FCC Part 90& Part 22 Rules Test Report

Report No.: AGC09350191001FE10

FCC ID	:	MMABR200P
PRODUCT DESIGNATION	:	Handheld UHF Transceiver
BRAND NAME	:	Midland
MODEL NAME	:	BR200
APPLICANT	:	Midland Radio Corporation
DATE OF ISSUE	:	Nov. 05, 2019
STANDARD(S)	:	FCC Part 90 Rules FCC Part 22 Rules
REPORT VERSION	:	V 1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Nov. 05, 2019	Valid	Initial Release

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE	
2. GENERAL INFORMATION	6
2.1PRODUCT DESCRIPTION	6
2.2RELATED SUBMITTAL(S) / GRANT (S)	9
2.3 TEST METHODOLOGY	9
2.4 TEST FACILITY	9
2.5 SPECIAL ACCESSORIES	9
2.6 EQUIPMENT MODIFICATIONS	9
3. SYSTEM TEST CONFIGURATION	10
3.1EUT CONFIGURATION	10
3.2 EUT EXERCISE	10
3.3 GENERAL TECHNICAL REQUIREMENTS	10
3.4CONFIGURATION OF TESTED SYSTEM	11
4. SUMMARY OF TEST RESULTS	12
5. DESCRIPTION OF TEST MODES	
6. FREQUENCY TOLERANCE	
6.1 PROVISIONS APPLICABLE	
6.2 MEASUREMENT PROCEDURE	
6.3 TEST SETUP BLOCK DIAGRAM	
6.4 TEST RESULTS	
7. EMISSION BANDWIDTH	
7.1 PROVISIONS APPLICABLE	
7.2 MEASUREMENT PROCEDURE	
7.3 TEST SETUP BLOCK DIAGRAM	19
7.4 MEASUREMENT RESULT	21
8. UNWANTED RADIATION	23
8.1 PROVISIONS APPLICABLE	23
8.2 MEASUREMENT PROCEDURE	23
8.3 TEST SETUP BLOCK DIAGRAM	24
8.4 MEASUREMENT RESULTS:	25
8.5 EMISSION MASK PLOT	26
9. MODULATION CHARACTERISTICS	35
9.1 PROVISIONS APPLICABLE	35
9.2 MEASUREMENT METHOD	35
9.3 MEASUREMENT RESULT	36

Report No.:AGC09350191001FE10 Page 4 of 61

10. MAXIMUMN TRANSMITTER POWER (CONDUCTED OUTPUT POWER) PEAK POWER	39
10.1 PROVISIONS APPLICABLE	39
10.2 TEST PROCEDURE	39
10.3 TEST CONFIGURATION	39
10.4 TEST RESULT	41
10.5 CONDUCT SPURIOUS PLOT	43
11. RANSMITTER FREQUENCY BEHAVIOR	
11.1PROVISIONS APPLICABLE	47
11.2 TEST METHOD	47
11.3 DESCRIBE LIMIT LINE OF RANSMITTER FREQUENCY BEHAVIOR	48
11.4 MEASURE RESULT	49
12. AUDIO LOW PASS FILTER RESPONSE	50
12.1.TEST LIMITS	50
12.2. METHOD OF MEASUREMENTS	50
APPENDIX I: PHOTOGRAPHS OF SETUP	52
APPENDIX II PHOTOGRAPHS OF EUT	53

Applicant:	Midland Radio Corporation	
Address	5900 Parretta Drive Kansas City, Missouri 64120-2134 United States	
Manufacturer:	Midland Radio Corporation	
Address	5900 Parretta Drive Kansas City, Missouri 64120-2134 United States	
Factory	Guangdong Samzuk Technology Development Co.,Ltd	
Address	#6 Technology Road,Heyuan,China	
Product Designation:	Handheld UHF Transceiver	
Brand Name:	Midland	
Test Model	BR200	
Date of Test:	Oct. 30, 2019~Nov. 05, 2019	

1. VERIFICATION OF COMPLIANCE

WE HEREBY CERTIFY THAT:

The above equipment was tested by Shenzhen Attestation of Global Compliance Science & Technology Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI/TIA-603-E (2016). The sample tested as described in this report is in compliance with the FCC Rules Part 90 and FCC Rules Part 22 requirements. The test results of this report relate only to the tested sample identified in this report.

in Lin Prepared By Calvin Liu Nov. 05, 2019 (Project Engineer) **Reviewed By** Max Zhang Nov. 05, 2019 (Reviewer) Approved By Forrest Lei Nov. 05, 2019 Authorized Officer

2. GENERAL INFORMATION

2.1PRODUCT DESCRIPTION

The EUT is a **Handheld UHF Transceiver** designed for voice/data communication. It is designed by way of utilizing the FM/4FSK modulation achieves the system operating.

A major technical description of EUT is described as following:

Communication Type	Voice	
Hardware Version	BR200-V1.0	
Software Version	1.0	
Modulation	FM	
Emission Type	11K0F3E	
Emission Bandwidth	Analog: 10.253KHz(2W-12.5 KHz)	
Peak Frequency Deviation	1.52KHz	
Audio Frequency Response	7.33dB	
Maximum Transmitter Power	Analog: 32.95dBm(2W-12.5 KHz)	
Output power Modification	2W (It was fixed by the manufacturer, any individual can't arbitrarily change it.)	
Data Rate	12.5KHz(Channel Spacing)	
Antenna Designation	Detachable	
Antenna Gain	1.5dBi	
Power Supply	DC 3.7V,1750mAh (by battery) charging for DC4.2V	
Limiting Voltage	DC 3.15V-4.26V	
Operation Frequency Range and Channel	Frequency Range:450 MHz to 470 MHz (UHF) Channel Separation: 12.5KHz(Analog) Bottom Channel: 450.025MHz Middle Channel: 454.025MHz High Channel: 469.975MHz	
Frequency Tolerance	1.081ppm	

Report No.: AGC09350191001FE10 Page 7 of 61

Frequency Range Rated Transmit (MHz) Power(W)(Conducted)		Transmit Mode/Emission Designator	
450-470 2W		11K0F3E(Analog Vioce;NB)	

Channel No. (6.25KHz)	Channel No. (12.5KHz)	12.5KHz Channel Spaced 400MHz Band Plan(MHz)		
1	1-2	450.025		
2	1-2	450.025		
3	3-4	460.025		
4	3-4	400.025		
5	5.6	460.075		
6	5-6	469.975		

FCC Rules and Regulations Part 2.202: Necessary Bandwidth and Emission Bandwidth

For FM Mode (ChannelSpacing:12.5kHz)

Emission Designator 11K0F3E

In this case, the maximum modulating frequency is 3.0 kHz with a 2.5 kHz deviation.

BW = 2(M+D) = 2*(3.0 kHz + 2.5 kHz) = 11 kHz = 11K0F3E

portion of the designator represents an FM voice transmission

Therefore, the entire designator for 12.5 kHz channel spacing FM mode is 11K0F3E.

2.2RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: **MMABR200P**, filing to comply with Part 2, Part 22, and Part 90 of the Federal Communication Commission rules.

2.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-E (2016).

