



## SAR TEST REPORT

Test Report No. : 27IE0038-HO-D

**Applicant** : SATO CORPORATION  
**Type of Equipment** : BARCODE PRINTER  
**Model No.** : MB410i-W2  
**FCC ID** : MMFMB400I-W2  
**Test standard** : FCC47CFR 2.1093  
FCC OET Bulletin 65, Supplement C  
**Test Result** : Complied  
**Max. SAR Measured** : 0.054W/kg (Body, 2462MHz)

1. This test report shall not be reproduced except full or partial, without the written approval of UL Japan, Inc.
2. The results in this report apply only to the sample tested.
3. This equipment is in compliance with the above standard. We hereby certify that the data contain a true representation of the SAR profile.
4. The test results in this test report are traceable to the national or international standards.

**Date of test** : April 19, 2007

**Tested by** : H. Sato  
Hisayoshi Sato  
EMC Services

**Approved by** : T. Maeno  
Tetsuo Maeno  
Site Manager of EMC Services

**NVLAP**<sup>®</sup>  
NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation.

\*As for the range of Accreditation in NVLAP, you may refer to the WEB address, <http://ulapex.jp/emc/nvlap.htm>

**UL Japan, Inc.**

**Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116

Faximile : +81 596 24 8124

| <b>CONTENTS</b>                                                     | <b>PAGE</b> |
|---------------------------------------------------------------------|-------------|
| <b>SECTION 1: Client information.....</b>                           | <b>3</b>    |
| <b>SECTION 2: Equipment under test (E.U.T.).....</b>                | <b>3</b>    |
| <b>SECTION 3 : Test standard information.....</b>                   | <b>4</b>    |
| 3.1    Requirements for compliance testing defined by the FCC ..... | 4           |
| 3.2    Exposure limit .....                                         | 5           |
| <b>SECTION 4 : Test result .....</b>                                | <b>6</b>    |
| 4.1    Result of Max. SAR value .....                               | 6           |
| 4.2    Test Location .....                                          | 6           |
| <b>SECTION 5 : Operation of E.U.T. during testing.....</b>          | <b>7</b>    |
| 5.1    Confirmation before / after SAR testing.....                 | 7           |
| 5.2    Confirmation after SAR testing .....                         | 7           |
| 5.3    Operating modes for SAR testing.....                         | 7           |
| 5.4    Test setup of EUT.....                                       | 9           |
| <b>SECTION 6 : Test surrounding.....</b>                            | <b>10</b>   |
| 6.1    Measurement uncertainty.....                                 | 10          |
| <b>SECTION 7 : Confirmation before/after testing.....</b>           | <b>11</b>   |
| 7.1    Conducted power before .....                                 | 11          |
| 7.2    Power drift measurement .....                                | 13          |
| <b>SECTION 8 : Measurement results.....</b>                         | <b>14</b>   |
| 8.1    Body SAR 2450MHz.....                                        | 14          |
| <b>APPENDIX 1 : Photographs of test setup.....</b>                  | <b>15</b>   |
| <b>APPENDIX 2 : SAR Measurement data.....</b>                       | <b>27</b>   |
| 1. Evaluation procedure .....                                       | 28          |
| 2. Measurement data (SAR 2450MHz) .....                             | 29          |
| <b>APPENDIX 3 : Test instruments.....</b>                           | <b>49</b>   |
| 1. Equipment used.....                                              | 50          |
| 2. Dosimetry assessment setup.....                                  | 51          |
| 3. Configuration and peripherals.....                               | 52          |
| 4. System components .....                                          | 53          |
| 5. Test system specifications.....                                  | 55          |
| 6. Simulated Tissues Composition of 2450MHz.....                    | 56          |
| 7. Validation Measurement .....                                     | 56          |
| 8. System validation data .....                                     | 58          |
| 9. Validation uncertainty.....                                      | 59          |
| 10. Validation Measurement data .....                               | 60          |
| 11. System Validation Dipole (D2450V2,S/N: 713).....                | 61          |
| 12. Dosimetric E-Field Probe Calibration (EX3DV4,S/N: 3540) .....   | 70          |
| 13. References.....                                                 | 79          |

