

Test report No. Page **Issued date** FCC ID

: 13521394H-R1 : 1 of 21 : December 2, 2020 : MLBHLSS-6B

RADIO TEST REPORT

Test Report No.: 13521394H-R1

Applicant Honda Lock Mfg. Co., Ltd.

Type of EUT FOB of 2R SMART SYSTEM

Model Number of EUT HLSS-6B

FCC ID MLBHLSS-6B

Test regulation FCC Part 15 Subpart C: 2020

Test Result Complied (Refer to SECTION 3.2)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 13521394H. 13521394H is replaced with this report.

October 4 and November 11, 2020

Representative test engineer:

Date of test:

Tomohisa Nakagawa Engineer

Consumer Technology Division

Approved by:

Shinichi Miyazono

Engineer

Consumer Technology Division

CERTIFICATE 5107.02

	The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.
\times	There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13521394H-R1
Page : 2 of 21
Issued date : December 2, 2020
FCC ID : MLBHLSS-6B

REVISION HISTORY

Original Test Report No.: 13521394H

Revision	Test report No.	Date	Page revised	Contents
-	13521394H	November 30,	-	-
(Original)		2020		
1	13521394H-R1	December 2,	P.17	Addition of the 10 th harmonics duty
		2020		consideration

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13521394H-R1
Page : 3 of 21
Issued date : December 2, 2020
FCC ID : MLBHLSS-6B

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	MCS	Modulation and Coding Scheme
AC	Alternating Current	MRA	Mutual Recognition Arrangement
AFH	Adaptive Frequency Hopping	N/A	Not Applicable
AM	Amplitude Modulation	NIST	National Institute of Standards and Technology
Amp, AMP	Amplifier	NS	No signal detect.
ANSI	American National Standards Institute	NSA	Normalized Site Attenuation
Ant, ANT	Antenna	NVLAP	National Voluntary Laboratory Accreditation Program
AP	Access Point	OBW	Occupied Band Width
ASK	Amplitude Shift Keying	OFDM	Orthogonal Frequency Division Multiplexing
Atten., ATT	Attenuator	P/M	Power meter
AV	Average	PCB	Printed Circuit Board
BPSK	Binary Phase-Shift Keying	PER	Packet Error Rate
BR	Bluetooth Basic Rate	PHY	Physical Layer
ВТ	Bluetooth	PK	Peak
BT LE	Bluetooth Low Energy	PN	Pseudo random Noise
BW	BandWidth	PRBS	Pseudo-Random Bit Sequence
Cal Int	Calibration Interval	PSD	Power Spectral Density
CCK	Complementary Code Keying	QAM	Quadrature Amplitude Modulation
Ch., CH	Channel	QP	Quasi-Peak
CISPR	Comite International Special des Perturbations Radioelectriques	QPSK	Quadri-Phase Shift Keying
CW	Continuous Wave	RBW	Resolution Band Width
DBPSK	Differential BPSK	RDS	Radio Data System
DC	Direct Current	RE	Radio Equipment
D-factor	Distance factor	RF	Radio Frequency
DFS	Dynamic Frequency Selection	RMS	Root Mean Square
DQPSK	Differential QPSK	RSS	Radio Standards Specifications
DSSS	Direct Sequence Spread Spectrum	Rx	Receiving
EDR	Enhanced Data Rate	SA, S/A	Spectrum Analyzer
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	SG	Signal Generator
EMC	ElectroMagnetic Compatibility	SVSWR	Site-Voltage Standing Wave Ratio
EMI	ElectroMagnetic Interference	TR	Test Receiver
EN	European Norm	Tx	Transmitting
ERP, e.r.p.	Effective Radiated Power	VBW	Video BandWidth
EU	European Union	Vert.	Vertical
EUT	Equipment Under Test	WLAN	Wireless LAN
Fac.	Factor	WEIN	WHOOSS EATY
FCC	Federal Communications Commission		
FHSS	Frequency Hopping Spread Spectrum		
FM	Frequency Modulation		
Freq.	Frequency		
FSK	Frequency Shift Keying		
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF	Intermediate Frequency		
ILAC	International Laboratory Accreditation Conference		
ISED	Innovation, Science and Economic Development Canada		
ISO	-		
	International Organization for Standardization		
JAB	Japan Accreditation Board		
LAN	Local Area Network		

UL Japan, Inc. Ise EMC Lab.