2.4 TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
FCC Test Firm Registration Number	975832
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

2.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

3. SYSTEM TEST CONFIGURATION

3.1EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

3.3 GENERAL TECHNICAL REQUIREMENTS

For FCC Part 90& Part 22 requirements:

- (1). Section 90.205 &22.565: RF Output Power
- (2). Section 90.207: Modulation Characteristic
- (3). Section 90.209 &22.359: Occupied Bandwidth
- (4). Section 90.210&22.359: Emission Mask
- (5). Section 90.213&22.355: Frequency Tolerance
- (6). Section 90.214: Transient Frequency Behavior

3.4CONFIGURATION OF TESTED SYSTEM

Fig. 2-1 Configuration of Tested System

EUT

Table 2-1 Equipment Used in Tested System

Item	Equipment	Model No.	Identifier	Note
1	Handheld UHF Transceiver	BR200	FCC ID: MMABR200P	EUT
2	Desktop charger	N/A	DC 4.2V, 500mA	Accessory
3	Adapter	BAB200	Input: AC 100-240V, 50/60Hz, 0.3A Output: DC 5V 1000mA	Accessory
4	Battery	BAB200	DC 3.7V 1750mAh	Accessory
5	Back clip	N/A	N/A	Accessory

4. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§90.205 & 22.565	Maximum Transmitter Power	Compliant
§90.207	Modulation Characteristic	Compliant
§90.209& 22.359	Occupied Bandwidth	Compliant
§90.210& 22.359	Emission Mask	Compliant
§90.213& 22.355	Frequency Tolerance	Compliant
§90.214	Transient Frequency Behavior	Compliant

LIST OF EQUIPMENTS USED

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2019	Jun.11 , 2020
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 20, 2018	Dec. 19, 2019
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep.16, 2019	Sep.15, 2021
preamplifier	ChengYi	EMC184045SE	980508	Oct.29, 2019	Oct 28, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 26, 2018	May. 25, 2020
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun. 12, 2019	Jun.11 , 2020
HORN ANTENNA	EM	EM-AH-10180	/	Mar.01, 2018	Feb.29, 2020
SIGNAL GENERATOR	AGILENT	E4421B	122501288	May. 13, 2019	May. 12, 2020
SIGNAL GENERATOR	R&S	SMT03	A0304261	Jun. 12, 2019	Jun.11 , 2020
ANTENNA	SCHWARZBECK	VULB9168	VULB9168-494	Jan. 09, 2019	Jan. 08, 2020
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep.24, 2019	Sep.23, 2020
Modulation Domain Analyzer	HP	53310A	3121A02467	Oct.29, 2019	Oct 28, 2020
Small environmental tester	ESPEC	SH-242		Feb. 25, 2019	Feb. 24, 2020
RF Communication Test Set	HP	8920B		Jun. 12, 2019	Jun.11 , 2020
Attenuator	Weinachel Corp	58-30-33	ML030	Jun. 12, 2019	Jun.11 , 2020
Vector Analyzer	Agilent	E4440A		Feb. 27, 2019	Feb. 26, 2020
RF Cable	R&S	1#		Each time	N/A
RF Cable	R&S	2#		Each time	N/A

5. DESCRIPTION OF TEST MODES

RF TEST MODES

The EUT (**Handheld UHF Transceiver**) has been tested under normal operating condition. (The top channel, the middle channel and the bottom channel) are chosen for testing at each channel separation.

Analog:

No.	TEST MODES	CHANNEL SEPARATION	
1	Low Channel	12.5 KHz	
2	Middle Channel	12.5 KHz	
3	High Channel	12.5 KHz	

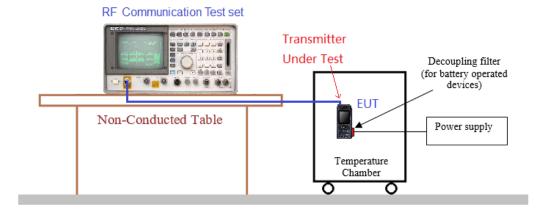
Note: Only the result of the worst case was recorded in the report.

6. FREQUENCY TOLERANCE

6.1 PROVISIONS APPLICABLE

- a). According to FCC §2.1055, § 22.355 and §90.213, the frequency stability shall be measured with variation of ambient temperature from −30°C to +50°C centigrade.
- b). According to FCC Part 2 Section 2.1055(d)(2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacturer.
- c). According to FCC Part 90 Section 90.213, the frequency tolerance must be maintained within 0.00025% for 12.5 KHz channel separation and 0.0001% for 6.25 KHz channel separation.
- d). According to FCC Part 22 Section 22.355, Frequency error must be kept within plus or minus 5ppm.

6.2 MEASUREMENT PROCEDURE


6.2.1 Frequency stability versus environmental temperature

- 1. Setup the configuration per figure 1 for frequencies measurement inside an environment chamber, Install new battery in the EUT.
- 2. Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1KHz and Video Resolution Bandwidth to 1KHz and Frequency Span to 50KHz.Record this frequency as reference frequency.
- 3. Set the temperature of chamber to 50 °C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10℃ decreased per stage until the lowest temperature -30℃ is measured, record all measured frequencies on each temperature step.

6.2.2 Frequency stability versus input voltage

- Setup the configuration per figure 1 for frequencies measured at temperature if it is within 15℃ to 25℃. Otherwise, an environment chamber set for a temperature of 20℃ shall be used. The EUT shall be powered by DC 3.7V.
- 2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 KHz and Video Resolution Bandwidth to 1KHz. Record this frequency as reference frequency.
- 3. Supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

6.3 TEST SETUP BLOCK DIAGRAM

6.4 TEST RESULTS FCC PART 90: UHF:

Analog:

(1) Frequency stability versus input voltage (Supply nominal voltage is 3.70V)-2W-12.5KHz

Environment	Power		ncy	Limit:	
Temperature(°C)	(V)	450.025MHz	469.975MHz	ppm	
50	DC 3.70V	0.913	0.653	0.671	
40	DC 3.70V	0.594	0.969	0.767	
30	DC 3.70V	0.889	1.013	0.936	
20	DC 3.70V	0.981	1.033	0.925	
10	DC 3.70V	0.731	0.971	0.795	2.5
0	DC 3.70V	0.556	0.836	0.533	
-10	DC 3.70V	0.728	0.717	0.816	
-20	DC 3.70V	0.513	0.700	0.756	
-30	DC 3.70V	0.575	0.803	0.956	
Result			Pass		

(2) Frequency stability versus input voltage (Battery endpoint is 3.15V) -2W-12.5KHz

Environment	Power Supply		Reference Frequency					
Temperature(°C)	(V)	450.025MHz	454.025MHz	469.975MHz	ppm			
50	DC 3.15V	0.970	0.619	0.800				
40	DC 3.15V	0.710	0.745	0.621				
30	DC 3.15V	0.489	0.360	0.774				
20	DC 3.15V	0.458	0.874	0.494				
10	DC 3.15V	0.434	0.624	0.471	2.5			
0	DC 3.15V	0.655	0.515	0.640				
-10	DC 3.15V	0.580	0.356	0.434				
-20	DC 3.15V	0.936	0.362	0.434				
-30	DC 3.15V	0.970	0.619	0.800				
Result			Pass					

FCC PART 22: UHF: Analog:

(1) Frequency stability versus input voltage (Supply nominal voltage is 3.70V)-2W-12.5KHz

Environment	Power	Reference Frequency	Limit:
Temperature(°C)	(V)	454.025MHz	ppm
50	DC 3.70V	0.731	
40	DC 3.70V	0.518	
30	DC 3.70V	0.651	
20	DC 3.70V	0.621	
10	DC 3.70V	1.081	5
0	DC 3.70V	0.905	
-10	DC 3.70V	1.031	
-20	DC 3.70V	0.634	
-30	DC 3.70V	0.745	
Result		Pass	

(2) Frequency stability versus input voltage (Battery endpoint is 3.15V) -2W-12.5KHz

Environment	Power	Reference Frequency	Limit:
Temperature(°C)	(V)	454.025MHz	ppm
50	DC 3.15V	0.799	
40	DC 3.15V	0.455	
30	DC 3.15V	0.318	
20	DC 3.15V	0.743	
10	DC 3.15V	0.969	5
0	DC 3.15V	0.589	
-10	DC 3.15V	0.537	
-20	DC 3.15V	0.429	
-30	DC 3.15V	0.371	
Result		Pass	

7. EMISSION BANDWIDTH

7.1 PROVISIONS APPLICABLE

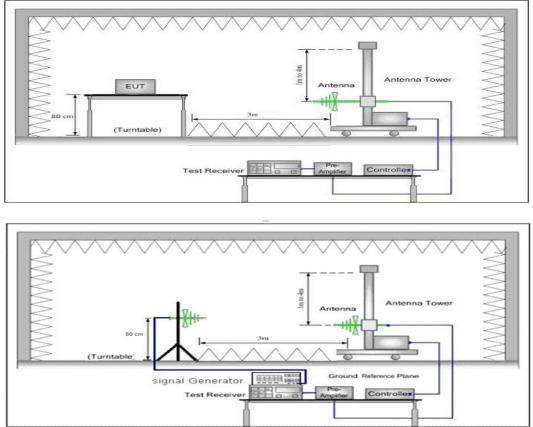
FCC Part 90 & FCC Part 22:

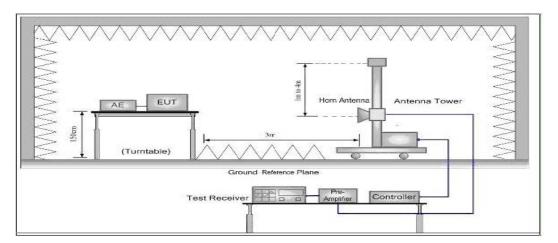
The authorized bandwidth shall be 11.25 KHz for 12.5 KHz channel separation and 6 KHz for 6.25 KHz channel separation.