## **SECTION 1: Client information**

Company Name : SATO CORPORATION  
Address : 1-207, Onari-cho, Omiya-ku, Saitama-shi, Saitama 330-0852 Japan  
Telephone Number : +81-48-663-8118  
Facsimile Number : +81-48-651-6662  
Contact Person : Keisuke Yamada

## **SECTION 2: Equipment under test (E.U.T.)**

### **2.1 Identification of E.U.T.**

Type of Equipment : BARCODE PRINTER  
Model No. : MB410i-W2  
Serial No. : 2  
Country of Manufacture : Malaysia, Vietnam  
Receipt Date of Sample : April 10, 2007  
Condition of EUT : Production prototype  
(Not for Sale: This sample is equivalent to mass-produced items.)  
Modification of EUT : No modification by the test lab.

### **2.2 Product description**

MB4xxi-W2 has Model No. MB400i-W2 and Model No. MB410i-W2 as 2 model types.

The difference does not affect on SAR testing results. Therefore, the test was performed with Model No. MB410i-W2 as representative model.

Model No: MB410i-W2 is the BARCODE PRINTER.

The difference of 2 model types is as follows;

|                                              |                                               |
|----------------------------------------------|-----------------------------------------------|
| MB400i-W2                                    | MB410i-W2                                     |
| Print head resolution<br>203 dpi (8 dots/mm) | Print head resolution<br>305 dpi (12 dots/mm) |

|                                |                                                                                                  |
|--------------------------------|--------------------------------------------------------------------------------------------------|
| Clock frequency                | CPU: 14.7456MHz (X'tal)<br>Internal Clock: 14.7456 x 4 = 58.9824MHz<br>Reference Clock: 40MHz    |
| Equipment Type                 | Transceiver                                                                                      |
| Frequency of Operation         | 2412-2462MHz                                                                                     |
| Bandwidth & Channel spacing    | 22MHz & 5MHz                                                                                     |
| Type of Modulation             | DSSS/OFDM                                                                                        |
| Antenna Type                   | Multilayer Chip Antenna (Inverted-F 1/4 lambda antenna)                                          |
| Antenna Gain                   | 2.044dBi (MAX)                                                                                   |
| Antenna connector              | Built-in antenna                                                                                 |
| Method of frequency generation | Synthesizer                                                                                      |
| Operating voltage              | DC14.8V (Battery)/DC19.0V(AC Adaptor)                                                            |
| Battery                        | Li-ion Battery                                                                                   |
| Rating :                       | DC14.8V/1700mAh                                                                                  |
| Option Battery                 | N/A                                                                                              |
| Category Identified            | Portable device                                                                                  |
| Accessories                    | Water Protector case(waist case)<br>*There are small parts of the metal.<br>Refer to appendix 1. |
| Size                           | W170*L133.4*H76 mm                                                                               |
| Max. Output Power (Peak)       | 20.88dBm (122.46mW )                                                                             |

---

**UL Japan, Inc.**

**Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116

Facsimile : +81 596 24 8124

## **SECTION 3 : Test standard information**

### **3.1 Requirements for compliance testing defined by the FCC**

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

**1** Specific Absorption Rate (SAR) is a measure of the rate of energy absorption due to exposure to an RF transmitting source (wireless portable device).

**2** IEEE/ANSI Std. C95.1-1992 limits are used to determine compliance with FCC ET Docket 93-62.

---

**UL Japan, Inc.**

**Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116

Facsimile : +81 596 24 8124

### 3.2 Exposure limit

#### (A) Limits for Occupational/Controlled Exposure (W/kg)

| Spatial Average<br>(averaged over the whole body) | Spatial Peak<br>(averaged over any 1g of tissue) | Spatial Peak<br>(hands/wrists/feet/ankles averaged over 10g) |
|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|
| 0.4                                               | 8.0                                              | 20.0                                                         |

#### (B) Limits for General population/Uncontrolled Exposure (W/kg)

| Spatial Average<br>(averaged over the whole body) | Spatial Peak<br>(averaged over any 1g of tissue) | Spatial Peak<br>(hands/wrists/feet/ankles averaged over 10g) |
|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|
| 0.08                                              | 1.6                                              | 4.0                                                          |

