

# TEST REPORT

Prepared for: **Miltel Communications Ltd.**

Test of: **TxRxD\_433\_L1 Transceiver**

**FCC ID: MLLSPEEDTRD433L1**

To comply with :**FCC 1998 subpart 15C - Intentional Radiators**

|                         |                                       |  |
|-------------------------|---------------------------------------|--|
| <b>Test Facilities:</b> | Hermon Laboratories Israel            |  |
| <b>Tested by:</b>       | David Heller – TetraWave              |  |
|                         | Michael Feldman - Hermon Laboratories |  |
| <b>Prepared by:</b>     | David Heller – TetraWave              |  |
|                         | Yarum Locker - Miltel Communications  |  |
| <b>Approved by:</b>     | Jacob Y. Graudenz                     |  |
|                         | Miltel Communications                 |  |

**July 1999**

## ***Table of Contents***

|                                                     |    |
|-----------------------------------------------------|----|
| 1. General Information .....                        | 2  |
| 2. Equipment Under Test (E.U.T.) .....              | 3  |
| 3. Operation of E.U.T. .....                        | 4  |
| 4. Test Specifications .....                        | 5  |
| 5. Test Procedures .....                            | 5  |
| 6. Deviations from Specifications .....             | 5  |
| 7. Summary of Test Results .....                    | 6  |
| 8. Measurements Uncertainty .....                   | 6  |
| 9. Measurements Methods and Test Results .....      | 7  |
| Appendix 1. List of Test Equipment .....            | 10 |
| Appendix 2. Test set-up drawings and pictures ..... | 11 |
| Appendix 3. Graphical Test Results .....            | 13 |
| Appendix 4. Photographs of E.U.T. .....             | 16 |

## 1. General Information

### 1.1 Company information

|               |                                             |
|---------------|---------------------------------------------|
| Company Name: | <b>Miltel Communication System Ltd.</b>     |
| Address:      | <b>P.O.Box 138 , Moshav Zafria , ISRAEL</b> |
| Contact Name: | <b>Yarum Locker, General Manager</b>        |

### 1.2 Location of Tests

All the measurements in this report were performed with the calibrated test equipment and at certified test facilities of:

#### **Hermon Laboratories Ltd.**

Rakevet Ind. Zone, P. O. Box 23  
Binyamina 30550, ISRAEL  
Phone: +972 6 6288001  
E-mail: [mail@hermonlabs.com](mailto:mail@hermonlabs.com)  
Fax: +972 (0) 6 6288277  
<http://www.hermonlabs.com/>

## 2. Equipment Under Test (E.U.T.)

---

|                            |                          |
|----------------------------|--------------------------|
| Brand Name                 | <b>Miltel Speed</b>      |
| Model                      | <b>SPEED TxRx_433_L1</b> |
| Unique Type Identification | <b>Transceiver</b>       |
| Serial Number              | <b>99-00163</b>          |
| Country of Manufacture     | <b>ISRAEL</b>            |
| FCC ID Identifier          | <b>MLLSPEEDTRD433L1</b>  |
| Date of tests              | <b>15 July 99</b>        |

### Description of E.U.T.

The EUT is a DC operated Transceiver connected to a Concentrator or a Repeater. The EUT includes 2 coaxial cables and 2 dipole antennas and was so tested. When deployed as a minimum with a Transmitter and a Concentrator forms a system. For more details see the Block Diagram attached to form 731.

### Modifications to E.U.T.

None

### Additional Information

**Power Supply Requirement:** External – 12 V. DC

**Operating Environment:** Residential

**Weight:** 420gr

**Dimension:** 16 x 12 x 7.5 cm.

**Interface:** Shielded 5-wire cable.

### Support Equipment

None

### **3. Operation of E.U.T.**

---

#### **Environmental Test Conditions**

The E.U.T. was tested at 28<sup>0</sup>C and 58% Humidity.

#### **E.U.T. Operating Modes**

The EUT has two modes:

1. Transmit
2. Receive

Although the Transmit mode is by far the worst condition for radiated the Receive mode was also tested for verification as per 15.101(b).

#### **E.U.T. Configuration and Peripherals**

Two Dipole Antennas were connected to the Transceiver with 3 meters RG213 coaxial cables. The EUT was connected to a Concentrator (support equipment) that controlled the operating modes. In Transmit mode test, the software on the Concentrator forced the EUT to transmit consecutive messages in order to measure the emissions with the automatic EMC receiver (spectrum analyzer).