7.2 MEASUREMENT PROCEDURE

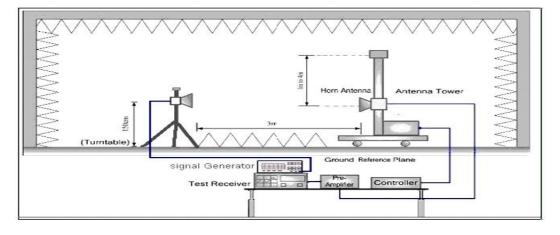
1). The EUT was placed on a turn table which is 0.8m above ground plane.

2). The EUT was modulated by 2.5 KHz Sine wave audio signal, The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5 kHz channel spacing).

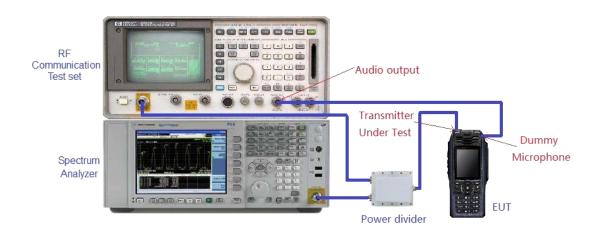

3). Set SPA Center Frequency = fundamental frequency, RBW=100Hz.VBW= 300 Hz, Span = 50 KHz.


4). Set SPA Max hold. Mark peak, -26 dB.

7.3 TEST SETUP BLOCK DIAGRAM

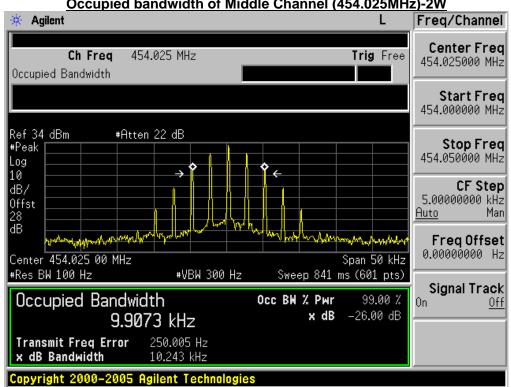

Radiation method:

Radiated Below1GHz



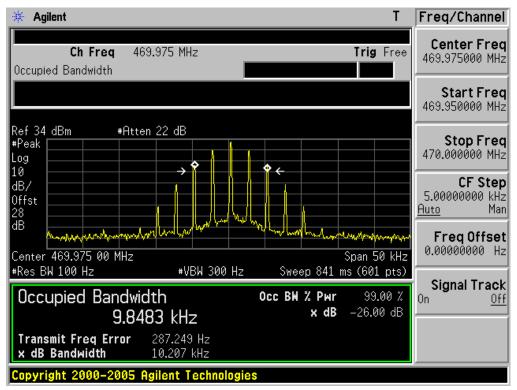
Radiated Above 1 GHz

Conduction method:


7.4 MEASUREMENT RESULT

UHF: Analog:

26 DB BANDWIDTH MEASUREMENT RESULT							
	12.5 KHz Channel Separation						
Operating Frequency	Test Data Limits		Result				
450.025MHz	10.253 KHz	11.25 KHz	Pass				
454.025MHz	10.243 KHz	11.25 KHz	Pass				
469.975MHz	10.207 KHz	11.25 KHz	Pass				


Occupied bandwidth of Bottom Channel (450.025MHz)-2W

Occupied bandwidth of Middle Channel (454.025MHz)-2W

Occupied bandwidth of Top Channel (469.975MHz)-2W

7. UNWANTED RADIATION

8.1 PROVISIONS APPLICABLE

According to FCC §2.1049, §22.359 and §90.210, the power of each unwanted emission shall be less than Transmitted Power as specified below for transmitters designed to operate with each channel separation.

Emission Mask D -for 12.5 KHz Channel Separation:

- (1).On any frequency removed from the center of the authorized bandwidth fo to 5.625 KHz removed from fo: Zero dB.
- (2).On any frequency removed from the center of the authorized bandwidth by a displacement Frequency (fd in KHz) fo of more than 5.625 KHz but no more than 12.5 KHz: At least 7.27(fd-2.88 KHz) dB
- (3).On any frequency removed from the center of the authorized bandwidth by a displacement Frequency (fd in KHz)fo of more than 12.5 KHz: At least 50+10 log(P) dB or 70 dB, whichever is lesser attenuation.

According to FCC §22.359:

(a) *Out of band emissions.* The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

8.2 MEASUREMENT PROCEDURE

(1)On a test site, the EUT shall be placed on a turntable, and in the position closest to the normal use as declared by the user.

(2)The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the transmitter.

(3)The output of the antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.

(4)The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.

(5)The test antenna shall be raised and lowered through the specified range of height until the measuring receiver detects a maximum signal level.

(6)The transmitter shall than be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

(7)The test antenna shall be raised and lowered again through the specified range of height until the measuring receiver detects a maximum signal level.

(8)The maximum signal level detected by the measuring receiver shall be noted.

(9)The measurement shall be repeated with the test antenna set to horizontal polarization.

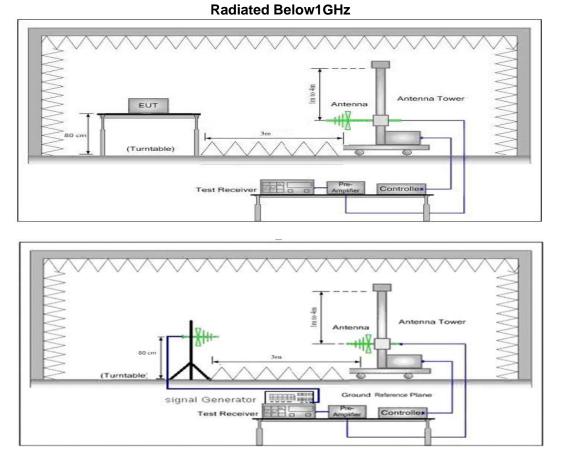
(10) Replace the antenna with a proper Antenna (substitution antenna).

(11)The substitution antenna shall be oriented for vertical polarization and, if necessary, the length of the substitution antenna shall be adjusted to correspond to the frequency of transmitting.

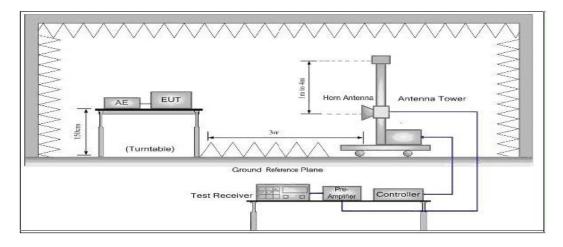
(12)The substitution antenna shall be connected to a calibrated signal generator.

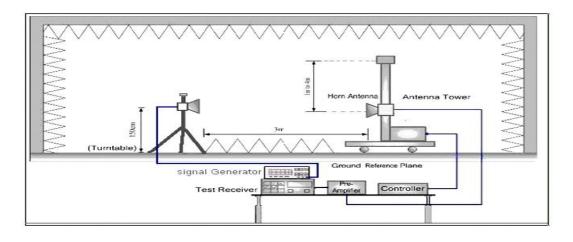
(13)If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

(14)The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.


(15)The input signal to substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.

(16)The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.


(17)The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.