**Occupational/Controlled Environments:** are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

**General Population/Uncontrolled Environments:** are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

**NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE  
SPATIAL PEAK(averaged over any 1g of tissue) LIMIT  
1.6 W/kg**

---

**UL Japan, Inc.**

**Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116

Facsimile : +81 596 24 8124

## **SECTION 4 : Test result**

### **4.1 Result of Max. SAR value**

**Max. SAR Measured (IEEE 802.11b) : 0.054 W/kg (Body, 2462MHz)**

### **4.2 Test Location**

UL Japan, Inc. Head Office EMC Lab. \*NVLAP Lab. code: 200572-0  
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116  
Facsimile : +81 596 24 8124

Our company name was changed from "UL Apex Co., Ltd." to "UL Japan, Inc." on April 26, 2007.

---

**UL Japan, Inc.**

**Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116  
Facsimile : +81 596 24 8124

## **SECTION 5 : Operation of E.U.T. during testing**

### **5.1 Confirmation before / after SAR testing**

#### **Correlation of EMC power and SAR power**

##### **Peak Power test**

It was checked that the antenna port power was correlated within 0~+5% (FCC requirements)  
The result is shown in Section 7.1.1

### **5.2 Confirmation after SAR testing**

It is checked that the power drift value at each measurement is within  $\pm 5\%$  as to the power change before and after the SAR test. When the power drift value is over  $+\/-5\%$ , the power changes against time is measured to confirm the changes are within tolerance.

Moreover, the change rate is reflected on the uncertainty.

Refer to Section 7.2.

### **5.3 Operating modes for SAR testing**

#### **5.3.1 Setting of EUT**

##### **1. IEEE 802.11b mode**

Tx frequency band : 2412-2462MHz  
Channel : 1ch(2412MHz),6ch(2437MHz),11ch(2462MHz)  
Modulation : DSSS (DBPSK,DQPSK,CCK)  
Crest factor : 1

##### **2. IEEE 802.11g mode**

Tx frequency band : 2412-2462MHz  
Channel : 1ch(2412MHz),6ch(2437MHz),11ch(2462MHz)  
Modulation : OFDM (BPSK, QPSK, 16QAM, 64QAM)  
Crest factor : 1

### 5.3.2 SAR Measurement (Radiated power is always monitored by Spectrum Analyzer.)

#### **IEEE 802.11b**

The 11b (DSSS) mode test was performed on the CCK[11Mbps] modulation, because it was the highest peak power and data rate.

Step1. The searching for the worst position

Step2. The changing to the Low and High channels

This test was performed at the worst conditions of Step 1

#### **IEEE 802.11g**

Step3. The searching for the worst modulation

The data rate in the higher peak power each modulation was decided, then the worst modulation was searched in the SAR testing.

Step4. The searching for the worst position

This test was performed at the worst modulation of Step3.

Step5. The changing to the Low and High channels

This test was performed at the worst conditions of Step 4.

#### **Change distance between EUT and SAM Twin Phantom**

Step6. Change separation

The measurement was performed with the distance, 5mm, 10mm and 15mm to check if the shortest distance may not have the worst value at the conditions of the highest SAR value.

#### **EUT is put in the water protector case(waist case) for the other reference data**

Step7. EUT is put in the case

The users might use this EUT in the the water protector case(waist case) .

Therefore, the test was performed with EUT in this case.

#### 5.4 Test setup of EUT

When users operate or carry the EUT, it could be considered to touch or get close to their bodies. In order to assume this situation, we performed the test at the following positions. Please refer to "APPENDIX 1" for more details.

(1) Front:

The test was performed in touch with Front surface of the EUT to the flat section of SAM Twin phantom.

(2) Rear :

The test was performed in touch with Rear surface of the EUT to the flat section of SAM Twin phantom.

(3) Left Side :

The test was performed in touch with Left Side surface of the EUT to the flat section of SAM Twin phantom.

(4) Bottom :

The test was performed in touch with Bottom surface of the EUT to the flat section of SAM Twin phantom.

(5 ) Left Side (5mm) :

The measurement opened 5mm distance between the EUT and flat section of SAM Twin Phantom.

(6) Left Side (10mm) :

The measurement opened 10mm distance between the EUT and flat section of SAM Twin Phantom.

(7 ) Left Side (15mm) :

The measurement opened 15mm distance between the EUT and flat section of SAM Twin Phantom.

(8) Bottom , EUT is put in the case

The test was performed in touch with Bottom surface of the water protector case(waist case) to the flat section of SAM Twin phantom.

\*The test setup photograph is put on appendix 1.

---

**UL Japan, Inc.**

**Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116

Facsimile : +81 596 24 8124

## SECTION 6 : Test surrounding

### 6.1 Measurement uncertainty

The uncertainty budget has been determined for the DASY4 measurement system according to the SPEAG documents[6][7] and is given in the following Table.

| Error Description                    | Uncertainty value $\pm \%$ | Probability distribution | divisor    | (ci)<br>1g      | Standard Uncertainty (1g)      | vi or veff |
|--------------------------------------|----------------------------|--------------------------|------------|-----------------|--------------------------------|------------|
| <b>Measurement System</b>            |                            |                          |            |                 |                                |            |
| Probe calibration                    | $\pm 6.8$                  | Normal                   | 1          | 1               | $\pm 6.8$                      | $\infty$   |
| Axial isotropy of the probe          | $\pm 4.7$                  | Rectangular              | $\sqrt{3}$ | $(1-c_p)^{1/2}$ | $\pm 1.9$                      | $\infty$   |
| Spherical isotropy of the probe      | $\pm 9.6$                  | Rectangular              | $\sqrt{3}$ | $(c_p)^{1/2}$   | $\pm 3.9$                      | $\infty$   |
| Boundary effects                     | $\pm 2.0$                  | Rectangular              | $\sqrt{3}$ | 1               | $\pm 1.2$                      | $\infty$   |
| Probe linearity                      | $\pm 4.7$                  | Rectangular              | $\sqrt{3}$ | 1               | $\pm 2.7$                      | $\infty$   |
| Detection limit                      | $\pm 1.0$                  | Rectangular              | $\sqrt{3}$ | 1               | $\pm 0.6$                      | $\infty$   |
| Readout electronics                  | $\pm 0.3$                  | Normal                   | 1          | 1               | $\pm 0.3$                      | $\infty$   |
| Response time                        | $\pm 0.8$                  | Rectangular              | $\sqrt{3}$ | 1               | $\pm 0.5$                      | $\infty$   |
| Integration time                     | $\pm 2.6$                  | Rectangular              | $\sqrt{3}$ | 1               | $\pm 1.5$                      | $\infty$   |
| RF ambient Noise                     | $\pm 3.0$                  | Rectangular              | $\sqrt{3}$ | 1               | $\pm 1.7$                      | $\infty$   |
| RF ambient Reflections               | $\pm 3.0$                  | Rectangular              | $\sqrt{3}$ | 1               | $\pm 1.7$                      | $\infty$   |
| Probe Positioner                     | $\pm 0.8$                  | Rectangular              | $\sqrt{3}$ | 1               | $\pm 0.5$                      | $\infty$   |
| Probe positioning                    | $\pm 9.9$                  | Rectangular              | $\sqrt{3}$ | 1               | $\pm 5.7$                      | $\infty$   |
| Max.SAR Eval.                        | $\pm 4.0$                  | Rectangular              | $\sqrt{3}$ | 1               | $\pm 2.3$                      | $\infty$   |
| <b>Test Sample Related</b>           |                            |                          |            |                 |                                |            |
| Device positioning                   | $\pm 2.9$                  | Normal                   | 1          | 1               | $\pm 2.9$                      | 18         |
| Device holder uncertainty            | $\pm 3.6$                  | Normal                   | 1          | 1               | $\pm 3.6$                      | 7          |
| Power drift                          | $\pm 10.0$                 | Rectangular              | $\sqrt{3}$ | 1               | $\pm 5.8$                      | $\infty$   |
| <b>Phantom and Setup</b>             |                            |                          |            |                 |                                |            |
| Phantom uncertainty                  | $\pm 4.0$                  | Rectangular              | $\sqrt{3}$ | 1               | $\pm 2.3$                      | $\infty$   |
| Liquid conductivity (target)         | $\pm 5.0$                  | Rectangular              | $\sqrt{3}$ | 0.64            | $\pm 1.8$                      | $\infty$   |
| Liquid conductivity (meas.)          | $\pm 5.0$                  | Rectangular              | 1          | 0.64            | $\pm 3.2$                      | $\infty$   |
| Liquid permittivity (target)         | $\pm 5.0$                  | Rectangular              | $\sqrt{3}$ | 0.6             | $\pm 1.7$                      | $\infty$   |
| Liquid permittivity (meas.)          | $\pm 5.0$                  | Rectangular              | 1          | 0.6             | $\pm 3.0$                      | $\infty$   |
| <b>Combined Standard Uncertainty</b> |                            |                          |            |                 |                                |            |
| <b>Expanded Uncertainty (k=2)</b>    |                            |                          |            |                 |                                |            |
|                                      |                            |                          |            |                 | <b><math>\pm 14.360</math></b> |            |
|                                      |                            |                          |            |                 | <b><math>\pm 28.7</math></b>   |            |