LIMS

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Laboratory Information Management System

Test report No. Page Issued date FCC ID : 13521394H-R1 : 4 of 21 : December 2, 2020 : MLBHLSS-6B

CONTENTS	PAGE
SECTION 1: Customer information	5
SECTION 2: Equipment under test (EUT)	
SECTION 3: Test specification, procedures & results	6
SECTION 4: Operation of EUT during testing	
SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurio	ous Emission)
SECTION 6: Automatically deactivate	12
SECTION 7: -20 dB and 99 % Occupied Bandwidth	
APPENDIX 1: Test data	
Automatically deactivate	
Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission).	
-20 dB and 99% Occupied Bandwidth	
10 th harmonics duty consideration	
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	
Radiated emission	
Worst case position	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13521394H-R1
Page : 5 of 21
Issued date : December 2, 2020
FCC ID : MLBHLSS-6B

SECTION 1: Customer information

Company Name : Honda Lock Mfg. Co., Ltd.

Address : 3700 Shimonaka Sadowara-cho Miyazaki-shi Miyazaki 880-0293,

Japan

Telephone Number : +81-50-3757-3759 Facsimile Number : +81-985-73-5197 Contact Person : Yoshinari Tamada

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : FOB of 2R SMART SYSTEM

Model Number : HLSS-6B

Serial Number : Refer to SECTION 4.2

Rating : DC 3.0 V

Receipt Date : September 23, 2020

Country of Mass-production : Vietnam

Condition : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab

2.2 Product Description

Model: HLSS-6B (referred to as the EUT in this report) is a FOB of 2R SMART SYSTEM.

Radio Specification

Radio Type : Transceiver Frequency of Operation : 433.92 MHz

Modulation : FSK

Antenna type : Pattern Antenna

Clock Frequency (Maximum) : 16 MHz

Radio Type : Receiver Frequency of Operation : 125 kHz *1)

*1) The test of receiver part was performed separately from this test report, and the conformability is confirmed.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13521394H-R1 Page : 6 of 21 **Issued date** : December 2, 2020 FCC ID

: MLBHLSS-6B

SECTION 3: Test specification, procedures & results

3.1 **Test Specification**

Test Specification FCC Part 15 Subpart C

FCC Part 15 final revised on October 13, 2020

Title FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

3.2 **Procedures and results**

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8	N/A	N/A	*1)
Automatically Deactivate	FCC: ANSI C63.10:2013 6 Standard test methods ISED: -	FCC: Section 15.231(a)(1) ISED: RSS-210 A1.1	N/A	Complied a)	Radiated
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.10:2013 4.1.4.2.3 Average voltage measurements using spectrum analyzer reduced video bandwidth 6 Standard test methods ISED: RSS-Gen 6.12	FCC: Section 15.231(b) ISED: RSS-210 A1.2	0.1 dB 433.920 MHz Vertical PK with Duty factor	Complied# b)	Radiated
Electric Field Strength of Spurious Emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 6.13	FCC: Section 15.205 Section 15.209 Section 15.231(b) ISED: RSS-210 A1.2 RSS-Gen 8.9	1.8 dB 3037.440 MHz Vertical PK with Duty factor	Complied#	Radiated
-20dB Bandwidth	FCC: ANSI C63.10:2013 6 Standard test methods ISED: -	FCC: Section 15.231(c) ISED: Reference data	N/A	Complied c)	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

a) Refer to APPENDIX 1 (data of Automatically deactivate)

b) Refer to APPENDIX 1 (data of Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission))

c) Refer to APPENDIX 1 (data of -20 dB and 99% Occupied Bandwidth)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

This test was performed with the New Battery (DC 3.0 V) and the constant voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test is not applicable since the EUT does not have AC Mains.