8.3 TEST SETUP BLOCK DIAGRAM

SUBSTITUTION METHOD: (Radiated Emissions) Radiation method:

Radiated Above 1 GHz

8.4 MEASUREMENT RESULTS: Applicable Standard

FCC §2.1053, §22.359 and §90.210

On any frequency removed from the center of the authorized bandwidth by a displacement

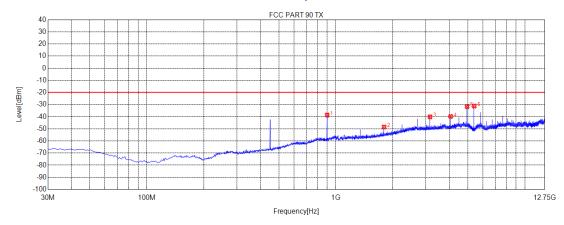
Frequency (fd in KHz)for of more than 12.5 KHz: at least 50+10 log(P) dB or 70 dB, whichever is lesser attenuation.

Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for below 1GHz, and 1MHz for above 1GHz. Sufficient scans were taken to show any out of band emissions up to 10 harmonic.

In the semi-anechoic chamber, setup as illustrated above the DUT placed on the 0.8m height of Turn Table, rotated the table 45 degree each interval to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power for each degree interval. The "Read Value" is the spectrum reading of maximum power value.

The substitution antenna is substituted for DUT at the same position and signals generator (S.G) export the CW signal to the substitution antenna via a TX cable. The receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum radiation power. Record the power level of maximum radiation power from spectrum. So, the Measured substitution value = Ref level of S.G + TX cables loss – Substituted Antenna Gain.


EIRP = "Read Value" + Measured substitution value + 2.15.

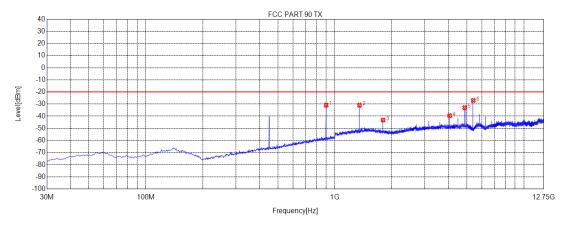
Limit: FCC PART 90:

```
At least 50+10 log (P) =50+10log (2) =53.01 (dB)—2W 33.01-53.01=-20 dBm
FCC PART 22:
At least 43+10 log (P) =43+10log (2) =46.01 (dB)—2W 33.01-46.01=-13 dBm
```

UHF:

Measurement Result for 12.5 KHz Channel Separation @ 450.025MHz-2W-Horizontal

----- Limit # Final Test ----- Horizontal

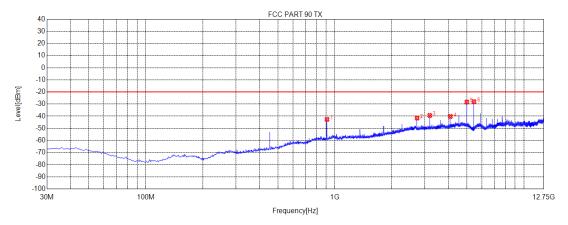

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	900.0900	-81.62	-38.68	-20.00	18.68	42.94	24	Horizontal
2	1800.2550	-47.56	-48.52	-20.00	28.52	-0.96	343	Horizontal
3	3150.4650	-45.65	-40.09	-20.00	20.09	5.56	343	Horizontal
4	4050.6051	-47.70	-39.77	-20.00	19.77	7.93	351	Horizontal
5	4950.7451	-41.36	-31.65	-20.00	11.65	9.71	70	Horizontal
6	5400.8151	-41.11	-31.23	-20.00	11.23	9.88	314	Horizontal

Note:

1. Factor=Antenna Factor + Cable loss. (Below 1GHz)

2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)

3. Margin=Limit- Level

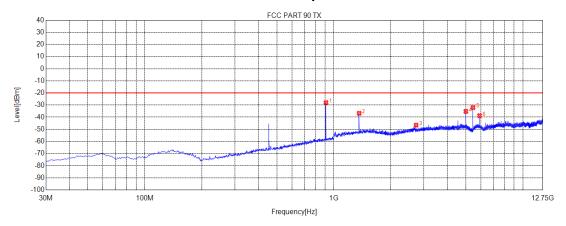

Measurement Result for 12.5 KHz Channel Separation @ 450.025MHz-2W-Vertical

----- Limit 🔹 Final Test ------ Vertical

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	900.0900	-74.17	-30.86	-20.00	10.86	43.31	9	Vertical
2	1350.1850	-32.12	-30.95	-20.00	10.95	1.17	9	Vertical
3	1800.2550	-44.32	-43.21	-20.00	23.21	1.11	9	Vertical
4	4050.6051	-46.92	-39.55	-20.00	19.55	7.37	17	Vertical
5	4863.7864	-41.64	-32.97	-20.00	12.97	8.67	178	Vertical
6	5400.8151	-36.82	-26.97	-20.00	6.97	9.85	46	Vertical

Note:

- 1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
- 2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
- 3. Margin=Limit- Level


Measurement Result for 12.5 KHz Channel Separation @ 454.025MHz-2W-Horizontal

— Limit 🔹 Final Test — Horizontal

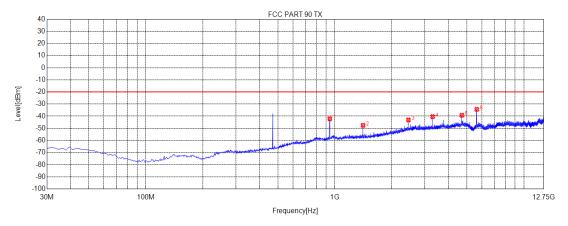
NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	908.8200	-85.75	-42.62	-20.00	22.62	43.13	275	Horizontal
2	2723.8974	-46.35	-41.53	-20.00	21.53	4.82	341	Horizontal
3	3178.6679	-44.96	-39.35	-20.00	19.35	5.61	13	Horizontal
4	4087.0337	-48.27	-40.22	-20.00	20.22	8.05	5	Horizontal
5	4994.2244	-38.09	-28.35	-20.00	8.35	9.74	32	Horizontal
6	5448.9949	-37.89	-27.99	-20.00	7.99	9.90	32	Horizontal

Note:

- 1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
- 2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
- 3. Margin=Limit- Level
- 4. In this case, Part 22 (-13 dBm) is less than the limit of Part 90 (-20 dBm), so we do not need to test Part 22, which meets the spurious limits of PART 90+22.

Measurement Result for 12.5 KHz Channel Separation @ 454.025MHz-2W-Vertical

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	908.8200	-71.36	-27.96	-20.00	7.96	43.40	1	Vertical
2	1361.9362	-38.00	-36.76	-20.00	16.76	1.24	9	Vertical
3	2723.8974	-50.84	-46.54	-20.00	26.54	4.30	270	Vertical
4	4994.2244	-44.11	-35.22	-20.00	15.22	8.89	9	Vertical
5	5448.9949	-41.99	-32.03	-20.00	12.03	9.96	9	Vertical
6	5902.5903	-49.52	-38.76	-20.00	18.76	10.76	17	Vertical


Note:

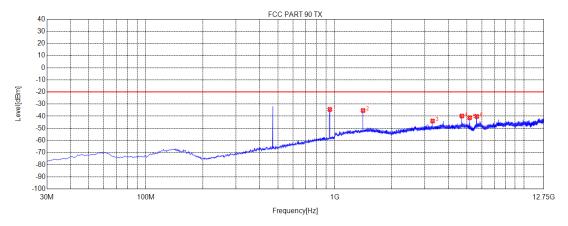
1. Factor=Antenna Factor + Cable loss. (Below 1GHz)

2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)

3. Margin=Limit- Level

4. In this case, Part 22 (-13 dBm) is less than the limit of Part 90 (-20 dBm), so we do not need to test Part 22, which meets the spurious limits of PART 90+22.

