

FCC PART 15.247

TEST REPORT

For

Dorel Juvenile Group

2525 State Street, Columbus, Indiana, 47201-7494, United States

FCC ID: MNJ-MO140TX

Report Type: Original Report		Product Type: TechTouch Digital Color Video Monitor
Test Engineer:	Ares Liu	Ann. lin
Report Number:	R2DG13101	7002-00
Report Date:	2013-12-12	
Reviewed By:	Jerry Zhang EMC Manag	Jerry Zhang
Test Laboratory:	Bay Area Co No.69 Pulon Tangxia, Do Tel: +86-769 Fax: +86-76 www.baclco	ompliance Laboratories Corp. (Dongguan) gcun, Puxinhu Industrial Zone, ngguan, Guangdong, China 9-86858888 9-86858891 <u>rp.com.cn</u>

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk " \star " (Rev.2). This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) Objective	4
Test Methodology	4
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT EXERCISE SOFTWARE	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
FCC 815 247 (i) & 81 1310 & 82 1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	9
Applicable Standard	
FCC 815 203 - ANTENNA REQUIREMENT	10
Addi icadi e Standadd	10
APPLICABLE STANDARD	
FCC 815 207 (a) $= AC L INF CONDUCTED EMISSIONS$	11
Addi (Carl e Standadd	11
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP	
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Fouipment List and Details.	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (1) - CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE Test Data	
ECC $815.247(a)$ (1) 20 JD DANDWIDTH TESTINC	
$\frac{\Gamma(C \text{ g15.247(a)}(1) - 20 \text{ ub bANDWIDTH TESTING}}{\Gamma(C \text{ part 15.247})}$	2/
FUU Falt 13.24/	rage 2 01 39

Report No.: R2DG131017002-00

Applicable Standard Test Procedure Test Equipment List and Details	
TEST DATA FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST	
Applicable Standard Test Procedure Test Equipment List and Details Test Data	30 30 30 30 30
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) Applicable Standard Test Procedure Test Equipment List and Details Test Data	32 32 32 32 32 32 32
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT Applicable Standard Test Procedure Test Equipment List and Details Test Data	35
FCC §15.247(d) - BAND EDGES TESTING Applicable Standard Test Procedure Test Equipment List and Details Test Data	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Dorel Juvenile Group*'s product, model number: *MO140TX (FCC ID: MNJ-MO140TX) or* ("EUT") in this report is a *TechTouch Digital Color Video Monitor*, which was measured approximately: 12.5 cm (L) x9.0 cm (W) x 9.3 cm (H), rated input voltage: DC 5V from adapter.

Adapter information: Model: 3H-5V1A-R1 Input: 100-240V ac, 50/60Hz, 0.2A Output: 5V DC, 1.0A Manufacture: Footsteps Technology Limited

* All measurement and test data in this report was gathered from production sample serial number: 131017002 (Assigned by BACL.Dongguan). The EUT was received on 2013-10-18.

Objective

This report is prepared on behalf of *Dorel Juvenile Group* in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communications Commission rules.

The tests were performed in order to determine the Bluetooth of EUT compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communications Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 02, 2012. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710 and Industrial Canada registration test site No.: 3062D. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Report No.: R2DG131017002-00

Additionally, Bay Area Compliance Laboratories Corp. (Dongguan) is an ISO/IEC 17025 accredited laboratory, and is accredited by National Voluntary Laboratory Accredited Program (Lab Code 500069-0).

LABCODE: 500069-0

The current scope of accreditations can be found at http://ts.nist.gov/standards/scopes/5000690.htm

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode, which was provided by manufacturer. For the engineering mode, the maximum power was configured as default value and switched by the keys.

18 channels were provided:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2410.875	10	2441.25
2	2414.25	11	2444.625
3	2417.625	12	2448
4	2421	13	2451.375
5	2424.375	14	2454.75
6	2427.75	15	2458.125
7	2431.125	16	2461.5
8	2434.5	17	2464.875
9	2437.875	18	2468.25

EUT was tested with low channel: 2410.875MHz, middle channel: 2437.875MHz, and high channel: 2468.25MHz.

EUT Exercise Software

No exercise software was used.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	
/	/	/	/	

External Cable

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
Dc Power Cable	No	No	2	Adapter	EUT

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1091	RF Exposure	Compliace
§15.203	Antenna Requirement	Compliance
§15.207 (a)	Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Emissions	Compliance
§15.247 (a)(1)	20 dB Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band Edges	Compliance

FCC §15.247 (i) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i) and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)		
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f ²)	30		
30–300	27.5	0.073	0.2	30		
300-1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Frequency	Ante	nna Gain	Cond Pov	ucted wer	Evaluation Distance	Power Density	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm²)
2410.875	0.7	1.175	18.16	65.46	20	0.015	1.0
2437.875	0.7	1.175	18.07	64.12	20	0.015	1.0
2468.25	0.7	1.175	17.94	62.23	20	0.015	1.0

Result: The device meet FCC MPE at 20 cm distance

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one monopole antennas permanently soldered on the printed circuit boards, which complied with 15.203, the maximum gain is 0.7 dBi, please refer to the internal photos.

Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;

- non - compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If U_{lab} is greater than U_{cispr} of Table 1, then:

- compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} - U_{cispr})$, exceeds the disturbance limit;

- non - compliance is deemed to occur if any measured disturbance level, increased by $(U_{lab} - U_{cispr})$, exceeds the disturbance limit.

Based on CISPR 16-4-2: 2011, measurement uncertainty of conducted disturbance at mains port using AMN at Bay Area Compliance Laboratories Corp. (Dongguan) is 3.46 dB (150 kHz to 30 MHz).

Table 1 – Values of
$$U_{\text{cispin}}$$

Measurement	$U_{ m cispr}$
Conducted disturbance at mains port using AMN (150 kHz to 30 MHz)	3.4 dB

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_{\rm C} = V_{\rm R} + A_{\rm C} + VDF$$

Herein, V_C : corrected voltage amplitude V_R : reading voltage amplitude A_c : attenuation caused by cable loss VDF: voltage division factor of AMN or ISN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment	List a	nd Details
----------------	--------	------------

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI TEST RECEIVER	ESCS 30	830245/006	2013-11-20	2014-11-19
R&S	Two-line V-network	ENV216	3560.6550.12	2013-2-18	2014-2-17
R&S	L.I.S.N	ESH3-Z5	100113	N/A	N/A
BACL	Test Software	BACL-EMC	V1.0-2010	N/A	N/A

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207, with the worst margin reading of:

6.01dB at 0.480MHz in the Neutral conducted mode

Test Data

Environmental Conditions

Temperature:	22.4 °C
Relative Humidity:	39 %
ATM Pressure:	101 kPa

The testing was performed by Ares Liu on 2013-12-10.

Test Mode: Transmitting

120 V, 60 Hz, Line:

Frequency (MHz)	Cord. Reading (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/AV/QP)
0.480	45.44	9.67	56.34	10.90	QP
0.480	36.04	9.67	46.34	10.30	AV
0.680	37.60	9.67	56.00	18.40	QP
0.680	27.63	9.67	46.00	18.37	AV
1.000	39.54	9.69	56.00	16.46	QP
1.020	30.97	9.69	46.00	15.03	AV
1.360	40.07	9.69	56.00	15.93	QP
1.360	34.22	9.69	46.00	11.78	AV
1.530	39.04	9.68	56.00	16.96	QP
1.530	31.68	9.68	46.00	14.32	AV
2.800	35.79	9.70	56.00	20.21	QP
2.800	26.58	9.70	46.00	19.42	AV

120 V, 60 Hz, Neutral:

Frequency (MHz)	Cord. Reading (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/AV/QP)
0.480	45.80	9.67	56.34	10.54	QP
0.480	40.33	9.67	46.34	6.01	AV
0.520	43.69	9.67	56.00	12.31	QP
0.520	34.43	9.67	46.00	11.57	AV
0.730	38.35	9.67	56.00	17.65	QP
0.730	32.25	9.67	46.00	13.75	AV
0.950	37.18	9.69	56.00	18.82	QP
0.950	31.48	9.69	46.00	14.52	AV
1.360	42.18	9.69	56.00	13.82	QP
1.360	35.59	9.69	46.00	10.41	AV
1.610	40.56	9.68	56.00	15.44	QP
1.620	33.58	9.68	46.00	12.42	AV

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;

- non - compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If U_{lab} is greater than U_{cispr} of Table 1, then:

- compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} - U_{cispr})$, exceeds the disturbance limit;

- non - compliance is deemed to occur if any measured disturbance level, increased by $(U_{lab} - U_{cispr})$, exceeds the disturbance limit.

Based on CISPR 16-4-2: 2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Dongguan) is:

30M~200MHz: 5.0 dB 200M~1GHz: 6.2 dB 1G~6GHz: 4.45 dB 6G~18GHz: 5.23 dB

Table 1 – Values of
$$U_{cispr}$$

Measurement					
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB				
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB				
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB				

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30MHz – 1000 MHz	120 kHz	300 kHz	120kHz	QP
Above 1 GHz	1MHz	3 MHz	/	РК

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak detection mode for frequencies above 1 GHz. The average value was Calculated based on Duty Cycle Correction Factor.

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2013-05-06	2014-05-05
Sunol Sciences	Antenna	JB3	A060611-1	2011-09-06	2014-09-05
HP	Amplifier	8447E	2434A02181	2013-09-06	2014-09-05
R&S	Spectrum Analyzer	FSEM	DE31388	2013-05-07	2014-05-06
ETS-Lindgren	Horn Antenna	3115	000 527 35	2012-09-06	2015-09-05
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2013-02-19	2014-02-18
R&S	Spectrum Analyzer	FSP 38	100478	2013-06-16	2014-06-15
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2013-06-16	2014-06-15
Quinstar	Amplifier	QLW- 18405536-JO	15964001001	2013-09-06	2014-09-05

Test Equipment List and Details

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15,</u> <u>Subpart C, and section 15.205, 15.209 and 15.247</u>, with the worst margin reading of:

3.26dB at 2483.5 MHz in the Horizontal polarization

Test Data

Environmental Conditions

Temperature:	24.2°C
Relative Humidity:	54%
ATM Pressure:	101.6kPa

The testing was performed by Ares Liu on 2013-12-02 & 2013-12-12.

FCC Part 15.247

Page 18 of 39

Test Mode: Tansmitting

Measured Results

Frequency	R	eceiver	Rx An	tenna	Cable	Amplifier	Corrected	T •	Marti
	Reading	Detector	Polar	Factor	loss	Gain	Amplitude	Limit (dPuV/m)	Margin (dP)
(MHZ)	(dBµV)	(PK/QP/AV)	(H/V)	(dB)	(dB)	(dB)	(dBµV/m)	(ubµ v/m)	(ub)
	Low Channel: 2410.875MHz								
2410.875	78.63	PK	Н	25.67	4.42	0.00	108.72	N/A	N/A
2410.875	74.57	PK	V	25.67	4.42	0.00	104.66	N/A	N/A
2394	39.36	PK	Н	25.62	4.40	0.00	69.38	74.00	4.62*
2394	20.35	AV	Н	25.62	4.40	0.00	50.37	54.00	3.63*
4821.75	57.29	PK	Н	30.64	6.02	27.26	66.69	74.00	7.31
7232.625	50.18	PK	Н	34.16	7.47	26.36	65.45	74.00	8.55
9643.5	49.63	PK	Н	36.04	8.80	26.08	68.39	88.72	20.33
1805	36.54	PK	Н	24.21	3.52	27.02	37.25	74.00	36.75
1805	26.27	AV	Н	24.21	3.52	27.02	26.98	54.00	27.02
335	33.48	QP	Н	14.74	2.18	21.61	28.79	46.00	17.21
			Midd	le Channe	el: 2437.8	75MHz			
2437.875	77.57	PK	Н	25.74	4.40	0.00	107.71	N/A	N/A
2437.875	73.61	PK	V	25.74	4.40	0.00	103.75	N/A	N/A
4875.75	56.32	PK	Н	30.78	6.08	27.27	65.91	74.00	8.09
7313.625	48.69	PK	Н	34.35	7.51	26.52	64.03	74.00	9.97
9751.5	48.74	PK	Н	36.30	8.83	25.67	68.20	87.71	19.51
3165	42.33	PK	Н	27.73	7.36	27.49	49.93	74.00	24.07
3165	26.53	AV	Н	27.73	7.36	27.49	34.13	54.00	19.87
335	35.36	QP	Н	14.74	2.18	21.61	30.67	46.00	15.33
			Hig	h Channe	1: 2468.2	5MHz			
2468.250	77.63	PK	Н	25.82	4.45	0.00	107.90	N/A	N/A
2468.25	74.26	PK	V	25.82	4.45	0.00	104.53	N/A	N/A
2483.5	35.21	РК	Н	25.86	4.49	0.00	65.56	74.00	8.44
2483.5	21.39	AV	Н	25.86	4.49	1.00	50.74	54.00	3.26*
4936.5	58.41	PK	Н	30.93	5.92	27.27	67.99	74.00	6.01
7404.75	51.13	PK	Н	34.57	7.56	26.67	66.59	74.00	7.41
9873	48.69	PK	Н	36.60	8.86	25.49	68.66	87.90	19.24
335	32.58	QP	Н	14.74	2.18	21.61	27.89	46.00	18.11

*Within measurement uncertainty!

Frequency	Peak Measurement @ 3m	Polar	Duty Cycle Correction Factor	Average Amp.	Limit	Margin
MHz	dBµV/m	H/V	dB	dBµV/m	dBµV/m	dB
frequency:2410.875MHz						
2410.875	108.72	Н	-21.60	87.12	N/A	N/A
2410.875	104.66	V	-21.60	83.06	N/A	N/A
4821.750	66.69	Н	-21.60	45.09	54.00	8.91
7232.625	65.45	Н	-21.60	43.85	54.00	10.15
9643.50	68.39	Н	-21.60	46.79	57.12	10.33
		frequ	uency:2437.875MF	Iz		
2437.88	107.71	Н	-21.60	86.11	N/A	N/A
2437.88	103.75	V	-21.60	82.15	N/A	N/A
4875.75	65.91	Н	-21.60	44.31	54.00	9.69
7313.625	64.03	Н	-21.60	42.43	54.00	11.57
9751.50	68.20	Н	-21.60	46.60	56.11	9.51
		freq	uency:2468.25MH	Z		
2468.25	107.90	Н	-21.60	86.30	N/A	N/A
2468.25	104.53	V	-21.60	82.93	N/A	N/A
4936.50	67.99	Н	-21.60	46.39	54.00	7.61
7404.75	66.59	Н	-21.60	44.99	54.00	9.01
9873.00	68.66	Н	-21.60	47.06	56.30	9.24

Calculated average Results

Calculate Average value based on Duty Cycle Correction Factor: Duty cycle= T_{ON}/T_{on+Off} =(1.24/14.9)ms =8.322% Duty cycle correction factor = 20*log (duty cycle) =20*log(8.322%) = -21.6 dB

Please refer to following plot:

Date: 12.DEC.2013 13:54:12

Date: 12.DEC.2013 13:54:35

Conducted Spurious Emissions at Antenna Port

Date: 12.DEC.2013 17:58:38

Middle Channel

Date: 12.DEC.2013 17:59:04

Report No.: R2DG131017002-00

Date: 12.DEC.2013 18:02:42

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	FSP 38	100478	2013-6-16	2014-6-15

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 100 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another truce
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	23.8 °C
Relative Humidity:	35 %
ATM Pressure:	101.2 kPa

* The testing was performed by Ares Liu on 2013-12-12.

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
Low	2410.875	2 /	2 1 7 2	Daga
Adjacent	2414.25	5.4	2.1/3	r a88
Middle	2437.875	2.4	2.160	Decc
Adjacent	2441.25	5.4		r ass
Adjacent	2464.875	2.26	2 1 (0 D	Decc
High	2468.25	5.30	2.100	Pass

Low Channel

Date: 12.DEC.2013 13:09:56

Date: 12.DEC.2013 13:50:33

Date: 12.DEC.2013 12:11:09

FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	FSP 38	100478	2013-6-16	2014-6-15

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23.8 °C	
Relative Humidity:	35 %	
ATM Pressure:	101.2 kPa	

* The testing was performed by Ares Liu on 2013-12-12.

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
Low	2410.875	3.26
Middle	2437.875	3.24
High	2468.25	3.24

Please refer to the following plots.

Date: 12.DEC.2013 13:44:33

FCC Part 15.247

Page 28 of 39

Date: 12.DEC.2013 13:42:42

Date: 12.DEC.2013 13:42:08

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	FSP 38	100478	2013-6-16	2014-6-15

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23.8 °C	
Relative Humidity:	35 %	
ATM Pressure:	101.2 kPa	

* The testing was performed by Ares Liu on 2013-12-12.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: R2DG131017002-00

Test Mode: Transmitting

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	18	≥15

Date: 12.DEC.2013 13:49:36

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 * channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Dwell Time= time slot length * hope rate/ number of hopping channels *hopping NO. * 0.4s

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	FSP 38	100478	2013-6-16	2014-6-15

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23.8 °C	
Relative Humidity:	35 %	
ATM Pressure:	101.2 kPa	

* The testing was performed by Ares Liu on 2013-12-12.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: R2DG131017002-00

Test Mode: Transmitting

Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result
Low	1.240	0.106	0.4	Pass
Middle	1.240	0.106	0.4	Pass
High	1.240	0.106	0.4	Pass
Dwell Time(s)= time slot length(s)* 213 /18*18* 0.4				

Note: the hopping rate is 213/s, which was declared by the manufacture.

Date: 12.DEC.2013 13:54:35

Date: 13.DEC.2013 17:12:19

Date: 13.DEC.2013 17:13:47

FCC Part 15.247

Page 34 of 39

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI test receiver.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	FSP 38	100478	2013-6-16	2014-6-15

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23.8 °C	
Relative Humidity:	35 %	
ATM Pressure:	101.2 kPa	

* The testing was performed by Ares Liu on 2013-12-12.

Test Result: Compliance.

Test Mode: Transmitting

Channel	Frequency (MHz)	Conducted Output power (dBm)	Limit (dBm)	
Low	2410.875	18.16	21	
Middle	2437.875	18.07	21	
High	2468.25	17.94	21	

Note: The antenna gain was 0.7dBi.

Date: 12.DEC.2013 13:43:20

Output Power, Middle

Date: 12.DEC.2013 13:43:01

Date: 12.DEC.2013 13:41:19

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum analyzer	FSP 38	100478	2013-6-16	2014-6-15

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23.8 °C		
Relative Humidity:	35 %		
ATM Pressure:	101.2 kPa		

* The testing was performed by Ares Liu on 2013-12-12.

Report No.: R2DG131017002-00

Test Result: Compliance

Date: 12.DEC.2013 13:45:52

Date: 12.DEC.2013 13:46:52

***** END OF REPORT *****

FCC Part 15.247

Page 39 of 39