Test report No. : 13521394H-R1
Page : 7 of 21
Issued date : December 2, 2020
FCC ID : MLBHLSS-6B

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks	
99 % Occupied Bandwidth	ISED: RSS-Gen 6.7	ISED: RSS-210 A1.3	N/A	-	Radiated	
Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Radiated emission						
Measurement distance	Frequency range		Uncertainty (+/-)			
3 m	9 kHz to 30 M	9 kHz to 30 MHz				
10 m			3.2 dB			
3 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB			
		(Vertical)	5.0 dB			
	200 MHz to 1000 MHz	(Horizontal)	5.2 dB			
		(Vertical)	6.3 dB			
10 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB			
		(Vertical)	4.8 dB			
	200 MHz to 1000 MHz	(Horizontal)	5.0 dB			
		(Vertical)	5.0 dB			
3 m	1 GHz to 6 GHz		4.9 dB			
	6 GHz to 18 GHz		5.2 dB			
1 m	10 GHz to 26.5 GHz		5.5 dB			
	26.5 GHz to 40 GHz		5.5 dB			
10 m	1 GHz to 18 G	Hz	5.2 dB			

Antenna Terminal test

Test Item	Uncertainty (+/-)
Automatically Deactivate	0.10 %
-20 dB Emission Bandwidth / 99 % Occupied Bandwidth	0.96 %

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13521394H-R1 Page : 8 of 21

Issued date : December 2, 2020 FCC ID : MLBHLSS-6B

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

 $*A2LA\ Certificate\ Number:\ 5107.02\ /\ FCC\ Test\ Firm\ Registration\ Number:\ 199967\ /\ ISED\ Lab\ Company\ Number:\ 2973C$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): $2.0 \times 2.0 \text{ m}$ for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13521394H-R1
Page : 9 of 21
Issued date : December 2, 2020
FCC ID : MLBHLSS-6B

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Test Item*	Mode		
Automatically Deactivate	1) Normal use mode		
Electric Field Strength of Fundamental Emission	2) Transmitting mode (Tx) *1)		
Electric Field Strength of Spurious Emission			
-20 dB & 99 % Occupied Bandwidth			

^{*} The system was configured in typical fashion (as a user would normally use it) for testing.

*EUT was set by the software as follows;

Software: K1Z_2A-VER1.0.0 Version 1.0.0

(Date: 2020.3.19, Storage location: EUT memory

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

Justification: The system was configured in typical fashion (as a user would normally use it) for testing.

4.2 Configuration and peripherals

A

Description of EUT

\Box	No.	Item	Model number	Serial number	Manufacturer	Remarks
	A	FOB of 2R SMART	HLSS-6B	6B-001 *1)	Honda Lock Mfg. Co., Ltd.	EUT
		SYSTEM		6B-00A *2)		

^{*1)} Used for Normal use mode

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The software of this mode is the same as one of normal product, except that EUT continues to transmit when transmitter button is being pressed (For Normal use mode, EUT stops to transmit in a given time, even if transceiver button is being pressed.)

^{*}This setting of software is the worst case.

^{*} Setup was taken into consideration and test data was taken under worse case conditions.

^{*2)} Used for Transmitting mode

Test report No. : 13521394H-R1
Page : 10 of 21
Issued date : December 2, 2020
FCC ID : MLBHLSS-6B

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)

Test Procedure and conditions

[For below 30 MHz]

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

[For 30 MHz to 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

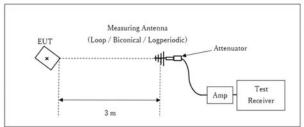
Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

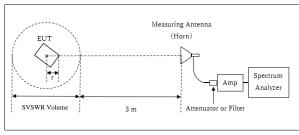
Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn


	From 9 kHz	From	From	From	From	Above 1 GHz
	to 90 kHz and	90 kHz	150 kHz	490 kHz	30 MHz	
	From 110 kHz	to 110 kHz	to 490 kHz	to 30 MHz	to 1 GHz	
	to 150 kHz					
Detector	Peak	Peak	Peak	Peak	Peak and	Peak,
Type					Peak with	Peak with Duty factor
					Duty factor	and AV
IF Bandwidth	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz,
						VBW: 3 MHz
						AV: S/A: RBW 1 MHz
						VBW: 10 Hz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13521394H-R1
Page : 11 of 21
Issued date : December 2, 2020
FCC ID : MLBHLSS-6B

[Test Setup]


Below 1 GHz

× : Center of turn table

Test Distance: 3 m

1 GHz - 10 GHz

- r: Radius of an outer periphery of EUT
- × : Center of turn table

Distance Factor: $20 \times \log (4.0 \text{ m}^*/ 3.0 \text{ m}) = 2.50 \text{ dB}$ * Test Distance: (3 + SVSWR Volume /2) - r = 4.0 m

SVSWR Volume: 2.0 m

(SVSWR Volume has been calibrated based on CISPR 16-1-4.) $r=0.0\ m$

* The test was performed with $r=0.0\,\mathrm{m}$ since EUT is small and it was the rather conservative condition.

- The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

*The result is rounded off to the second decimal place, so some differences might be observed.

Measurement range : 9 kHz - 4.4 GHz Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13521394H-R1
Page : 12 of 21
Issued date : December 2, 2020
FCC ID : MLBHLSS-6B

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20 dB and 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	1 MHz	10 kHz	30 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer

^{*1)} The measurement was performed with Peak detector, Max Hold since the duty cycle was not 100 %. Peak hold was applied as Worst-case measurement.

Test data : APPENDIX

Test result : Pass

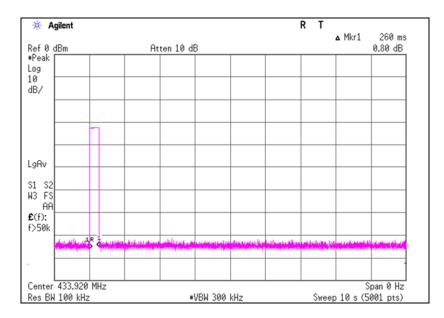
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13521394H-R1
Page : 13 of 21
Issued date : December 2, 2020
FCC ID : MLBHLSS-6B

APPENDIX 1: Test data

Automatically deactivate


Report No. 13521394H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date November 11, 2020
Temperature / Humidity 17 deg. C / 39 % RH
Engineer Tomohisa Nakagawa

Mode Mode 1

Time of	Limit	Result
Transmitting		
[sec]	[sec]	
0.260	5.00	Pass

^{*} The EUT transmits UHF when LF signal is received from vehicles or a button on the EUT is pressed. In both cases, the UHF transmission is stopped within 5 seconds. So the test was performed by a button-pressed operation as the worst case. Please refer to the "Theory of Operation" for details.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13521394H-R1
Page : 14 of 21
Issued date : December 2, 2020
FCC ID : MLBHLSS-6B

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13521394H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Mode 2

QP or PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
433.920	PK	90.9	92.0	16.2	11.0	38.5	-	79.6	80.7	100.8	21.3	20.1	Carrier
867.840	PK	48.6	49.3	21.6	13.4	38.1	-	45.5	46.2	80.8	35.3	34.6	Outside
1301.760	PK	47.0	47.4	25.6	6.0	34.6	-	43.9	44.4	73.9	30.0	29.5	Inside
1735.680	PK	49.8	47.4	25.1	5.5	33.5	-	46.9	44.5	80.8	33.9	36.4	Outside
2169.600	PK	49.2	49.5	28.1	5.5	32.8	-	50.0	50.3	80.8	30.8	30.5	Outside
2603.520	PK	57.3	48.8	28.0	5.7	32.6	-	58.3	49.9	80.8	22.5	30.9	Outside
3037.440	PK	45.8	57.1	28.6	5.8	32.5	-	47.7	59.0	80.8	33.1	21.8	Outside
3471.360	PK	46.3	44.6	28.8	6.0	32.2	-	48.9	47.1	80.8	31.9	33.7	Outside
3905.280	PK	47.2	46.3	29.9	6.2	32.0	-	51.2	50.3	73.9	22.7	23.6	Inside
4339.200	PK	48.7	49.4	30.5	6.4	31.8	-	53.8	54.5	73.9	20.1	19.4	Inside