The test result shows that the power drift exceeded  $\pm 5\%$ . Therefore, the uncertainty of power drift expanded to  $\pm 10\%$ . However, the extended uncertainty (k= 2) of a test is less than 30%.

**UL Japan, Inc.**

**Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116

Facsimile : +81 596 24 8124

## SECTION 7 : Confirmation before/after testing

### 7.1 Conducted power before

#### 7.1.1 Correlation of EMC power and SAR power

This data is reference data of EMC test. (Report No. 27IE0038-HO-A)

Date of test: April 17, 2007

#### IEEE802.11b , 11Mbps

| Ch   | Freq.<br>[MHz] | P/M<br>Reading<br>[dBm] | Cable<br>Loss<br>[dB] | Atten.<br>[dB] | Result<br>[dBm] | Result<br>[mW] |
|------|----------------|-------------------------|-----------------------|----------------|-----------------|----------------|
| Low  | 2412.0         | 7.14                    | 2.45                  | 10.02          | 19.61           | 91.41          |
| Mid  | 2437.0         | 7.35                    | 2.45                  | 10.02          | 19.82           | 95.94          |
| High | 2462.0         | 7.12                    | 2.20                  | 10.02          | 19.34           | 85.90          |

#### IEEE802.11g , 54Mbps

| Ch   | Freq.<br>[MHz] | P/M<br>Reading<br>[dBm] | Cable<br>Loss<br>[dB] | Atten.<br>[dB] | Result<br>[dBm] | Result<br>[mW] |
|------|----------------|-------------------------|-----------------------|----------------|-----------------|----------------|
| Low  | 2412.0         | 8.40                    | 2.45                  | 10.02          | 20.87           | 122.18         |
| Mid  | 2437.0         | 8.14                    | 2.45                  | 10.02          | 20.61           | 115.08         |
| High | 2462.0         | 7.97                    | 2.20                  | 10.02          | 20.19           | 104.47         |

Sample Calculation:

Result = Reading + Cable Loss (supplied by customer) + Attenuator

This data is confirmation before SAR test.

Date of test: April 19, 2007

#### IEEE802.11b , 11Mbps

| Ch   | Freq.<br>[MHz] | P/M<br>Reading<br>[dBm] | Cable<br>Loss<br>[dB] | Atten.<br>[dB] | Result<br>[dBm] | Result<br>[mW] |
|------|----------------|-------------------------|-----------------------|----------------|-----------------|----------------|
| Low  | 2412.0         | 7.31                    | 2.45                  | 10.02          | 19.78           | 95.06          |
| Mid  | 2437.0         | 7.52                    | 2.45                  | 10.02          | 19.99           | 99.77          |
| High | 2462.0         | 7.25                    | 2.20                  | 10.02          | 19.47           | 88.51          |

#### IEEE802.11g , 54Mbps

| Ch   | Freq.<br>[MHz] | P/M<br>Reading<br>[dBm] | Cable<br>Loss<br>[dB] | Atten.<br>[dB] | Result<br>[dBm] | Result<br>[mW] |
|------|----------------|-------------------------|-----------------------|----------------|-----------------|----------------|
| Low  | 2412.0         | 8.51                    | 2.45                  | 10.02          | 20.98           | 125.31         |
| Mid  | 2437.0         | 8.24                    | 2.45                  | 10.02          | 20.71           | 117.76         |
| High | 2462.0         | 8.17                    | 2.20                  | 10.02          | 20.39           | 109.40         |

Sample Calculation:

Result = Reading + Cable Loss (supplied by customer) + Attenuator

**UL Japan, Inc.**

**Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116

Facsimile : +81 596 24 8124

### 7.1.2 Reference data of SAR test (Data rate determining)

Date of test: April 19, 2007

[IEEE802.11] IEEE802.11b] Rate check (Average power)

| Modulation | Data rate | Freq.<br>[MHz] | P/M<br>Reading<br>[dBm] | Cable<br>Loss<br>[dB] | Atten.<br>[dBm] | Result<br>[mW] |
|------------|-----------|----------------|-------------------------|-----------------------|-----------------|----------------|
| DBPSK      | 1         | 2437.0         | 2.36                    | 2.45                  | 10.02           | 14.83 30.41    |
| DQPSK      | 2         | 2437.0         | 1.98                    | 2.45                  | 10.02           | 14.45 27.86    |
| CCK        | 5.5       | 2437.0         | 2.39                    | 2.45                  | 10.02           | 14.86 30.62    |
|            | 11        | 2437.0         | 2.41                    | 2.45                  | 10.02           | 14.88 30.76    |

[IEEE802.11] IEEE802.11b] Rate check (Peak power)

| Modulation | Data rate | Freq.<br>[MHz] | P/M<br>Reading<br>[dBm] | Cable<br>Loss<br>[dB] | Atten.<br>[dB] | Result<br>[dBm]   [mW] |
|------------|-----------|----------------|-------------------------|-----------------------|----------------|------------------------|
| DBPSK      | 1         | 2437.0         | 6.35                    | 2.45                  | 10.02          | 18.82 76.21            |
| DQPSK      | 2         | 2437.0         | 6.98                    | 2.45                  | 10.02          | 19.45 88.10            |
| CCK        | 5.5       | 2437.0         | 7.01                    | 2.45                  | 10.02          | 19.48 88.72            |
|            | 11        | 2437.0         | 7.37                    | 2.45                  | 10.02          | 19.84 96.38            |

[IEEE802.11] IEEE802.11g] Rate check (Average power)

| Modulation | Data rate | Freq.<br>[MHz] | P/M<br>Reading<br>[dBm] | Cable<br>Loss<br>[dB] | Atten.<br>[dBm] | Result<br>[mW] |
|------------|-----------|----------------|-------------------------|-----------------------|-----------------|----------------|
| BPSK       | 6         | 2437.0         | -1.14                   | 2.45                  | 10.02           | 11.33 13.58    |
|            | 9         | 2437.0         | -1.17                   | 2.45                  | 10.02           | 11.30 13.49    |
| QPSK       | 12        | 2437.0         | -1.08                   | 2.45                  | 10.02           | 11.39 13.77    |
|            | 18        | 2437.0         | -1.03                   | 2.45                  | 10.02           | 11.44 13.93    |
| 16QAM      | 24        | 2437.0         | -1.43                   | 2.45                  | 10.02           | 11.04 12.71    |
|            | 36        | 2437.0         | -1.11                   | 2.45                  | 10.02           | 11.36 13.68    |
| 64QAM      | 48        | 2437.0         | -0.97                   | 2.45                  | 10.02           | 11.50 14.13    |
|            | 54        | 2437.0         | -0.93                   | 2.45                  | 10.02           | 11.54 14.26    |

[IEEE802.11] IEEE802.11g] Rate check (Peak power)

| Modulation | Data rate | Freq.<br>[MHz] | P/M<br>Reading<br>[dBm] | Cable<br>Loss<br>[dB] | Atten.<br>[dB] | Result<br>[dBm]   [mW] |
|------------|-----------|----------------|-------------------------|-----------------------|----------------|------------------------|
| BPSK       | 6         | 2437.0         | 8.02                    | 2.45                  | 10.02          | 20.49 111.94           |
|            | 9         | 2437.0         | 7.92                    | 2.45                  | 10.02          | 20.39 109.40           |
| QPSK       | 12        | 2437.0         | 8.04                    | 2.45                  | 10.02          | 20.51 112.46           |
|            | 18        | 2437.0         | 8.05                    | 2.45                  | 10.02          | 20.52 112.72           |
| 16QAM      | 24        | 2437.0         | 8.10                    | 2.45                  | 10.02          | 20.57 114.02           |
|            | 36        | 2437.0         | 8.13                    | 2.45                  | 10.02          | 20.60 114.82           |
| 64QAM      | 48        | 2437.0         | 8.08                    | 2.45                  | 10.02          | 20.55 113.50           |
|            | 54        | 2437.0         | 8.24                    | 2.45                  | 10.02          | 20.71 117.76           |

Sample Calc: Sample Calculation:

Result = Rec. Result = Reading + Cable Loss (supplied by customer) + Attenuator

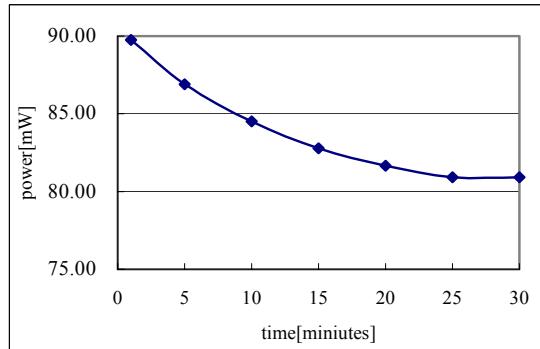
**UL Japan, Inc.**

**Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116

Facsimile : +81 596 24 8124


## 7.2 Power drift measurement

The power drift was not within  $\pm 5\%$  on SAR re-testing with full-charged battery.  
Therefore the conducted power was measured in elapsed time.

The Output power was measured under the condition of Max SAR value.  
As a result, power changed by  $-9.8\%$ . The result is shown in the following.  
So the uncertainty of power drift was expanded to  $\pm 10\%$ .

2462 MHz(IEEE 802.11b)

| Time [Minutes] | Result [dBm] | Converted [mW] | Deviation [%] |
|----------------|--------------|----------------|---------------|
| 1              | 19.53        | 89.74          | -             |
| 5              | 19.39        | 86.90          | -3.2          |
| 10             | 19.27        | 84.53          | -5.8          |
| 15             | 19.18        | 82.79          | -7.7          |
| 20             | 19.12        | 81.66          | -9.0          |
| 25             | 19.08        | 80.91          | -9.8          |
| 30             | 19.08        | 80.91          | -9.8          |



---

**UL Japan, Inc.**

**Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116

Facsimile : +81 596 24 8124

## SECTION 8 : Measurement results

### 8.1 Body SAR 2450MHz

Liquid Depth (cm) : **15.1** Model : **MB410i-W2**  
 Parameters :  $\epsilon_r = 50.8, \sigma = 2.01$  Serial No. : **2**  
 Ambient temperature (deg.c.) : **25.0** Modulation : **DSSS / OFDM**  
 Relative Humidity (%) : **40** Crest factor : **1**  
 Date : **April 19, 2007** Measured By : **Hisayoshi Sato**

| BODY SAR MEASUREMENT RESULTS                                   |         |               |            |                 |                       |                 |                                                     |               |
|----------------------------------------------------------------|---------|---------------|------------|-----------------|-----------------------|-----------------|-----------------------------------------------------|---------------|
| Frequency                                                      |         |               | Modulation | Phantom Section | EUT Set-up Conditions |                 | Liquid Temp.[deg.c] SAR(1g) [W/kg]                  |               |
| Band                                                           | Channel | [MHz]         |            |                 | Position              | Separation [mm] | Before                                              | After         |
| <b>11b Step 1 Position Search</b>                              |         |               |            |                 |                       |                 |                                                     |               |
| Mid                                                            | 2437    | CCK(11Mbps)   | Flat       | Front           | 0                     | 24.8            | 24.8                                                | <b>0.0015</b> |
| Mid                                                            | 2437    | CCK(11Mbps)   | Flat       | Rear            | 0                     | 24.7            | 24.7                                                | <b>0.017</b>  |
| Mid                                                            | 2437    | CCK(11Mbps)   | Flat       | Left side       | 0                     | 24.7            | 24.7                                                | <b>0.043</b>  |
| Mid                                                            | 2437    | CCK(11Mbps)   | Flat       | Bottom          | 0                     | 24.8            | 24.8                                                | <b>0.013</b>  |
| <b>Step 2 Frequency Change</b>                                 |         |               |            |                 |                       |                 |                                                     |               |
| Low                                                            | 2412    | CCK(11Mbps)   | Flat       | Left side       | 0                     | 24.6            | 24.6                                                | <b>0.023</b>  |
| High                                                           | 2462    | CCK(11Mbps)   | Flat       | Left side       | 0                     | 24.6            | 24.6                                                | <b>0.054</b>  |
| <b>11g Step3. Modulation Change</b>                            |         |               |            |                 |                       |                 |                                                     |               |
| Mid                                                            | 2437    | BPSK(6Mbps)   | Flat       | Left side       | 0                     | 24.7            | 24.7                                                | <b>0.0083</b> |
| Mid                                                            | 2437    | QPSK(18Mbps)  | Flat       | Left side       | 0                     | 24.8            | 24.8                                                | <b>0.010</b>  |
| Mid                                                            | 2437    | 16QAM(36Mbps) | Flat       | Left side       | 0                     | 24.8            | 24.8                                                | <b>0.011</b>  |
| Mid                                                            | 2437    | 64QAM(54Mbps) | Flat       | Left side       | 0                     | 24.7            | 24.6                                                | <b>0.0067</b> |
| <b>Step4. Position search</b>                                  |         |               |            |                 |                       |                 |                                                     |               |
| Mid                                                            | 2437    | 16QAM(36Mbps) | Flat       | Front           | 0                     | 24.6            | 24.6                                                | <b>0.0016</b> |
| Mid                                                            | 2437    | 16QAM(36Mbps) | Flat       | Rear            | 0                     | 24.7            | 24.7                                                | <b>0.0043</b> |
| Mid                                                            | 2437    | 16QAM(36Mbps) | Flat       | Bottom          | 0                     | 24.8            | 24.8                                                | <b>0.0015</b> |
| <b>Step5. Frequency Change</b>                                 |         |               |            |                 |                       |                 |                                                     |               |
| Low                                                            | 2412    | 16QAM(36Mbps) | Flat       | Left side       | 0                     | 24.8            | 24.8                                                | <b>0.0058</b> |
| High                                                           | 2462    | 16QAM(36Mbps) | Flat       | Left side       | 0                     | 24.7            | 24.6                                                | <b>0.0062</b> |
| <b>11b Step6. Change separation</b>                            |         |               |            |                 |                       |                 |                                                     |               |
| High                                                           | 2462    | CCK(11Mbps)   | Flat       | Left side       | 5                     | 24.5            | 24.5                                                | <b>0.016</b>  |
| High                                                           | 2462    | CCK(11Mbps)   | Flat       | Left side       | 10                    | 24.6            | 24.6                                                | <b>0.0044</b> |
| High                                                           | 2462    | CCK(11Mbps)   | Flat       | Left side       | 15                    | 24.6            | 24.7                                                | <b>0.0032</b> |
| <b>11b Step7. EUT is put in the case (Reference data)</b>      |         |               |            |                 |                       |                 |                                                     |               |
| High                                                           | 2462    | CCK(11Mbps)   | Flat       | Bottom          | 0                     | 24.8            | 24.8                                                | <b>0.0032</b> |
| <b>ANSI / IEEE C95.1 1992 - SAFETY LIMIT</b>                   |         |               |            |                 |                       |                 | <b>Body SAR: 1.6 W/kg</b><br>(averaged over 1 gram) |               |
| <b>Spatial Peak Uncontrolled Exposure / General Population</b> |         |               |            |                 |                       |                 |                                                     |               |

**UL Japan, Inc.**

**Head Office EMC Lab.**

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone : +81 596 24 8116

Facsimile : +81 596 24 8124