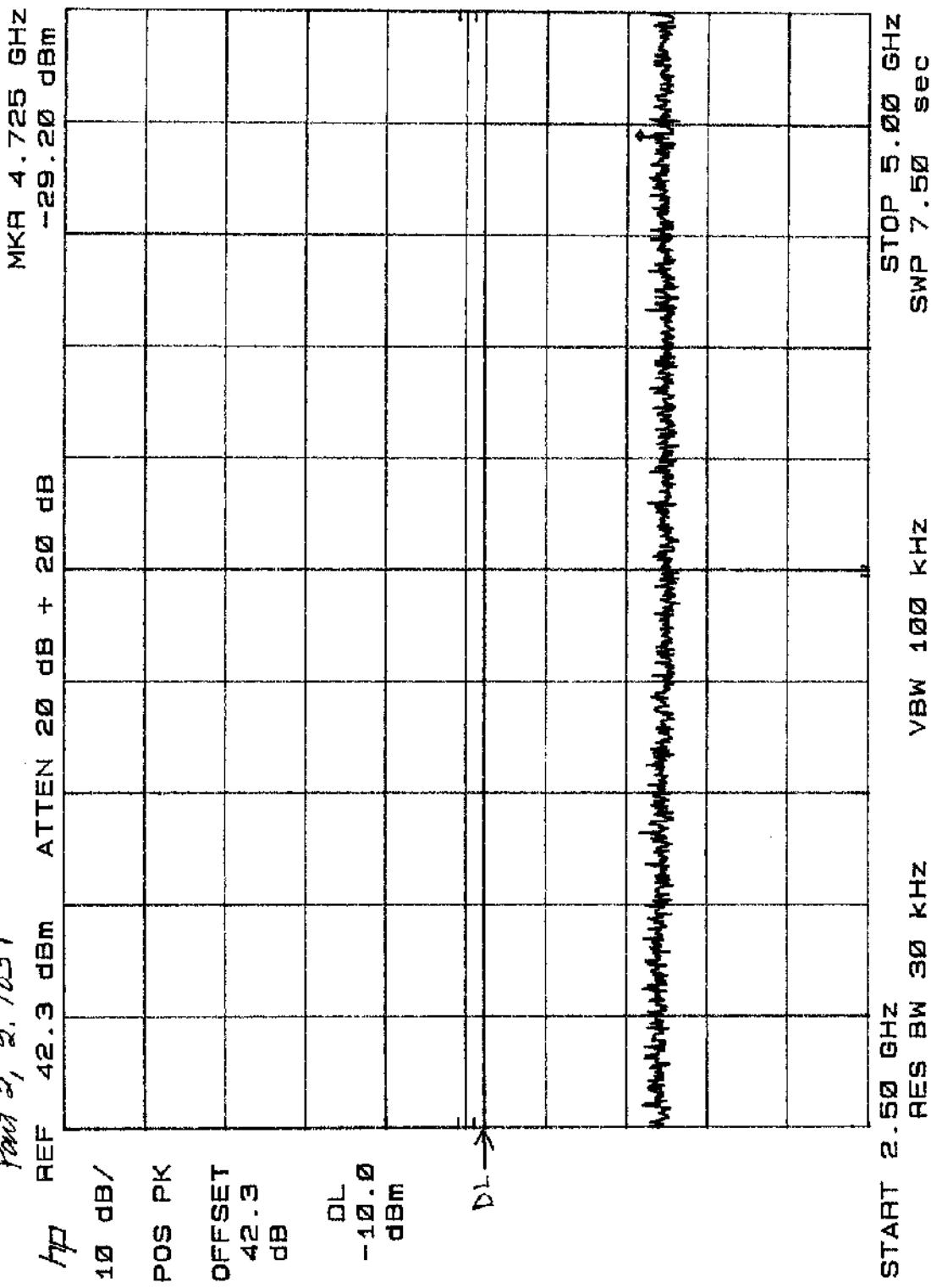
CONDUCTED EMISSIONS

SC-108116
SONIK TECHNOLOGIES CORP.
FCC CFR 47 PART 24.133 (1) (ii) EMISSION LIMITS
Part 2, 2.1051

FEB. 26, 2002
TECH/ENGR: AAL

PT 1055 THREE CHANNEL RFO PAGING STATION

CONDUCTED EMISSIONS

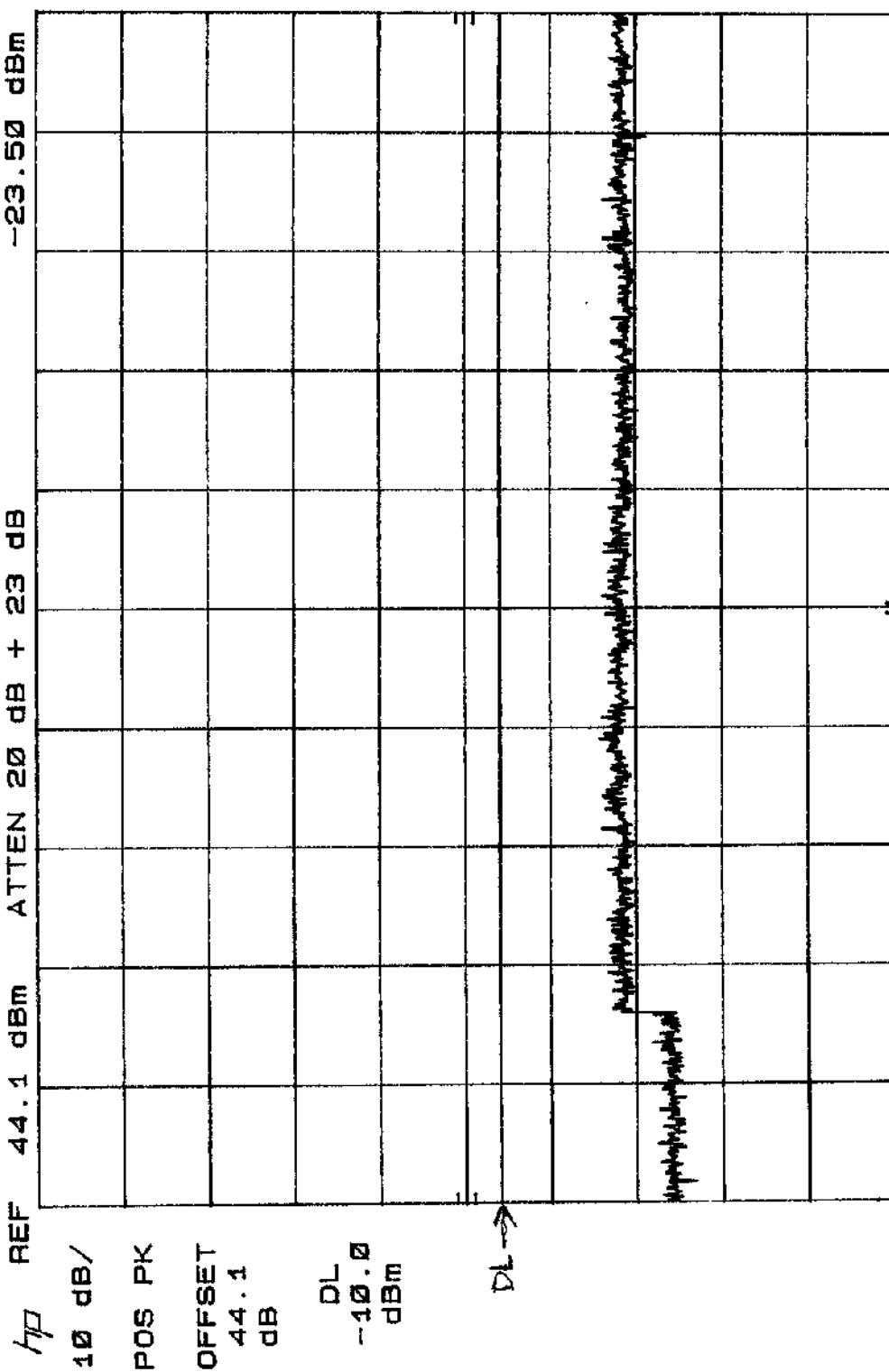


SC-108116
 SONIK TECHNOLOGIES CORP.
 FCC CFR 47 PART 24.133 (1) (ii) EMISSION LIMITS
Part 2, 2. /0.5/

FEB. 26, 2002
 TECH/ENGR: AAL

PT 1055 THREE CHANNEL RFO PAGING STATION

CONDUCTED EMISSIONS



SC-108116
SONIK TECHNOLOGIES CORP.
FCC CFR 47 PART 24.133 (1) (ii) EMISSION LIMITS
Part 2, 2, 1051

FEB. 26, 2002
TECH/ENGR: AAL

PT 1055 THREE CHANNEL RFO PAGING STATION

MKR 6.945 GHz
-23.50 dBm

SC-108116 PT 1055 THREE CHANNEL RFO PAGING STATION
 SONIK TECHNOLOGIES CORP.
 FCC CFR 47 PART 24.133 (I) (II) EMISSION LIMITS CONDUCTED EMISSIONS
Part 2, A, /25/

FEB. 26, 2002
 TECH/ENGR: AAL

940.500 MHz

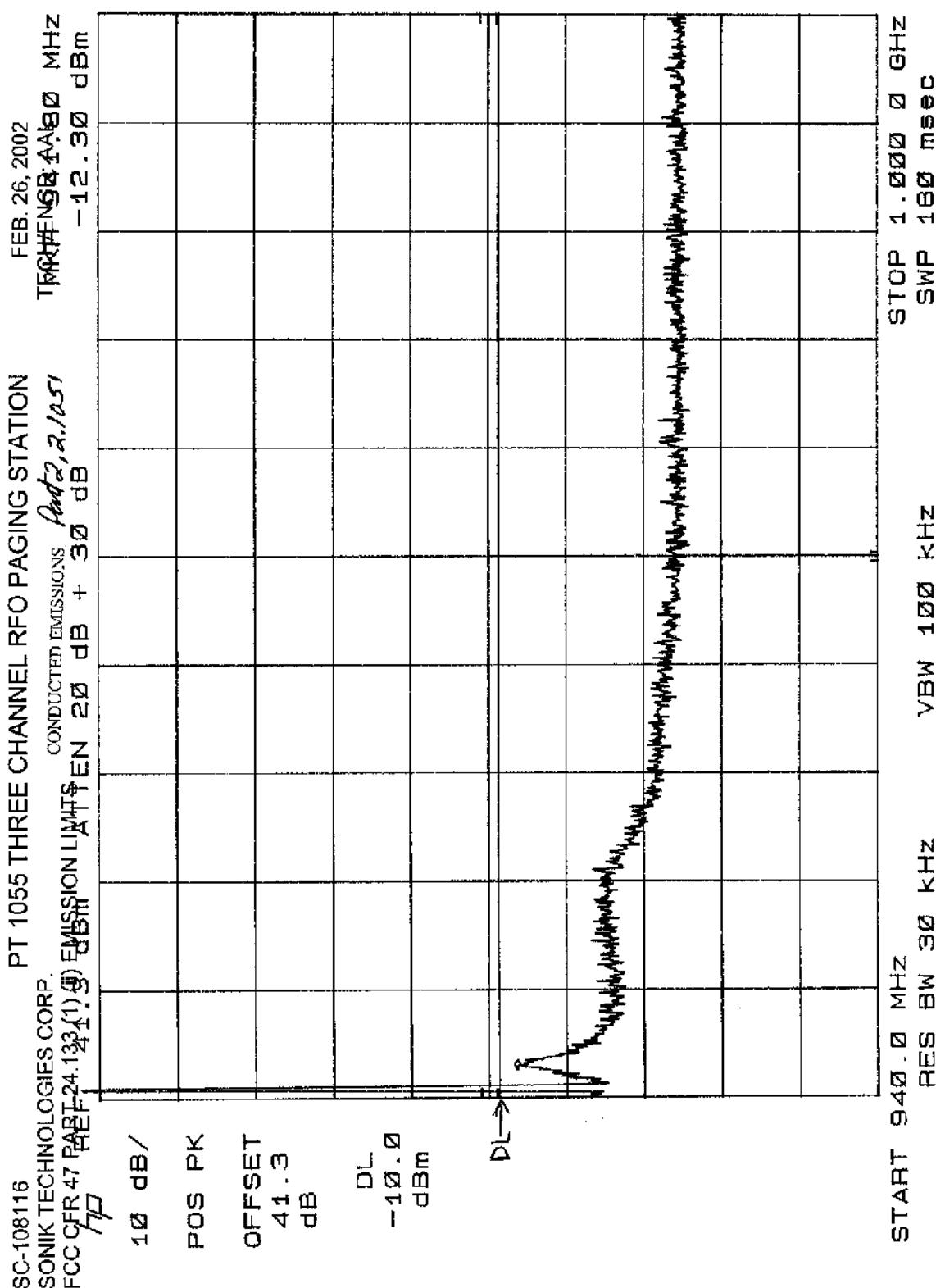
MKR 284.1 MHz

-16.20 dBm

REF 55.9 dBm ATTN 10 dB +0 dB

10 dB/

POS PK


OFFSET
65.9
dB

DL
-10.0
dBm

DL >

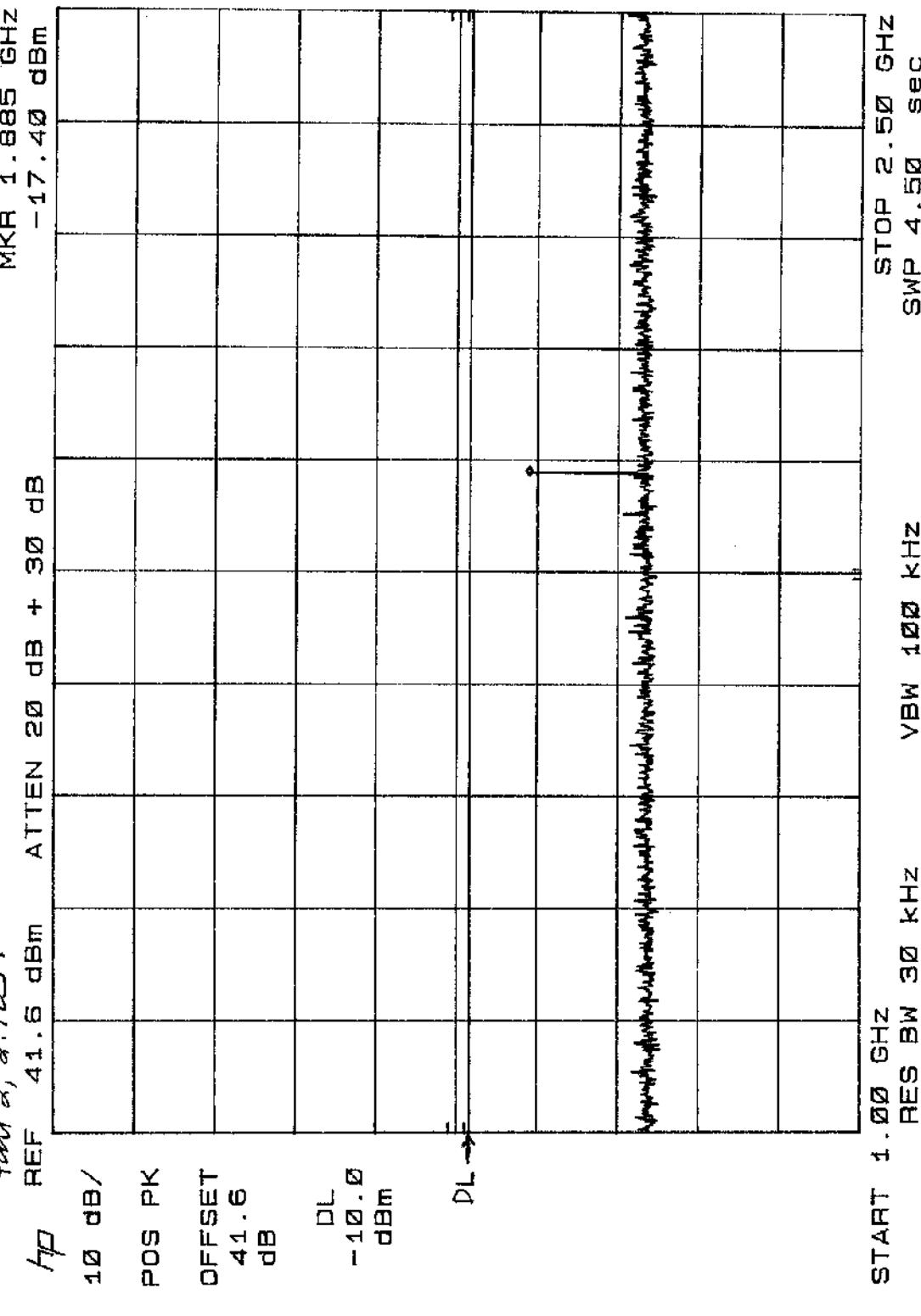
START 30 MHz
 RES BW 30 kHz
 VSW 100 kHz

STOP 1.000 GHz
 SWP 2.91 sec

SC-108116
SONIK TECHNOLOGIES CORP.
FCC CFR 47 PART 24.133 (1) (ii) EMISSION LIMITS CONDUCTED EMISSIONS
Part 2, 2.45 GHz

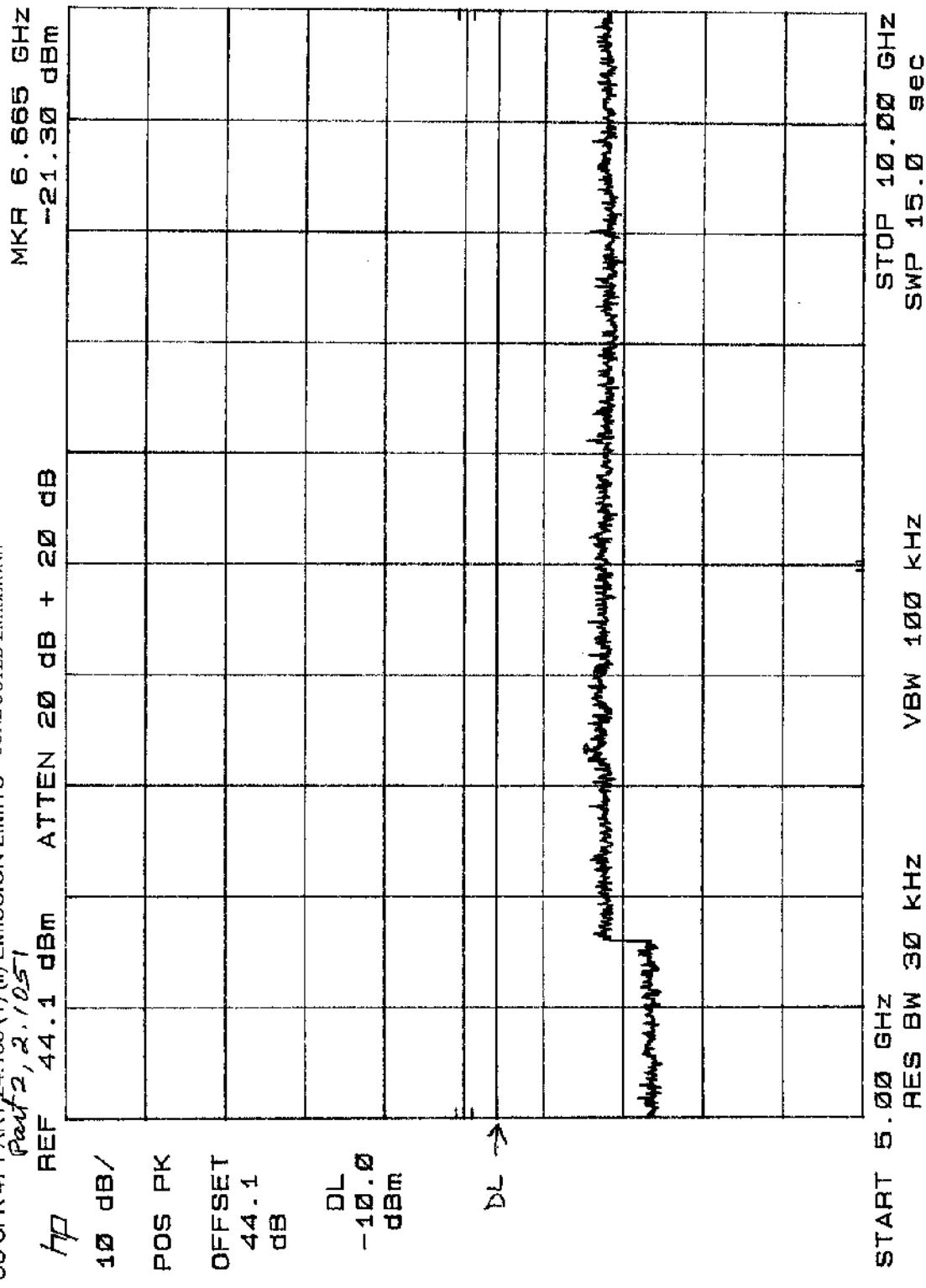
PT 1055 THREE CHANNEL RFO PAGING STATION

FEB. 26, 2002
TECH/ENGR: AAL


SC-108116 PT 1055 THREE CHANNEL RFO PAGING STATION

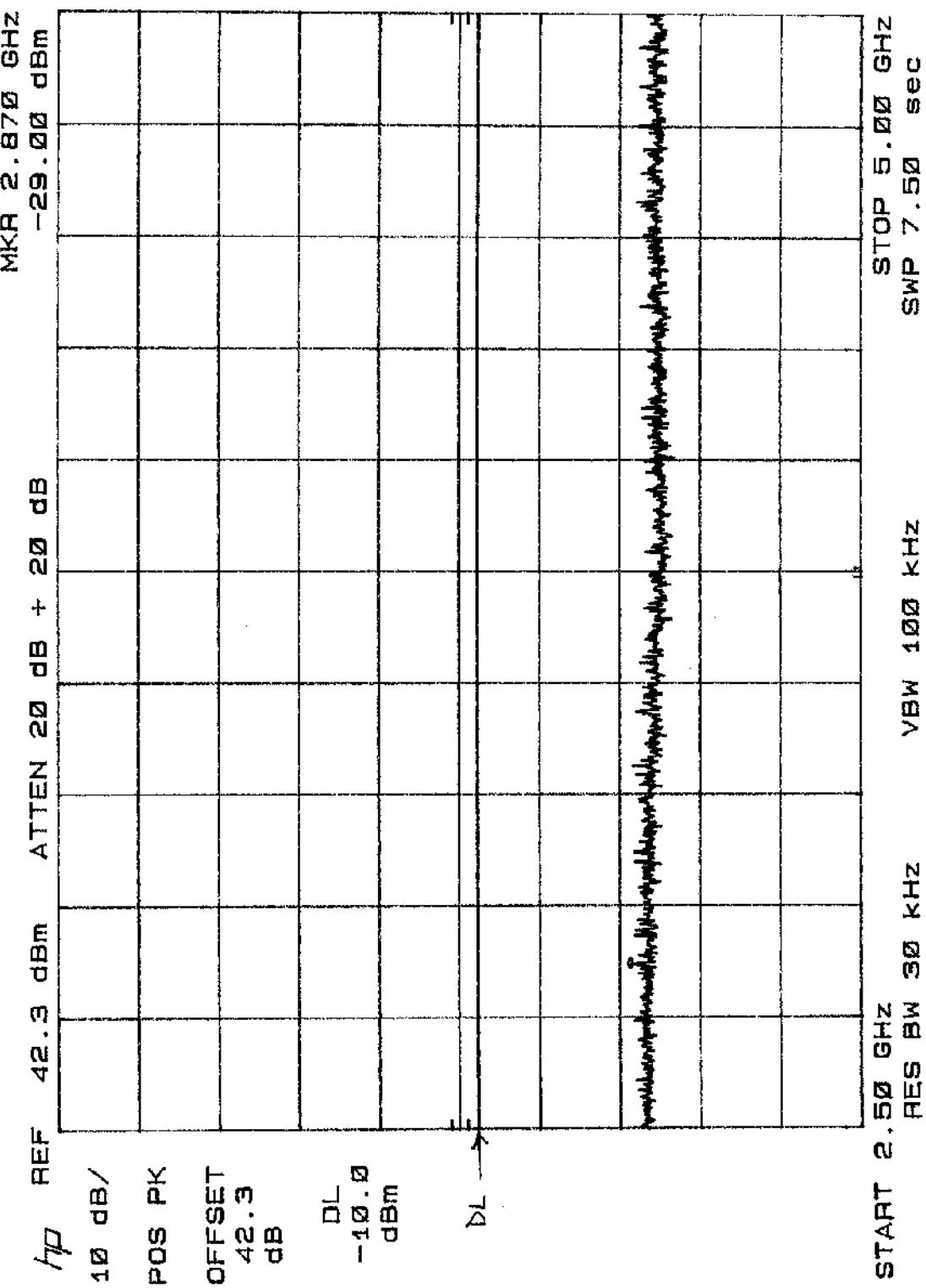
SONIK TECHNOLOGIES CORP.

FCC CFR 47 PART 24.133 (1) (ii) EMISSION LIMITS


Part 2, 2.1051

FEB. 26, 2002
TECH/ENGR: AAL

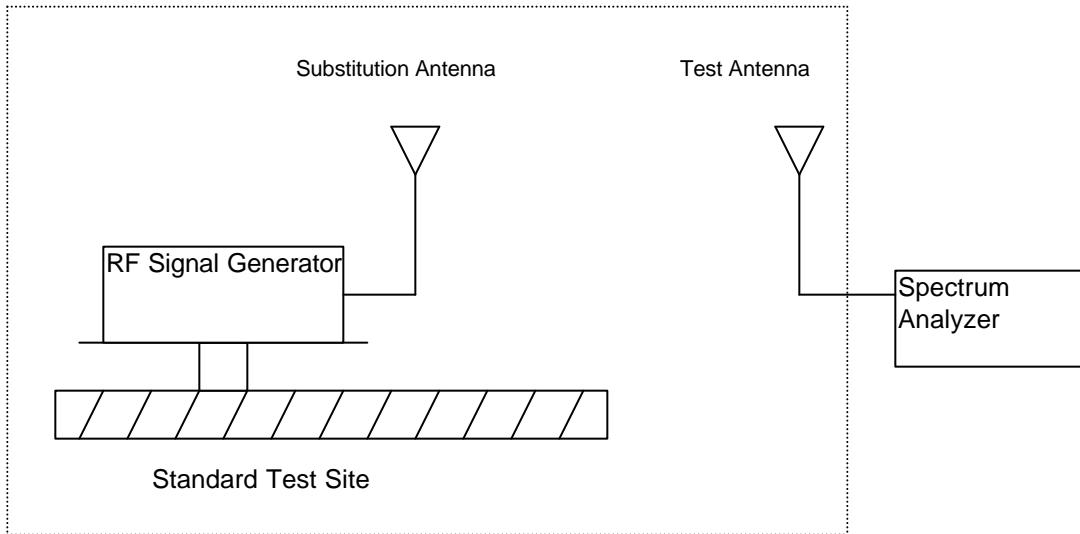
SC-108116
SONIK TECHNOLOGIES CORP.
FCC CFR 47 PART 24.133 (1) (ii) EMISSION LIMITS CONDUCTED EMISSIONS
Page 2, 2.1051


FEB. 26, 2002
TECH/ENGR: AAL

SC-108116
 SONIK TECHNOLOGIES CORP.
 FCC CFR 47 PART 24.133 (1) (ii) EMISSION LIMITS CONDUCTED EMISSIONS
Part 2, 2, 1051

FEB. 26, 2002
 TECH/ENGR: AAL

PT 1055 THREE CHANNEL RFO PAGING STATION



**4 FIELD STRENGTH OF SPURIOUS RADIATION, FCC PART 2, PARAGRAPH 2.1053 and
PART 24, PARAGRAPH 24.133(a)(1)(ii)**

See following page(s).

SIGNAL SUBSTITUTION METHOD

1. Place the transmitter to be tested on the turntable in the standard test site. The transmitter is transmitting into a non-radiating load which is placed on the turntable. The RF cable to this load should be of minimum length.
2. For each spurious measurement the test antenna should be adjusted to the correct length for the frequency involved. This length may be determined from a calibration ruler supplied with the equipment. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to \pm the test bandwidth.
3. For each spurious frequency, raise and lower the test antenna from one meter to 4 meters to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Then the turntable should be rotated 360 degrees to determine the maximum reading. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
4. Repeat step 3 for each spurious frequency with the test antenna polarized vertically.
5. Reconnect the equipment as illustrated.

6. Keep the spectrum analyzer adjusted as in step 2.
7. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 meter above the ground.
8. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
9. Repeat step 8 with both antennas vertically polarized for each spurious frequency.
10. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 8 and 9 by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.
11. The levels record in step 10 are the absolute levels of radiated spurious emissions in dBm. The radiated spurious emission in dB can be calculated by the following:

Radiated spurious emissions (dB) =

$10 \log_{10}$ - the levels in step 10)

$$\left[\frac{TX\text{power in watts}}{0.001} \right]$$

NOTE: It is permissible to use other antennas provided they can be referenced to a dipole.

Report No. 108116

Test Conditions: FCC 2/24

Photos taken? Yes

- SR-5, Shielded Room, 16' x 28' x 15', Metal, Semi-Anechoic Chamber
- Canyon 2, Open Site 3 meter 10 meter

Test Equipment Used:

Model Number	Prop. #	Description	Manufacturer	Serial No.	Cal. Date	2.1046	2.1047	2.1049	2.1051	2.1055	2.1053
hp8586B	407	Spectrum Analyzer	Hewlett Packard	2311A02209	2/15/02						
ESV520	427	EMI Receiver	Rohde & Schwarz	830350/006	12/8/02						
PreAmp 2-20 GHZ	719	PreAmp	TÜV Product Service	719	3/26/02						
3115	251	Antenna, Horn	Electro Mechanics Co	2595	12/1/03						
LPB2520/A	739	Antenna	Antenna Research	1170	3/21/02						

CUSTOMER'S EQUIPMENT:

588256B1J03		40 dB Coupler	CellWave	192079-007	cal not req'd.						
hp437B		Power Meter	Hewlett Packard	3125U21450	2/10/02						
hp8481H		Power Sensor	Hewlett Packard	1926A01137	9/24/02						

Note:

1. CellWave coupler insertion loss at frequencies 929-941 MHz as 40.5 dB.
2. EUT was measured by Power Meter/Sensor at 383 Watts as confirmation of Average Power at 940.975 MHz. Measured at forward port of CellWave coupler into Customer's 50 Ohm Load

REPORT No: SC-108116 TESTER: Alan Laudani ^{4/8} SPEC: FCC 24.133 (a) 1.ii
 CUSTOMER: Sonik Corporation TEST DIST: 3 Meters
 2. 1053
 EUT: RFO-A TEST SITE: Canyon 2
 EUT MODE: Transmit BICONICAL: 739
 DATE: Dec.28, 2001 ERP/EIRP Factor 7 LOG: 739
 NOTES: HORN: 251
 above 1GHz: RBW & VBW 1 MHz for Pk; RBW 1MHz and VBW 10Hz for AVG
 below 1GHz: RBW & VBW 100 kHz for Pk; RBW 100kHz and VBW 10Hz for AVG
 CF = Antenna Factor + Cable Loss - Preamplifier Gain + Preselector Loss

FREQ (MHz)	VERTICAL (dBuv) pk av		HORIZONTAL (dBuv) pk av		CF (dB/m)	MAX LEVEL (dBm(d)) pk av		SPEC LIMIT (dBm) pk av		MARGIN (dB) pk av	
	80.6	79.4	81.2	79.3		32.2	16.1	14.3	-13.0	-13.0	-38.0
929.025	80.6	79.4	81.2	79.3	32.2	16.1	14.3	-13.0	-13.0	-38.0	-42.5
1858.050	57.0	52.5	50.7	44.9	-10.7	-51.0	-55.5	-13.0	-13.0	-38.0	-42.5
2787.075	65.6	48.0	69.2	56.0	-7.3	-35.5	-46.6	-13.0	-13.0	-22.5	-33.6
3716.100	52.0	40.6	50.0	36.1	-5.2	-50.6	-59.9	-13.0	-13.0	-37.6	-46.9
4645.125	46.1	26.2	59.9	37.2	-5.5	-42.9	-63.5	-13.0	-13.0	-29.9	-50.5
5574.150	39.1	21.6	46.1	27.8	-0.6	-51.9	-68.1	-13.0	-13.0	-38.9	-55.1
6503.175	27.0	16.1	49.8	29.4	-0.1	-47.6	-66.0	-13.0	-13.0	-34.6	-53.0
7432.200	29.3	13.6	40.1	25.5	2.4	-54.9	-67.4	-13.0	-13.0	-41.9	-54.4
8361.225	24.3	12.5	40.0	25.1	3.2	-54.2	-67.0	-13.0	-13.0	-41.2	-54.0
9290.250	24.6	12.8	35.5	23.8	3.2	-58.7	-68.3	-13.0	-13.0	-45.7	-55.3
935.5	76.2	67.2	68.3	61.4	32.3	11.2	2.2				
1871.00	57.8	50.0	54.0	61.4	-10.6	-50.2	-46.6	-13.0	-13.0	-37.2	-33.6
2806.50	62.2	49.4	51.6	45.7	-7.3	-42.4	-55.2	-13.0	-13.0	-29.4	-42.2
3742.00	60.9	44.6	57.1	41.9	-5.2	-41.6	-57.9	-13.0	-13.0	-28.6	-44.9
4677.50	56.0	44.0	50.9	35.7	-5.4	-46.7	-58.7	-13.0	-13.0	-33.7	-45.7
5613.00	34.5	20.0	30.3	14.8	-0.5	-63.4	-77.9	-13.0	-13.0	-50.4	-64.9
6548.50	30.2	15.5	26.4	14.4	0.1	-67.1	-81.8	-13.0	-13.0	-54.1	-68.8
7484.00	27.2	13.5	25.5	14.0	2.5	-67.7	-80.9	-13.0	-13.0	-54.7	-67.9
8419.50	26.3	13.0	22.9	12.7	3.3	-67.8	-81.1	-13.0	-13.0	-54.8	-68.1
9355.00	25.7	13.0	23.9	12.4	2.9	-68.7	-81.4	-13.0	-13.0	-55.7	-68.4
940.975	79.3	73.3	80.8	77.4	32.4	15.9	12.5				
1881.950	69.5	64.2	60.2	55.2	-10.5	-38.4	-43.7	-13.0	-13.0	-25.4	-30.7
2822.925	63.2	48.6	70.0	57.4	-7.3	-34.6	-47.2	-13.0	-13.0	-21.6	-34.2
3763.900	58.0	39.3	52.4	41.9	-5.1	-44.5	-60.6	-13.0	-13.0	-31.5	-47.6
4704.875	54.5	35.4	54.7	37.7	-5.3	-48.0	-65.0	-13.0	-13.0	-35.0	-52.0
5645.850	46.5	24.3	48.1	24.8	-0.4	-49.7	-73.0	-13.0	-13.0	-36.7	-60.0
6586.825	38.6	25.2	45.9	30.4	0.2	-51.3	-66.8	-13.0	-13.0	-38.3	-53.8
7527.800	36.7	23.4	52.6	25.5	2.5	-42.3	-69.4	-13.0	-13.0	-29.3	-56.4
8468.775	33.0	22.2	44.7	27.3	3.4	-49.3	-66.7	-13.0	-13.0	-36.3	-53.7
9409.750	34.0	22.5	36.6	24.3	2.7	-58.0	-70.3	-13.0	-13.0	-45.0	-57.3

Field Strength Calculation

If a preamplifier was used during the Radiated Emission Testing, it is required that the amplifier gain must be subtracted from the Spectrum Analyzer (Meter) Reading. In addition, a correction factor for the antenna , cable used and a distance factor, if any, must be applied to the Meter Reading before a true field strength reading can be obtained. In the automatic measurement, these considerations are automatically presented as a part of the print out. In the case of manual measurements and for greater efficiency and convenience, instead of using these correlation factors for each meter reading, the specification limit was modified to reflect these correlation factors at each frequency value so that the meter readings can be compared directly to the modified specification limit. This modified specification limit is referred to as the "Corrected Meter Reading Limit" or simply the CMRL, which is the actual field strength present at the antenna. The quantity can be derived in the following manner:

$$\text{Corrected Meter Reading Limit (CMRL)} = \text{SAR} + \text{AF} + \text{CL} - \text{AG} - \text{DC}$$

Where, SAR = Spectrum Analyzer Reading

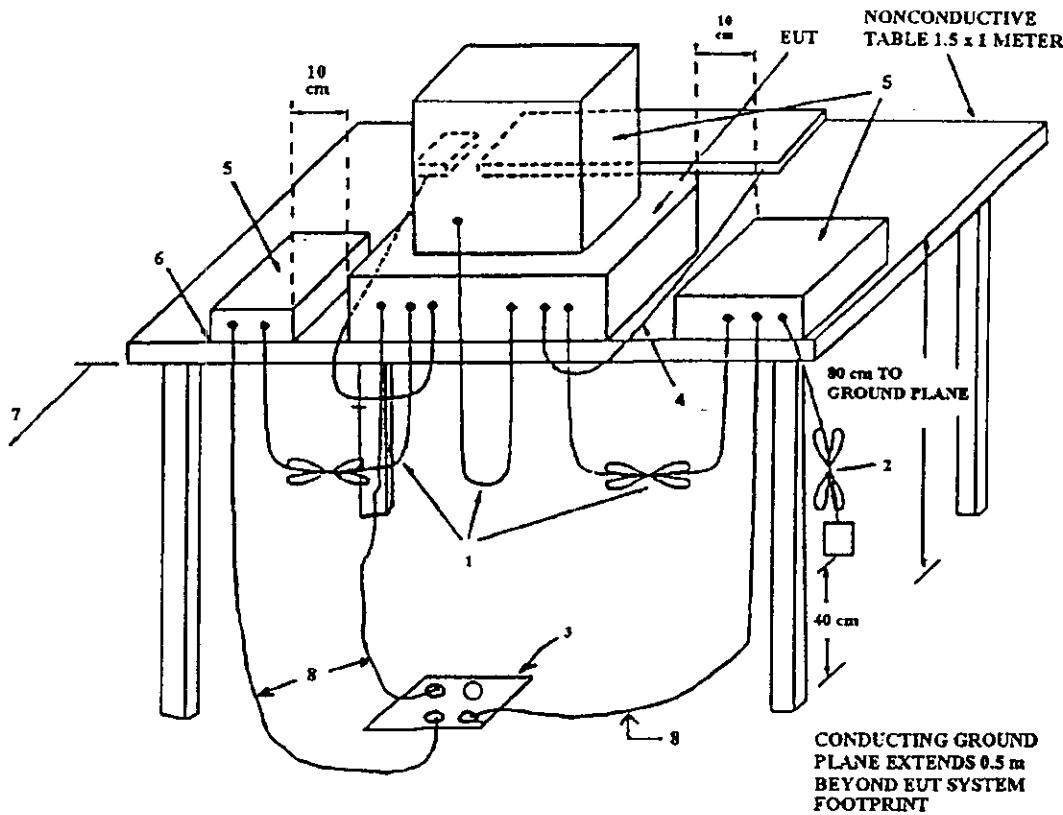
AF = Antenna Factor

CL = Cable Loss

AG = Amplifier Gain (if any)

DC = Distance Correction (if any)

Assume the following situation: A meter reading of 29.4 dBuV was obtained from a Class A computing device measured at 83 MHz. Assume an antenna factor of 9.2 dB, a cable loss of 1.4 dB and amplifier gain of 20.0 dB at 83 MHz. The final field strength would be determined as follows:


$$\text{CMRL} = 29.4 \text{ dBuV} + 9.2 \text{ dB} = 1.4 \text{ dB} - 20 \text{ dB/M} - 0.0 \text{ dB}$$

$$\text{CMRL} = 20.0 \text{ dBuV/M}$$

This result is well below the FCC and CSA Class A limit of 29.5 dbuV/m at 83 MHz.

For the manual mode of measurement, a table of corrected meter reading limit was used to permit immediate comparison of the meter reading to determine if the measure emission amplitude exceeded the specification limit at that specific frequency.

Radiated Emissions Test Setup, 30 to 1000 MHz

LEGEND:

1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth forming a bundle 30 to 40 cm long, hanging approximately in the middle between ground plane and table.
2. I/O cables that are connected to a peripheral shall be bundled in center. The end of the cable may be terminated if required using correct terminating impedance. The total length shall not exceed 1 m.
3. If LISNs are kept in the test setup for radiated emissions, it is preferred that they be installed under the ground plane with the receptacle flush with the ground plane.
4. Cables of hand-operated devices, such as keyboards, mouses, etc., have to be placed as close as possible to the controller.
5. Non-EUT components of EUT system being tested.
6. The rear of all components of the system under test shall be located flush with the rear of the table.
7. No vertical conducting wall used.
8. Power cords drape to the floor and are routed over to receptacle.

ATTESTATION STATEMENT

GENERAL REMARKS:

SUMMARY:

All tests were performed per CFR 47, Part 2, Paragraphs 2.1046; 2.1049; 2.1051; 2.1053; 2.1055; Part 24, Paragraph 24, Paragraphs 24.132(c); 24.132(c); 24.133(a)(1)(i) and 24.133(a)(1)(ii).

■ - Performed

The Equipment Under Test

■ - **Fulfills** the requirements of CFR 47, Part 2, Paragraphs 2.1046; 2.1049; 2.1051; 2.1053; 2.1055; Part 24, Paragraph 24, Paragraphs 24.132(c); 24.133(a)(1)(i) and 24.133(a)(1)(ii).

- TÜV PRODUCT SERVICE, INC. -

Responsible Engineer:

(EMC Engineer)