Measurement Result for 12.5 KHz Channel Separation @ 469.975MHz-2W-Horizontal


----- Limit 🔹 Final Test ------ Horizontal

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	940.8300	-85.95	-42.12	-20.00	22.12	43.83	162	Horizontal
2	1410.1160	-44.13	-47.53	-20.00	27.53	-3.40	313	Horizontal
3	2452.4452	-47.14	-43.07	-20.00	23.07	4.07	57	Horizontal
4	3290.3040	-46.21	-40.40	-20.00	20.40	5.81	11	Horizontal
5	4699.2699	-48.81	-39.23	-20.00	19.23	9.58	38	Horizontal
6	5639.3639	-44.51	-34.34	-20.00	14.34	10.17	29	Horizontal

Note:

- 1. Factor=Antenna Factor + Cable loss. (Below 1GHz)
- 2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)

3. Margin=Limit- Level

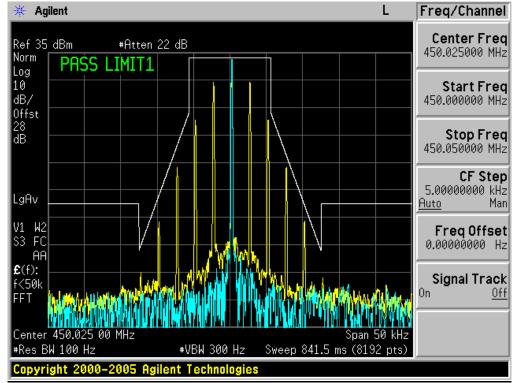
Measurement Result for 12.5 KHz Channel Separation @ 469.975MHz-2W -Vertical

----- Limit 🔹 Final Test ----- Vertical

NO.	Freq. [MHz]	Reading [dBm]	Level [dBm]	Limit [dBm]	Margin [dB]	Factor [dB]	Angle [°]	Polarity
1	940.8300	-78.14	-34.41	-20.00	14.41	43.73	9	Vertical
2	1410.1160	-36.87	-35.31	-20.00	15.31	1.56	26	Vertical
3	3290.3040	-49.67	-43.97	-20.00	23.97	5.70	336	Vertical
4	4700.4450	-48.23	-39.83	-20.00	19.83	8.40	1	Vertical
5	5170.4920	-50.55	-41.25	-20.00	21.25	9.30	1	Vertical
6	5639.3639	-50.55	-40.23	-20.00	20.23	10.32	9	Vertical

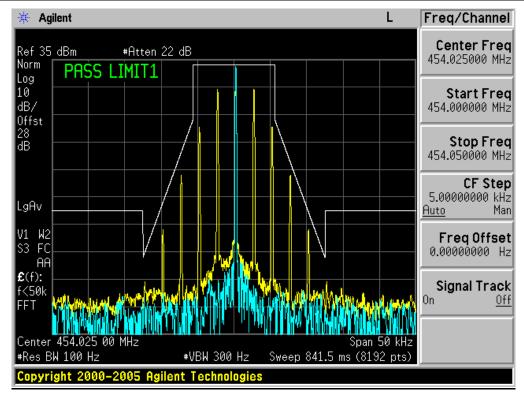
Note:

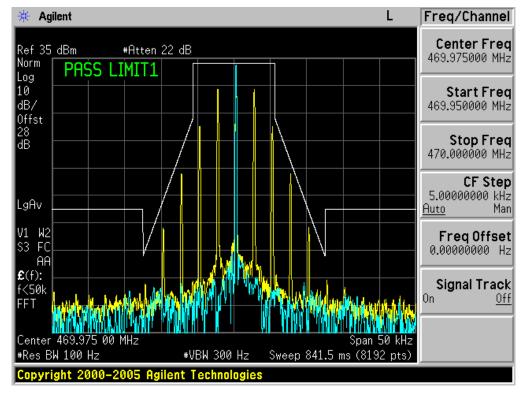
- 2. Factor=Antenna Factor+ Cable loss-Pre-amplifier.(Above 1 GHz)
- 3. Margin=Limit- Level


^{1.} Factor=Antenna Factor + Cable loss. (Below 1GHz)

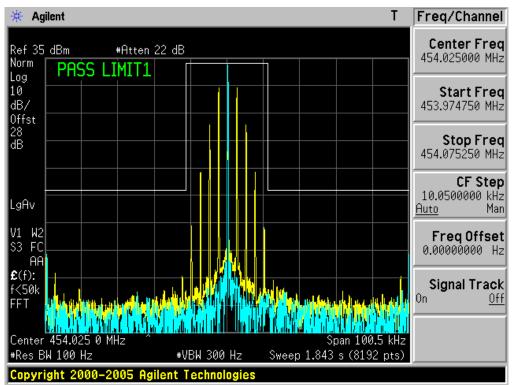
8.5 EMISSION MASK PLOT

The detailed procedure employed for Emission Mask measurements are specified as following:


- The transmitter shall be modulated by a 2.5 kHz audio signal,
- The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz.


UHF: Analog:

The Worst Emission Mask D for (450.025 MHz) of 12.5 KHz channel Separation (2W)


The Worst Emission Mask D for (454.025 MHz) of 12.5 KHz channel Separation (2W)

The Worst Emission Mask D for (469.975 MHz) of 12.5 KHz channel Separation (2W)

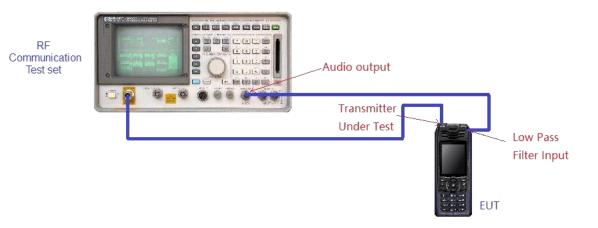
The Worst Emission Mask § 22.359 for (454.025 MHz) of 12.5 KHz channel Separation (2W)

9.MODULATION CHARACTERISTICS

9.1 PROVISIONS APPLICABLE

According to FCC§2.1047 and §90.207, for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

9.2 MEASUREMENT METHOD

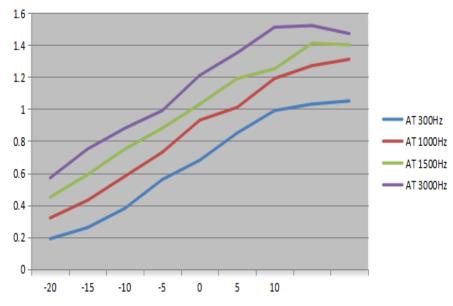

9.2.1 Modulation Limit

(1). Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1KHz using this level as a reference (0dB) and vary the input level from -20 to +20dB. Record the frequency deviation obtained as a function of the input level.

(2). Repeat step 1 with input frequency changing to 300, 1000, 1500 and 3000Hz in sequence.

9.2.2 Audio Frequency Response

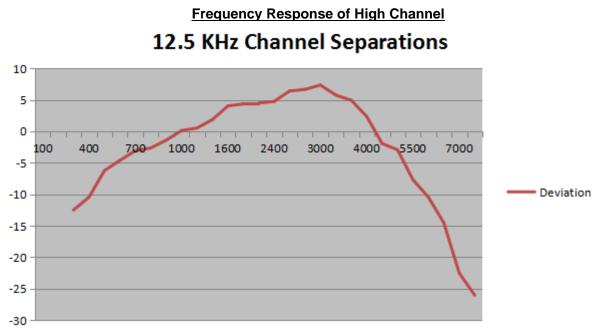
- (1). Configure the EUT as shown in figure 1.
- (2). Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0 dB).
- (3). Vary the Audio frequency from 100 Hz to 10 KHz and record the frequency deviation.
- (4). Audio Frequency Response = 20log10 (Deviation of test frequency/Deviation of 1 KHz reference).



9.3 MEASUREMENT RESULT

UHF: Analog: <u>TEST RESULT TS FOR 2W</u> (A). MODULATION LIMIT:

Bottom Channel @ 12.5 KHz Channel Separations


Modulation Level (dB)	Peak Freq. Deviation At 300 Hz	Peak Freq. Deviation At 1000 Hz	Peak Freq. Deviation At 1500 Hz	Peak Freq. Deviation At 3000 Hz
-20	0.19	0.32	0.45	0.57
-15	0.26	0.43	0.59	0.75
-10	0.38	0.58	0.75	0.88
-5	0.56	0.73	0.88	0.99
0	0.68	0.93	1.03	1.21
+5	0.85	1.01	1.19	1.35
+10	0.99	1.19	1.25	1.51
+15	1.03	1.27	1.41	1.52
+20	1.05	1.31	1.40	1.47

Note: All the modes had been tested, but only the worst data recorded in the report.

(B). AUDIO FREQUENCY RESPONSE:

Frequency (Hz)	Deviation (KHz)	Audio Frequency
100		Response(dB)
200		
300	0.19	
400	0.19	-12.49
500	0.24	-6.24
600	0.39	-6.24 -4.62
700	0.56	-3.10
800	0.59	-2.64
900	0.68	-1.41
1000	0.81	0.11
1200	0.85	0.53
1400	0.99	1.85
1600	1.27	4.01
1800	1.32	4.35
2000	1.34	4.48
2400	1.38	4.74
2500	1.67	6.39
2800	1.72	6.65
3000	1.86	7.33
3200	1.55	5.74
3600	1.41	4.92
4000	1.05	2.36
4500	0.64	-1.94
5000	0.57	-2.94
5500	0.33	-7.69
6000	0.24	-10.46
6500	0.15	-14.54
7000	0.06	-22.50
7500	0.04	-26.02
9000		
10000		
14000		
18000		
20000		
30000		

Note: All the modes had been tested, but only the worst data recorded in the report.

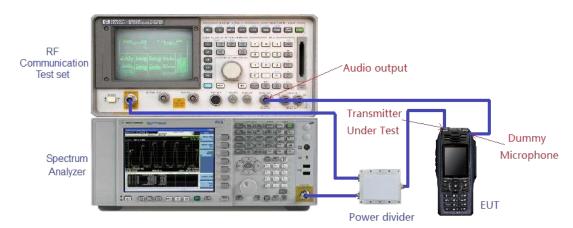
8. MAXIMUMN TRANSMITTER POWER (CONDUCTED OUTPUT POWER) PEAK POWER

10.1 PROVISIONS APPLICABLE

Per FCC §2.1046 § 22.565 and §90.205: Maximum ERP is dependent upon the station's antenna HAAT and required service area.

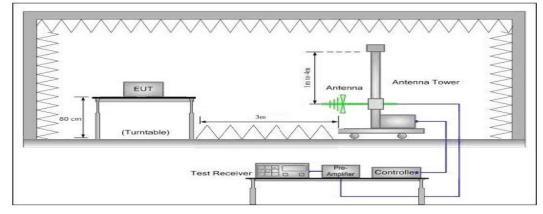
10.2 TEST PROCEDURE

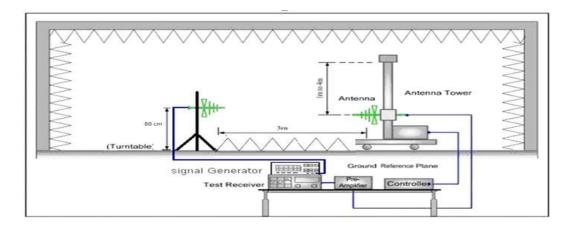
The RF output of Two-way Radio was conducted to a spectrum analyzer through an appropriate attenuator. In the semi-anechoic chamber, setup as illustrated above the DUT placed on the 0.8m height of Turn Table,

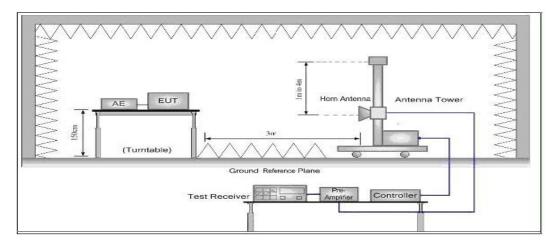

rotated the table 45 degree each interval to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power for each degree interval. The "Read Value" is the spectrum reading of maximum power value.

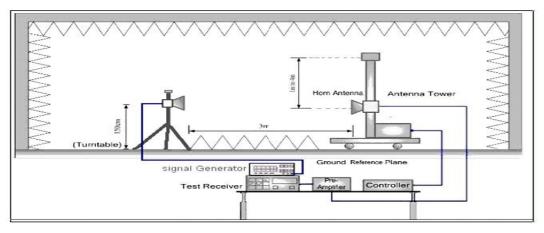
The substitution antenna is substituted for DUT at the same position and signals generator (S.G) export the CW signal to the substitution antenna via a TX cable. The receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum radiation power. Record the power level of maximum radiation power from spectrum. So, the Measured substitution value = Ref level of S.G + TX cables loss – Substituted Antenna Gain.

EIRP = "Read Value" + Measured substitution value + 2.15.


10.3 TEST CONFIGURATION


Conducted Output Power:


Effective Radiated Power


Radiated Below1GHz

Radiated Above 1 GHz

10.4 TEST RESULT

The maximum Conducted Power (CP) for UHF is Analog: 2W for 12.5 KHz Channel Separation UHF Calculation Formula: CP = R + A + L

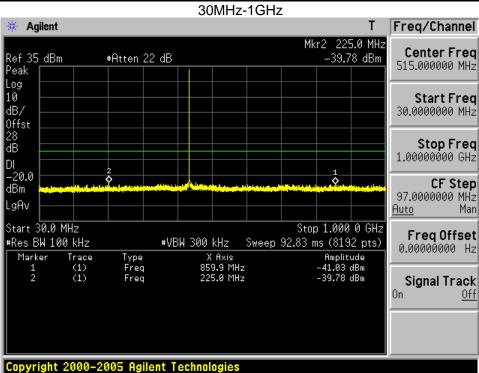
Note:

CP: The final Conducted Power

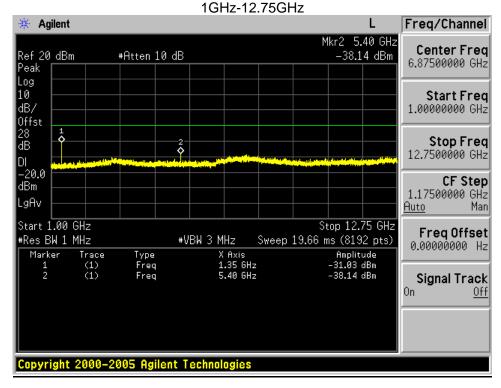
- R : The reading value from spectrum analyzer
- A : The attenuation value of the used attenuator

L : The loss of all connection cables

UHF: Analog:


Conducted Power Measurement Results-2W		
Channel Separation	Channel	Measurement Result (dBm)
		For 33.01dBm(2W)
12.5 KHz	Bottom(450.025MHz)	32.95
	Middle(454.025MHz)	32.89
	Top (469.975MHz)	32.91

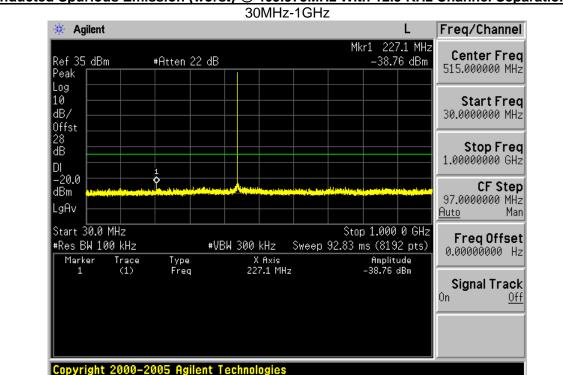
Radiated Power Measurement Results-2W		
Channel Separation	Channel	Measurement Result (dBm)
		For 33.01dBm(2W)
	Bottom(450.025MHz)	32.88
12.5 KHz	Middle(454.025MHz)	32.82
	Top (469.975MHz)	32.87


10.5 CONDUCT SPURIOUS PLOT

FCC PART 90: UHF: Analog:

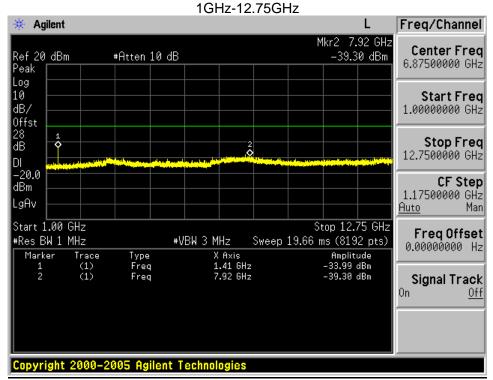
Conducted Spurious Emission (worst) @ 450.025MHz With 12.5 KHz Channel Separation-2W


Conduct Spurious Emission (worst) @ 450.025MHz With 12.5 KHz Channel Separation-2W

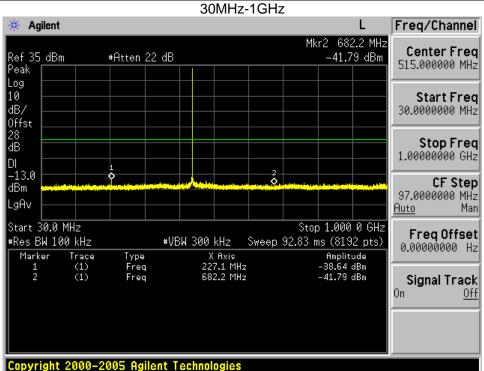


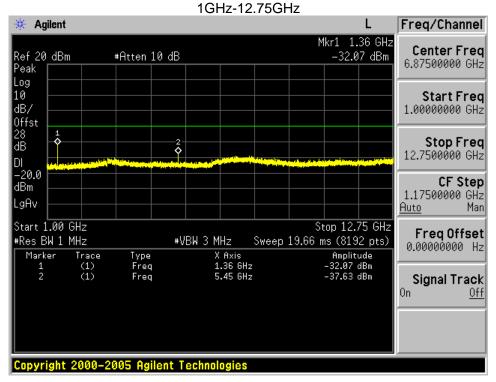
30MHz-1GHz 🔆 Agilent Freg/Channel L Mkr1 227.1 MHz Center Freq Ref 35 dBm #Atten 22 dB -38.76 dBm 515.000000 MHz Peak Log 10 Start Freq dB/ 30.0000000 MHz Offst 28 dB Stop Freq 1.00000000 GHz DI –20.0 dBm ò **CF** Step 97.0000000 MHz LgAv Auto Man Start 30.0 MHz Stop 1.000 0 GHz FreqOffset 0.00000000 Hz #Res BW 100 kHz #VBW 300 kHz Sweep 92.83 ms (8192 pts) X Axis 227.1 MHz Amplitude -38.76 dBm Type Freq Marker Trace (1) 1 Signal Track 0n Off Copyright 2000-2005 Agilent Technologies

Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-2W


Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-2W 1GHz-12.75GHz

Conducted Spurious Emission (worst) @ 469.975MHz With 12.5 KHz Channel Separation-2W


Conduct Spurious Emission (worst) @ 469.975MHz With 12.5 KHz Channel Separation-2W


Note: All the test frequencies was tested, but only the worst data be recorded in this part.

FCC PART 22: UHF: Analog:

Conducted Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-2W

Conduct Spurious Emission (worst) @ 454.025MHz With 12.5 KHz Channel Separation-2W

11.RANSMITTER FREQUENCY BEHAVIOR

11.1PROVISIONS APPLICABLE

FCC §90.214

	Maximum fragmanau	All equipment	
Time intervals ^{1, 2}	Maximum frequency difference ³	150 to 174 MHz	421 to 512 MHz
Transient Frequency Behavior for Equipment Designed to Operate on 25 kHz Channels			
t1 ⁴ t2 t3 ⁴	± 25.0 kHz ± 12.5 kHz ± 25.0 kHz	5.0 ms 20.0 ms 5.0 ms	10.0 ms 25.0 ms 10.0 ms
Transient Frequency Behavior for Equipment Designed to Operate on 12.5 kHz Channels			
t ₁ ⁴ t ₂ t ₃ ⁴	± 12.5 kHz ± 6.25 kHz ± 12.5 kHz	5.0 ms 20.0 ms 5.0 ms	10.0 ms 25.0 ms 10.0 ms
Transient Frequency Behavior for Equipment Designed to Operate on 6.25 kHz Channels			
t ₁ ⁴ t ₂ t ₃ ⁴	± 6.25 kHz ± 3.125 kHz ± 6.25 kHz	5.0 ms 20.0 ms 5.0 ms	10.0 ms 25.0 ms 10.0 ms

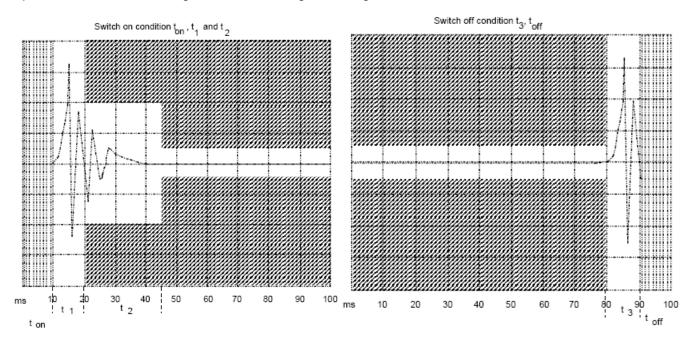
 $^{1}t_{on}$ is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing. t₁ is the time period immediately following t_{on}. t₂ is the time period immediately following t₁. t₃ is the time period from the instant when the transmitter is turned off until t_{off}. t_{off} is the instant when the 1 kHz test signal starts to rise. ² During the time from the end of t₂ to the beginning of t₃, the frequency difference must not exceed the limits specified in on 212 §90.213.

³ Difference between the actual transmitter frequency and the assigned transmitter frequency. ⁴ If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

11.2 TEST METHOD

TIA/EIA-603 2.2.19.3

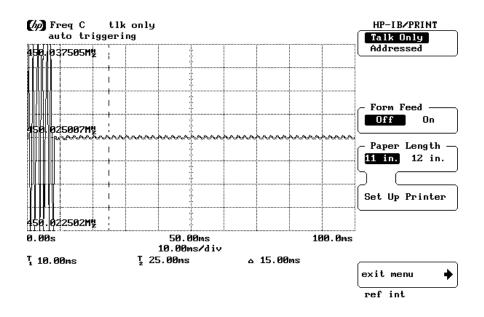
11.3 DESCRIBE LIMIT LINE OF RANSMITTER FREQUENCY BEHAVIOR

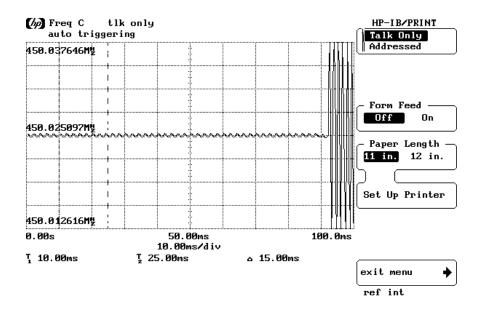

ton: The switch-on instant ton of a transmitter is defined by the condition when the output power, measured at the antenna terminal, exceeds 0,1 % of the full output power (-30 dBc).

t1: period of time starting at ton and finishing according to above 11.1

t2: period of time starting at the end of t1 and finishing according to above 11.1

toff: switch-off instant defined by the condition when the output power falls below 0,1 % of the full output power (-30 dBc).


t3: period of time that finishing at toff and starting according to above 11.1

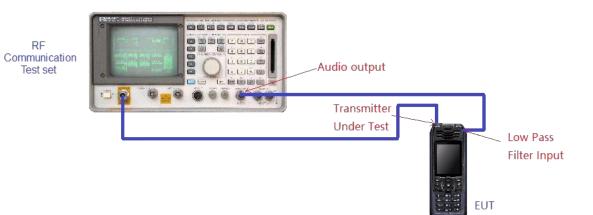

11.4 MEASURE RESULT

UHF:

Transmitter Frequency Behavior @ 12.5 KHz Channel Separation--Off to On

Transmitter Frequency Behavior @ 12.5 KHz Channel Separation--On to Off

9. AUDIO LOW PASS FILTER RESPONSE

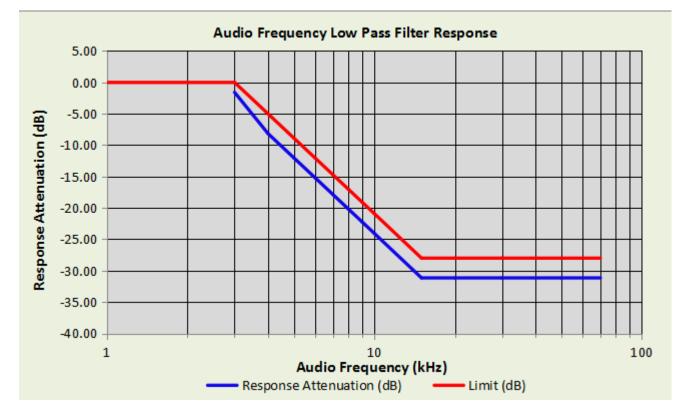

12.1.TEST LIMITS

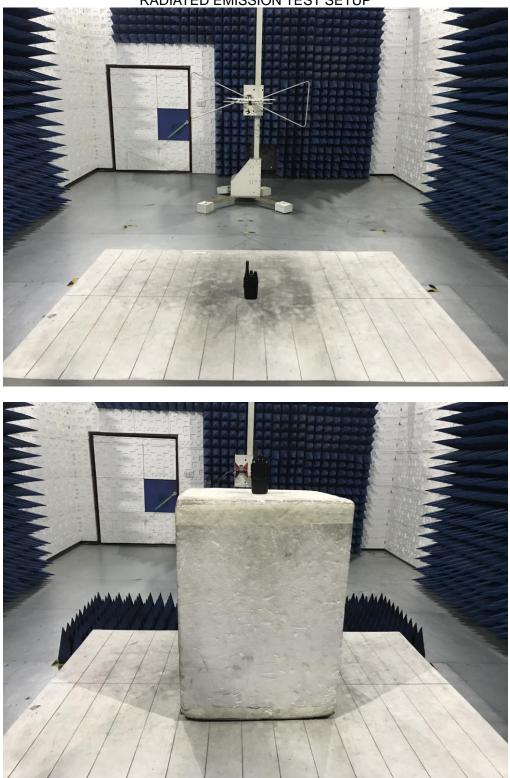
2.1047(a): Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.
90.242(b)(8): Recommended audio filter attenuation characteristics are given below:

Audio band	Minimum Attenuation Rel. to 1 KHz Attenuation
3 –20 KHz	60 log ₁₀ (f/3) dB where f is in KHz
20 – 30 KHz	50dB

12.2. METHOD OF MEASUREMENTS

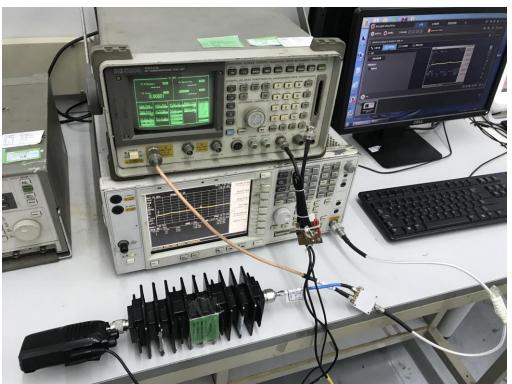
The rated audio input signal was applied to the input of the audio low-pass filter (or of all modulation stages) using an audio oscillator, this input signal level and its corresponding output signal were then measured and recorded using the FFT Digital Spectrum Analyzer. Tests were repeated at different audio signal frequencies from 0 to 50 KHz.




12.3.MEASURE RESULT

Analog:

12.5 KHZ CHANNEL SPACING, F3E, FREQUENCY OF ALL MODULATION STATES (TEST RESULT FOR UHF)-2W


Audio Frequency (kHz)	Response Attenuation (dB)	Limit (dB)
1	0	/
3	-1.58	0.00
4	-8.15	-5.00
5	-12.02	-8.87
6	-15.19	-12.04
7	-17.87	-14.72
8	-20.19	-17.04
9	-22.23	-19.08
10	-24.07	-20.92
15	-31.15	-28.00
20	-31.15	-28.00
30	-31.15	-28.00
50	-31.15	-28.00
70	-31.15	-28.00

APPENDIX I: PHOTOGRAPHS OF SETUP RADIATED EMISSION TEST SETUP

Report No.: AGC09350191001FE10 Page 53 of 61

CONDUCTED TEST SETUP

APPENDIX II PHOTOGRAPHS OF EUT TOTAL VIEW OF EUT

Report No.: AGC09350191001FE10 Page 55 of 61

BOTTOM VIEW OF EUT

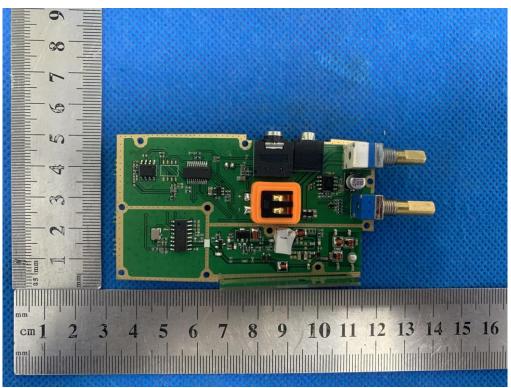
FRONT VIEW OF EUT

LEFT VIEW OF EUT

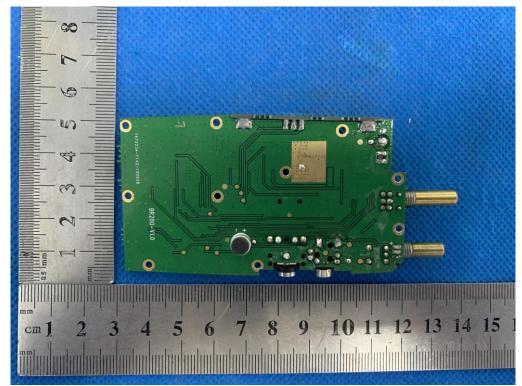
BACK VIEW OF EUT

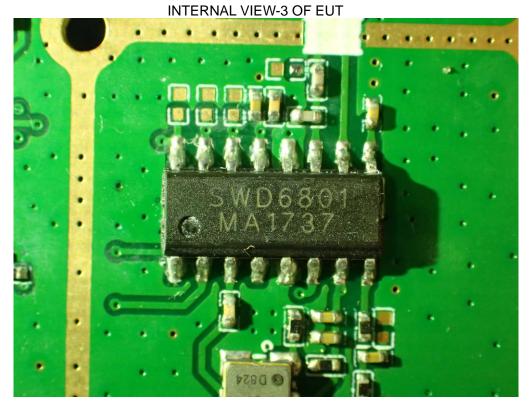
RIGHT VIEW OF EUT

OPEN VIEW-1 OF EUT

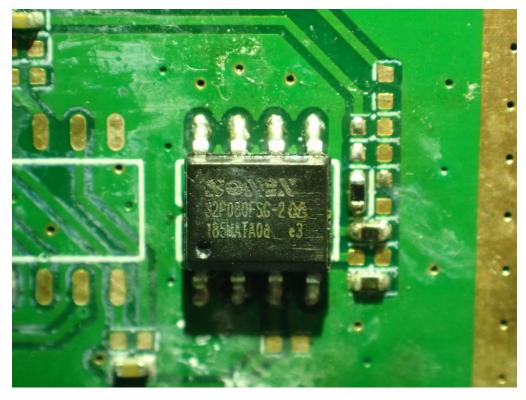


OPEN VIEW-2 OF EUT


OPEN VIEW-3 OF EUT



INTERNAL VIEW-1 OF EUT


INTERNAL VIEW-2 OF EUT

Report No.: AGC09350191001FE10 Page 60 of 61

INTERNAL VIEW-4 OF EUT

Report No.: AGC09350191001FE10 Page 61 of 61

INTERNAL VIEW-5 OF EUT

----END OF REPORT----