#### **Support Equipment**

|                       |                                        |
|-----------------------|----------------------------------------|
| Description           | Concentrator, (Class B Digital Device) |
| Brand Name            | Miltel Communications Ltd.             |
| Model Name            | CML110-1                               |
| Serial Number         | 99-10012                               |
| Cable Length and Type | 3 meter, 5-wire, shielded              |
| Connected to Port     | J1 on PCB                              |

## **4. Test Specifications**

---

|                        |                                                                                                                                                                                                    |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Reference</b>       | FCC part 15.231(e) and all the other relevant parts of subpart 15C (e.g. 15.205, 15.209) in Transmit mode.<br><br>FCC part 15.209,109 in Receive mode and all the other relevant parts of part 15. |
| <b>Title</b>           | CFR (47 part 15) Radio Frequency Devices                                                                                                                                                           |
| <b>Comments</b>        | A description of the test facility (Hermon Laboratories) is on file at the FCC as required by Section 2.948                                                                                        |
| <b>Purpose of Test</b> | Determine E.U.T. compliance with the specifications for the purpose of certification.                                                                                                              |

## **5. Methods and Procedures**

---

The Method of measurements used for the measurements are detailed in ANSI C63.4 (1992), Title: “*American National Standard Methods of Measurement of Electromagnetic Emissions from Low Voltage Electrical and Electronic Equipment in the range of 9KHz to 40GHz*”. Other Relevant ANSI standards as delineated in the above document’s chapter 2: References

## **6. Deviations from Specifications**

None

## 7. Test Results Summary

| Measurement                                        | Range of Measurements | Specifications                   | Comply ( Yes / No) |
|----------------------------------------------------|-----------------------|----------------------------------|--------------------|
| Radiated Emissions Fundamental                     | 433.92MHz             | 15.231(e)                        | Yes                |
| Radiated Emissions Spurious (Transmit and Receive) | 30MHz to 4.5GHz       | 15.231(e),15.205, 15.209, 15.109 | Yes                |
| Bandwidth (Fundamental)                            | 433.92MHz             | 15.231(c)                        | Yes                |
| Transmit Duration and Duty Cycle                   | 433.92MHz             | 15.231(e)                        | Yes                |

## 8. Measurement Uncertainty



Date: July, 1999

### 3.2.1 Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

|                                                                           |                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conducted emissions with LISN                                             | 9 kHz to 30 MHz: $\pm 2.1$ dB                                                                                                                                                                                                                                                                |
| Radiated emissions in the open field test site at 10 m measuring distance | Biconilog antenna: $\pm 3.2$ dB<br>Log periodic antenna: $\pm 3$ dB<br>Biconical antenna: $\pm 4$ dB                                                                                                                                                                                         |
| Radiated emissions in the anechoic chamber at 3 m measuring distance      | Biconilog antenna: $\pm 3.2$ dB                                                                                                                                                                                                                                                              |
| ESD uncertainty                                                           | EUT without cables $\pm 13.4\%$<br>EUT with cables + 22%, -20%                                                                                                                                                                                                                               |
| Radiated immunity                                                         | 10 kHz to 250 MHz: +11%<br>250 MHz to 1 GHz: +21%<br><br>required applied field strength 3.33 V/m (10 kHz to 250 MHz) and 3.63 V/m (250 MHz to 1 GHz) instead of 3 V/m<br><br>required applied field strength 11.1 V/m (10 kHz to 250 MHz) and 12.1 V/m (250 MHz to 1 GHz) instead of 10 V/m |
| Conducted RF immunity                                                     | $\pm 2$ dB                                                                                                                                                                                                                                                                                   |
| EFT                                                                       | $\pm 6\%$                                                                                                                                                                                                                                                                                    |
| Spikes                                                                    | $\pm 10\%$                                                                                                                                                                                                                                                                                   |

## **9. Measurement Methods and Test Results**

---

### **9.1 Radiated Emission Measurement Results**

#### **Measurement Method**

The tests were performed in Hermon Labs large (9m X 6.5m X 5.5m) full Anechoic Chamber with conductive floor (see attached drawing). The EUT was placed on a wooden turntable with the Dipole antennas and the coaxial cables. The Concentrator, which controlled the EUT via the 5-wire shielded cable, was also placed on the turntable. The Concentrator operated during all the tests. The Hydraulic antenna tower was moved such that the receive antenna was 3 meters from the EUT. The frequency range from 30MHz to 4.5GHz was investigated using an automatic HP8546A EMI receiver 9KHz –6.5GHz and HP85460A RF filter section.

The receive antenna height was changed from 1 to 4 meters, polarization was changed from Vertical to Horizontal and the turntable was rotated 360°.

The following table lists frequencies at which emissions were measured using an average detector (as per 2.231(b)(2)).

#### **Limits**

Limit for fundamental was used as per 15.231(e): 4400 $\mu\mu$ V/m or 72.8dB  $\mu$ V/m. Limits for spurious emissions were used as per 15.209 for restricted bands. For the other bands, 15.231(e) or 15.209 which ever is higher as per 15.231(b)(3).

In the transmit mode, the EUT was operating in the test mode, generating consecutive messages such that the average detector measured the peak power.

**Note:** Because the Transmission duration is more than 0.1Sec no averaging factor was used (as per 15.35). Signals, which are 20db below the limit, are not tabulated.

#### **Transmit**

| <b>Signal</b> | <b>Frequency<br/>(MHz)</b> | <b>Measured max.<br/>Ave. Amp (dB<math>\mu\mu</math>V/m)</b> | <b>Limit<br/>(dB <math>\mu</math>V/m )</b> | <b>Margin<br/>(dB)</b> | <b>Comply</b> |
|---------------|----------------------------|--------------------------------------------------------------|--------------------------------------------|------------------------|---------------|
| 1             | 433.92<br>(Fundamental)    | 65.16                                                        | 72.8                                       | <b>4.6</b>             | <b>Yes</b>    |
| 2             | 1301                       | 47.79                                                        | 52.8                                       | <b>5</b>               | <b>Yes</b>    |
| 3             | 2169.626                   | 40.45                                                        | 52.8                                       | <b>12.4</b>            | <b>Yes</b>    |

## **Receive Mode**

The limits of 15.209 are used. Quasi Peak detector is used.

| <b>Signal</b> | <b>Frequency<br/>(MHz)</b> | <b>Measured max.<br/>Q_Peak Amp (dB<sub>μ</sub>V/m)</b> | <b>Limit<br/>(dB <math>\mu</math>V/m )</b> | <b>Margin<br/>(dB)</b> | <b>Comply</b> |
|---------------|----------------------------|---------------------------------------------------------|--------------------------------------------|------------------------|---------------|
| 1             | 33.795                     | 27.21                                                   | 40                                         | <b>12.8</b>            | <b>Yes</b>    |
| 2             | 131.039                    | 38.52                                                   | 43.5                                       | <b>5</b>               | <b>Yes</b>    |
| 3             | 138.154                    | 35.20                                                   | 43.5                                       | <b>8.3</b>             | <b>Yes</b>    |
| 4             | 183.465                    | 36.35                                                   | 43.5                                       | <b>7.2</b>             | <b>Yes</b>    |
| 5             | 340.718                    | 37.71                                                   | 46                                         | <b>8.3</b>             | <b>Yes</b>    |

## **Bandwidth Measurement Results**

### **Measurements Method**

The Spectrum analyzer Resolution bandwidth was set to 10KHz (as per ANSI C63.4-1992 13.1.7.) (See attached drawing). Video BW=10KHz. The scan width was adjusted to clearly display the fundamental spectrum. A peak detector was used. and the BW was measured at 20db points.

### **Limits**

As per 15.231(b): 0.25% from 433.92MHz. Measured at 20dBc from the modulated carrier.

| <b>Signal</b> | <b>Frequency<br/>(MHz)</b> | <b>Measured Bandwidth<br/>(KHz)</b> | <b>Limit<br/>(KHz)</b> | <b>Margin<br/>(KHz)</b> | <b>Complaint</b> |
|---------------|----------------------------|-------------------------------------|------------------------|-------------------------|------------------|
| 1             | 433.92<br>(Fundamental)    | 38.5                                | 1085                   | 1046                    | <b>Yes</b>       |

## **Transmission Duration and Duration between Transmissions Results**

### **Measurements Method**

The spectrum analyzer was set to Zero Span and was centered around the Fundamental frequency. Resolution Bandwidth was set to 120KHz. (See attached drawing). The EUT mode was changed through the Concentrator to the normal mode and the Concentrator initiated a single transmission. Miltel certifies that by design and by tests, the duration between transmissions is greater than 30Sec under any operating condition.

### **Limits**

As per 15.231(e) the maximum duration is 1sec. Duration between transmissions is more than 10Sec or 30 times the duration of the Transmission which ever is larger.

| <b>Signal</b> | <b>Frequency<br/>(MHz)</b> | <b>Measured Time (Sec)</b>                                     | <b>Limit<br/>(Sec)</b> | <b>Margin<br/>(Sec)</b> | <b>Compliant</b> |
|---------------|----------------------------|----------------------------------------------------------------|------------------------|-------------------------|------------------|
| 1             | 433.92<br>(Fundamental)    | Duration: 0.76                                                 | 1                      | 0.24                    | <b>Yes</b>       |
| 1             | 433.92<br>(Fundamental)    | Duration Between<br>Transmissions: > 30Sec<br>(declared value) | 22.8                   | >7.2                    | <b>Yes</b>       |