PK with Duty factor or AV detector

PK with Duty	PK with Duty factor or AV detector												
Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
433.920	PK	90.9	92.0	16.2	11.0	38.5	0.0	79.6	80.7	80.8	1.3	0.1	Carrier
867.840	PK	48.6	49.3	21.6	13.4	38.1	0.0	45.5	46.2	60.8	15.3	14.6	Outside
1301.760	PK	47.0	47.4	25.6	6.0	34.6	0.0	43.9	44.4	53.9	10.0	9.5	Inside
1735.680	PK	49.8	47.4	25.1	5.5	33.5	0.0	46.9	44.5	60.8	13.9	16.4	Outside
2169.600	PK	49.2	49.5	28.1	5.5	32.8	0.0	50.0	50.3	60.8	10.8	10.5	Outside
2603.520	PK	57.3	48.8	28.0	5.7	32.6	0.0	58.3	49.9	60.8	2.5	10.9	Outside
3037.440	PK	45.8	57.1	28.6	5.8	32.5	0.0	47.7	59.0	60.8	13.1	1.8	Outside
3471.360	PK	46.3	44.6	28.8	6.0	32.2	0.0	48.9	47.1	60.8	11.9	13.7	Outside
3905.280	PK	47.2	46.3	29.9	6.2	32.0	0.0	51.2	50.3	53.9	2.7	3.6	Inside
4339.200	AV	44.0	44.4	30.5	5.9	31.8	-	48.5	49.0	53.9	5.4	5.0	Inside

Sample calculation:

 $Result of PK = Reading + Ant \ Factor + Loss \ \{Cable + Attenuator + Filter \ (above \ 1GHz) + Distance \ factor \ (above \ 1\ GHz)\} - Gain \ (Amplifier)$

Result of PK with Duty factor = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier) + Duty factor

Result of AV= Reading + Ant Factor + Loss {Cable + Attenuator + Distance factor (above 1 GHz)} - Gain (Amplifier)

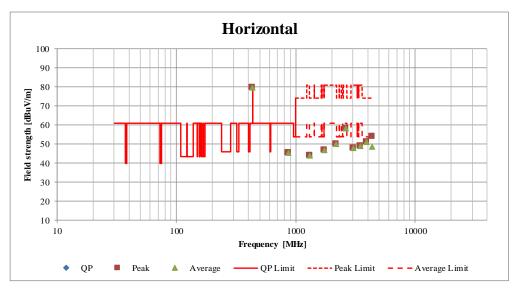
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

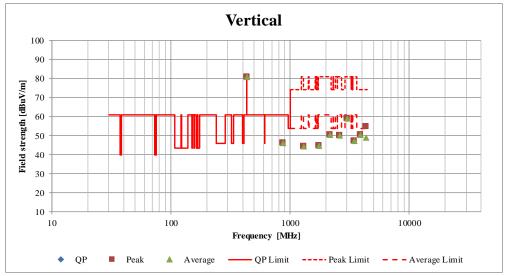
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13521394H-R1
Page : 15 of 21
Issued date : December 2, 2020
FCC ID : MLBHLSS-6B

Radiated Spurious Emission (Plot data, Worst case)


Report No. 13521394H Test place Ise EMC Lab.


Semi Anechoic Chamber No.3 No.3

Date October 04, 2020 November 11, 2020
Temperature / Humidity 23 deg. C / 62 % RH 17 deg. C / 39 % RH
Engineer Yuichiro Yamazaki (Other frequency) Tomohisa Nakagawa (10th harmonics)

No.3 No.3

Mode 2

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

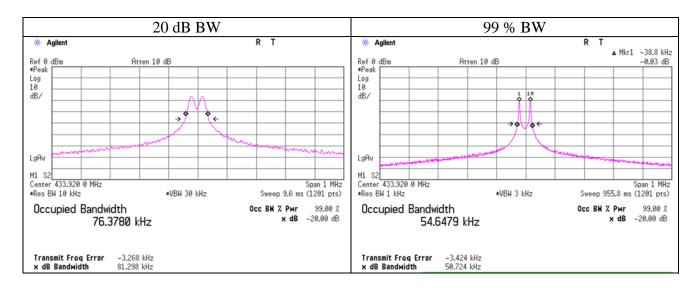
Test report No. : 13521394H-R1
Page : 16 of 21
Issued date : December 2, 2020
FCC ID : MLBHLSS-6B

-20 dB and 99% Occupied Bandwidth

Report No. 13521394H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date November 11, 2020
Temperature / Humidity 17 deg. C / 39 % RH
Engineer Tomohisa Nakagawa


Mode Mode 2

Bandwidth Limit : Fundamental Frequency 433.92 MHz x 0.25% = 1084.80 kHz

* The above limit was calculated from more stringent nominal frequency.

-20dB Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	resure
81.2980	1084.80	Pass

99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
54.6479	1084.80	Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 13521394H-R1 Test report No. : 17 of 21 Page **Issued date** : December 2, 2020 : MLBHLSS-6B FCC ID

Sweep 100.5 ms (8192 pts)

10 th harmonics duty consideration

13521394H Report No. Test place Ise EMC Lab. No.3

Semi Anechoic Chamber

November 11, 2020 Temperature / Humidity 17 deg. C / 39 % RH Tomohisa Nakagawa Engineer (10th harmonics)

Mode Mode 2

100 % duty

R Т * Agilent Ref 0 dBm Atten 10 dB #Peak Log 10 dB/ LgAv W1 \$2 W3 FS AA £(f): FTun Center 4.339 200 GHz Span 0 Hz

#VBW 3 MHz

UL Japan, Inc. Ise EMC Lab.

Res BW 1 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13521394H-R1
Page : 18 of 21
Issued date : December 2, 2020
FCC ID : MLBHLSS-6B

APPENDIX 2: Test instruments

Test equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/07/2020	12
RE	MMM-08	141532	DIGITAL HITESTER	Hioki	3805	51201197	01/06/2020	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	-	-
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV		-	-
RE	MAEC-03- SVSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/08/2019	24
RE	MAT-95	142314	Attenuator	Pasternack	PE7390-6	D/C 1504	06/17/2020	12
RE	MBA-03	141424	Biconical Antenna	Schwarzbeck Mess - Elektronik	VHA9103+BBA9106	1915	08/13/2020	12
RE	MCC-51	141323	Coaxial cable	UL Japan	-	-	07/06/2020	12
RE	MLA-22	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-191	08/13/2020	12
RE	MPA-19	141585	Pre Amplifier	MITEQ	MLA-10K01-B01-35	1237616	02/10/2020	12
RE	MHF-27	141297	High Pass Filter(1.1- 10GHz)	ТОКҮО КЕІКІ	TF219CD1	1001	01/09/2020	12
RE	MSA-03	141884	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	03/04/2020	12
RE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	08/18/2020	12
RE	MHA-21	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess - Elektronik	BBHA9120D	557	05/22/2020	12
RE	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/24/2020	12
RE	MCC-231	177964	Microwave Cable	Junkosha INC.	MMX221	1901S329(1m)/ 1902S579(5m)	03/02/2020	12
RE	MAJ-03	142285	Antenna Tilt Jig	Intelligent System Engineering Co., Ltd	Antenna Tilt Jig	Т-0003	-	-
RE	MLPA-07	142645	Loop Antenna	UL Japan	-	-	-	-

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated emission, 99 % Occupied Bandwidth, -20 dB bandwidth and Automatically deactivate tests

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN