

FCC CFR47 PART 15 CERTIFICATION

TEST REPORT

FOR

2.4GHz SPREAD SPECTRUM STATION RADIO

MODEL: 2411EZLink-E

FCC ID: MKZ2411EZYLINK-E

REPORT NUMBER: 01U1006-1

ISSUE DATE: OCTOBER 2, 2001

Prepared for OTC WIRELESS INC. 48507 MILMONT DRIVE FREMONT, CA 94538 USA

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

LAB CODE:200065-0

TABLE OF CONTENT

1.	TEST RESULT CERTIFICATION	3
2.	EUT DESCRIPTION	4
3.	TEST METHODOLOGY	4
4.	TEST FACILITY	4
5.	ACCREDITATION AND LISTING	4
5	.1. Laboratory Accreditations and Listings	5
6.	MEASURING INSTRUMENT CALIBRATION	6
6	.1. Measurement Uncertainty	6
7.	SUPPORT EQUIPMENT / TEST DIAGRAM	7
		_
8.	APPLICABLE RULES AND BRIEF TEST RESULT	8
8. 9.	APPLICABLE RULES AND BRIEF TEST RESULT	8 13
8. 9. 10.	APPLICABLE RULES AND BRIEF TEST RESULT	8 13 14
 8. 9. 10. 	APPLICABLE RULES AND BRIEF TEST RESULT	8 13 14 14
 8. 9. 10. 1 	APPLICABLE RULES AND BRIEF TEST RESULT	8 13 14 19
 8. 9. 10. <l< th=""><th>APPLICABLE RULES AND BRIEF TEST RESULT</th><th> 8 13 14 14 19 23</th></l<>	APPLICABLE RULES AND BRIEF TEST RESULT	8 13 14 14 19 23
8. 9. 10. 10 10 10	APPLICABLE RULES AND BRIEF TEST RESULT MODIFICATIONS TEST SETUP, PROCEDURE AND RESULT 0.1. CONDUCTED POWER 0.2. 6 dB BANDWIDTH MEASUREMENT 0.3. CONDUCTED SPURIOUS EMISSION 0.4. PEAK POWER SPECTRAL DENSITY	8 13 14 19 23 33
8. 9. 10. 10 10 10 10 10	APPLICABLE RULES AND BRIEF TEST RESULT MODIFICATIONS TEST SETUP, PROCEDURE AND RESULT 0.1. CONDUCTED POWER 0.2. 6 dB BANDWIDTH MEASUREMENT 0.3. CONDUCTED SPURIOUS EMISSION 0.4. PEAK POWER SPECTRAL DENSITY 0.5. PROCESSING GAIN	8 13 14 19 23 33 37
8. 9. 10. 10 10 10 10 10 10 10 10	APPLICABLE RULES AND BRIEF TEST RESULT MODIFICATIONS TEST SETUP, PROCEDURE AND RESULT 0.1. CONDUCTED POWER 0.2. 6 dB BANDWIDTH MEASUREMENT 0.3. CONDUCTED SPURIOUS EMISSION 0.4. PEAK POWER SPECTRAL DENSITY 0.5. PROCESSING GAIN 0.6. RESTRICTED BAND EDGE MEASUREMENT	8 13 14 14 19 23 33 37 43
8. 9. 10. 1 1 1 1 1 1 1 1 1 1 1	APPLICABLE RULES AND BRIEF TEST RESULT MODIFICATIONS TEST SETUP, PROCEDURE AND RESULT 0.1. CONDUCTED POWER	8 13 14 14 23 23 33 37 43 47
8. 9. 10. 1 1 1 1 1 1 1 1 1 1 1 1 1	APPLICABLE RULES AND BRIEF TEST RESULT	8 13 14 14 19 23 33 37 43 47 54

Page 2 of 63

1. TEST RESULT CERTIFICATION

COMPANY NAME:	OTC WIRELESS, INC. 48507 MILMONT DRIVE FREMONT, CA 94538 USA
CONTACT PERSON:	YAN ZHENG / ENGINEER
TELPHONE NO:	510-490-8288
EUT DESCRIPTION:	2.4GHZ STATION RADIO
MODEM NAME:	2411EZLINK-E
DATE TESTED:	OCTOBER 12, 2001

TYPE OF EQUIPMENT	INTENTIONAL RADIATOR
EQUIPMENT TYPE	2.4GHz TRANSCEIVER
MEASUREMENT PROCEDURE	ANSI 63.4 / 1992, TIA/EIA 603
PROCEDURE	CERTIFICATION
FCC RULE	CFR 47 PART 15.247

Compliance Certification Services, Inc. tested the above equipment for compliance with the requirement set forth in CFR 47, PART 15.247. The equipment in the configuration described in this report, shows the measured emission levels emanating from the equipment do not exceed the specified limit.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By:

STEVE CHENG EMC ENGINEERING MANAGER COMPLIANCE CERTIFICATION SERVICES

Tested Rv.

Un to Har

HUE LY VANG ASSOCIATE EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 3 of 63

2. EUT DESCRIPTION

2411EZYLINK-E is a point-to multiple-points wireless data networking system. It can be used by internet service providers as a means of last-mile connection to the users. It can also be used to form a campus network. Its data-transmitting burst rate is 11Mbps.

Crystal	
Broad Name	Crystal (MHz)
Main Unit	9.6MHz , 32.768MHz
Handset Unit	9.6MHz , 32.768MHz

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures documented on chapter 13 of ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

4. TEST FACILITY

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT (1300F2))

Page 4 of 63

5.1. Laboratory Accreditations and Listings

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP*	FCC Part 15, CISPR 22, AS/NZS 3548,IEC	
		61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC	
		61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC	200065-0
		61000-4-11, CNS 13438	
USA	FCC	3/10 meter Open Area Test Sites to perform	
		FCC Part 15/18 measurements	
			1300
Japan	VCCI	CISPR 22 Two OATS and one conducted Site	VCCI
			VCCI
			R-1014, R-619, C-640
Norway	NEMKO	EN50081-1, EN50081-2, EN50082-1,	$\mathbf{\hat{\Lambda}}$
-		EN50082-2, IEC61000-6-1, IEC61000-6-2,	I(N)
		EN50083-2, EN50091-2, EN50130-4,	ELA 117
		EN55011, EN55013, EN55014-1, EN55104,	
		EN55015, EN61547, EN55022, EN55024,	
		EN61000-3-2, EN61000-3-3, EN60945,	
		EN61326-1	
Norway	NEMKO	EN60601-1-2 and IEC 60601-1-2, the	
_		Collateral Standards for Electro-Medical	
		Products. MDD, 93/42/EEC, AIMD	ELA-171
		90/385/EEC	
Taiwan	BSMI	CNS 13438	商
			SL2-IN-E-1012
Canada	Industry	RSS210 Low Power Transmitter and Receiver	Canada
	Canada		IC2324 A,B,C, and F

*No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government

Page 5 of 63

6. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

TEST EQUIPMENTS LIST				
Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date
Spectrum Analyzer	HP100Hz - 22GHz	8566B	2140A01296	5/4/02
Spectrum Display	HP	85662A	2152A03066	4/10/02
Quasi-Peak Detector	HP9K - 1GHz	85650A	2811A01155	5/4/02
Pre-Amplifier, 25 dB	HP 0.1 - 1300MHz	8447D (P_1M)	2944A06833	11/21/01
Antenna, BiLog	Chase 30 - 2000MHz	CBL6112	2049	12/11/01
LISN	Fisher Cus. Comm.	LISN-50/250-25-2	2023	8/5/02
EMI Test Receiver	Rohde & Schwarz	ESHS 20	827129/006	2/28/02
EMC Receiver (9K-26.5GHz)	HP	8593EM	3710A00205	6/20/02
Horn Antenna(1 - 18GHz)	ЕМСО	3115	2238	6/20/02
Horn Antenna,(18 - 26GHz)	Antenna Research Associate	MWH 1826/B	1013	7/26/02
Power Meter	HP	436A	2709A29209	2/8/02
High pass filter	FSM Microwave	HM 4570-9SS	3	N.C.R.

6.1. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Radiated Emission		
30MHz – 200 MHz	+/- 3.3dB	
200MHz – 1000MHz	+4.5/-2.9dB	
1000MHz - 2000MHz	+4.6/-2.2dB	
Power Line Conducted Emission		
150kHz – 30MHz	+/-2.9	

Any results falling within the above values are deemed to be marginal.

Page 6 of 63

7. SUPPORT EQUIPMENT / TEST DIAGRAM

Support Equipment

During Radiated Emission testing, no support equipment was used.

Test Diagram

Page 7 of 63

8. APPLICABLE RULES AND BRIEF TEST RESULT

§15.247- POWER LIMIT

(b) The maximum peak output power of the intentional radiator shall not exceed the following:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, all frequency hopping systems in the 5725-5850 MHz band, and all direct sequence systems: 1 watt.

Spec limit: As specified above, 1W maximum. Test result: No non-compliance noted.

Channel	Frequency (MHz)	Output Power(watts)
1	2412	162.76mWatt (22.1dBm)
7	2442	100.38mWatt (20.01dBm)
11	2462	99.52mWatt (19.99dBm)

<u>§14.407- BANDDWIDTH LIMITATION</u>

(2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

Spec limit: > 500 kHz. Test result: No non-compliance noted.

Channel	Frequency (MHz)	Bandwidth(MHz)
1	2412	13.15
7	2442	12.8
11	2462	12.65

Page 8 of 63

<u>§15.247- PEAK POWER SPECTRAL DENSITY</u>

(d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Spec limit: < 8dBm. Test result: No non-compliance noted.

Channel	Frequency (MHz)	PPSD(dBm)
1	2412	-12.9
7	2442	-14.7
11	2462	-14.2

§15.247- PROCESS GAIN

(e) The processing gain of a direct sequence system shall be at least 10 dB. The processing gain represents the improvement to the received signal-to-noise ratio, after filtering to the information bandwidth, from the spreading/despreading function.

Spec limit: >10dBm. Test result: No non-compliance noted.

Page 9 of 63

§15.205- RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Spec limit: As specified above,. Test result: No non-compliance noted. See section 9.7 Radiated Emission.

Page 10 of 63

§90.209- RADIATED EMISSION LIMITS; GENERAL REQUIREMENTS

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(b) In the emission table above, the tighter limit applies at the band edges.

FCC PART 15 CLASS A

MEASURING DISTANCE OF 10 METER				
FREQUENCY RANGE FIELD STRENGTH FIELD STRENGTH				
(MHz)	(Microvolts/m)	(dBuV/m)		
30-88	90	39.1		
88-216	150	43.5		
216-960	210	46.4		
Above 960	300	49.5		

FCC PART 15 CLASS B

MEASURING DISTANCE OF 3 METER				
FREQUENCY RANGE FIELD STRENGTH FIELD STRENGT				
(MHz)	(Microvolts/m)	(dBuV/m)		
30-88	100	40		
88-216	150	43.5		
216-960	200	46		
Above 960	500	54		

Spec limit: As specified above. Test result: No non-compliance noted.

Page 11 of 63

COMPLIANCE CERTIFICATION SERVICES

DOCUMENT NO: CCSUP4031A

<u>§15.207- CONDUCTED LIMITS</u>

(a) For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 450 kHz to 30 MHz shall not exceed 250 microvolts. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

FCC CLASS A				
FREQUENCY RANGE	FIELD STRENGTH			
	(Microvolts)	(dBuV)/QP		
450kHz-1.705MHz	1000	60		
1.705MHz - 30MHz	3000	69.54		

FCC CLASS B				
FREQUENCY RANGE FIELD STRENGTH FIELD STRENGT				
	(Microvolts)	(dBuV)/QP		
450kHz-30MHz	250	48		

Spec limit: As specified above.

Test result: No non-compliance noted. No radiated emissions were detected other than the fundamental frequency and harmonics. Line conducted emissions comply.

Page 12 of 63

9. MODIFICATIONS

To achieve compliance modifications were made to the EUT.

- 1. Added ferrite core (Fair-Rite brand, part #:0444164181) onto RJ-45 with one turn at EUT end.
- 2. Added ferrite core (Fair- Rite brand, part #:0443164151) onto DC power Line with two turns at EUT end.
- 3. Replaced the R75 (0 ohm) and R76 (0 ohm) with ferrite beard.

Page 13 of 63

10. TEST SETUP, PROCEDURE AND RESULT

10.1. CONDUCTED POWER

Summations method

TEST SETUP

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Above 1000	Peak Peak	3 MHz	3 MHz

TEST PROCEDURE

The EUT is configured on a test bench as shown above in a continuously transmitting / receiving mode. While the transceiver started, the analyzer MAX HOLD function is used to capture the emissions.

A signal at every 3 MHz from the center is taken. The number is converted into watts and then added up.

To Convert from dB to Watts used this formula: 10 log (x)dB

To convert from Watts to dB use this formula: Anti log ((X)Watts/10)

Channel:1 (Fo=2412)

Frequency	dBm	mWatts
2422	2.1	1.23
2419	12.4	17.38
2116	15.5	37.15
2413	172	50.12
2410	16.10	40.84
2407	11.5	14.13

Page 14 of 63

COMPLIANCE CERTIFICATION SERVICES

DOCUMENT NO: CCSUP4031A

REPORT NO: 01U1006-1 EUT: 2.4 GHz Spread Spectrum Station Radio

2.8

FCC ID: MKZ2411EZYLINK-E DATE : October 18, 2001

2404

1.91

Total = 162.76mWatts 162.76mWatts = **22.1dBm**

Channel:7 (Fo=2442)

Frequency	dBm	mWatts
2452	-1.8	.66
2449	8.6	7.24
2146	12.7	18.62
2443	15	31.62
2440	14.4	27.54
2437	10.9	12.3
2434	3.8	2.4

Total = 100.38mWatts 100.38mWatts = **20.01dBm**

Channel:1 (Fo=2462)

Frequency	dBm	Mwatts
2472	8	.16
2469	8.8	7.59
2466	13	19.95
2463	15.1	32.36
2460	14.3	26.92
2457	10.3	10.72
2454	2.6	1.82

Total = 99.52.mWatts99.52mWatts = 19.99dBm

<u>RESULT</u>

No non-compliance noted.

Channel	Frequency (MHz)	Output Power (Watts)
1	2412	162.76mWatt (22.1dBm)
7	2442	100.38mWatt (20.01dBm)
11	2462	99.52mWatt (19.99dBm)

Page 15 of 63

COMPLIANCE CERTIFICATION SERVICES

DOCUMENT NO: CCSUP4031A TEL: (408) 463-0885 FAX: (408) 463-0888

Page 16 of 63

COMPLIANCE CERTIFICATION SERVICES

DOCUMENT NO: CCSUP4031A

Page 17 of 63

COMPLIANCE CERTIFICATION SERVICES

DOCUMENT NO: CCSUP4031A

Page 18 of 63

COMPLIANCE CERTIFICATION SERVICES

DOCUMENT NO: CCSUP4031A

10.2. 6 dB BANDWIDTH MEASUREMENT

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Above 1000	Peak	⊠ 100 kHz □ 1 MHz	⊠ 100 kHz □ 1 MHz

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 kHz RBW and 100 kHz VBW. The 6 dB bandwidth is defined as the total spectrum the poweroff which is higher than peak power minus 6 dB.

<u>RESULT</u>

No non-compliance noted.

Channel	Frequency (MHz)	Bandwidth(MHz)
1	2412	13.15
7	2442	12.8
11	2462	12.65

Page 19 of 63

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037 USA DOCUMENT NO: CCSUP4031A

10.3. CONDUCTED SPURIOUS EMISSION

Detector Function Setting of Test Receiver				
Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth	
Below 1000	Peak	⊠100 kHz □ 1 MHz	⊠ 100 kHz □ 10 Hz	
Above 1000	Peak Average	⊠ 100 kHz □ 1 MHz	∑ 100 kHz □ 10 Hz	

TEST SETUP

TEST PROCEDURE

Connect the Eut's antenna port to the Spectrum Analyzer's input put. Investigate the entire frequency of the carrier frequency, up to the tenth harmonic.

RESULT

No non-compliance noted.

Page 23 of 63

Page 25 of 63

COMPLIANCE CERTIFICATION SERVICES

DOCUMENT NO: CCSUP4031A

561F MONTEREY ROAD, MORGAN HILL, CA 95037 USA TEL: (408) 463-0885 FAX: (408) 463-0888 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

DOCUMENT NO: CCSUP4031A

EUT: 2.4 GHz Spread Spectrum Station Radio

REPORT NO: 01U1006-1

Page 28 of 63

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037 USA

.

DOCUMENT NO: CCSUP4031A

Page 29 of 63

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037 USA

. Ø G

GHZ

DOCUMENT NO: CCSUP4031A

dBm

9.3.1 Conducted Bandedge

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Below 1000	Peak	⊠100 kHz □ 1 MHz	∑ 100 kHz □ 10 Hz
Above 1000	⊠ Peak □ Average	⊠ 100 kHz □ 1 MHz	⊠ 100 kHz □ 10 Hz

Detector Function Setting of Test Receiver

TEST SETUP

TEST PROCEDURE

Connect the Eut's antenna port to the Spectrum Analyzer's input put.

Using peak search get the peak from the carrier frequency. Subtract 20 from the peak to get the limit. The carrier frequency should not go out of it's band of operations. Investigate the lowest and highest channel at the band edge to see if they pass the conducted spurious limit.

RESULT

No non-compliance noted.

Page 30 of 63

DOCUMENT NO: CCSUP4031A

Page 32 of 63

COMPLIANCE CERTIFICATION SERVICES

DOCUMENT NO: CCSUP4031A

10.4. PEAK POWER SPECTRAL DENSITY

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Above 1000	Peak	⊠ 3 kHz □ 1 MHz	⊠ 3 kHz □ 10 Hz

TEST SETUP

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using 3 kHz RBW and 30 kHz VBW, set sweep time=span/3kHz. The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span/3KHz for a full response of the mixer in the spectrum analyzer.

Result:

No non-compliance noted. See plots:

Channel	Frequency (MHz)	PPSD(dBm)
1	2412	-12.9
7	2442	-14.7
11	2462	-14.2

Page 33 of 63

DOCUMENT NO: CCSUP4031A

10.6. RESTRICTED BAND EDGE MEASUREMENT

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Above 1000	Peak	1 MHz 1 MHz	∑ 1 MHz □ 10 Hz

Detector Function Setting of Test Receiver

TEST SETUP

Fig 2: Radiated Emission Above 1000 MHz

TEST PROCEDURE

1. The Lower and upper were investigated, due to two restricted band located close to the passband.

2. The EUT was placed on the turn table 0.8 meter above ground in 3 meter open area test site.

3. Shift the interference-receiving antenna located in antenna tower upwards and downwards between 1 and 4 meters above ground and find out the local peak emission on frequency domain.

4. Rotate the turn table and stop at the angle where the measurement device has maximum reading

Page 43 of 63

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037 USA

DOCUMENT NO: CCSUP4031A TEL: (408) 463-0885 FAX: (408) 463-0888

This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

RESULT

No non-compliance noted. See plots:

Freq.	Reading	AF	Closs	Pre-amp	Dist	Other	Level	Limit	Margin	Pol
(MHz)	(dBuV)	(dB)	(dB)	(dB)	dB	dB	(dBuV/m)	FCC_B	(dB)	(P/A)
2386	45.90	29.20	3.40	42.00	9.50	0.00	27.00	74.0	-47.00	Р
2386	47.92	29.20	3.40	42.00	9.50	0.00	29.02	54.0	-24.98	Α
2489	92.33	29.20	3.40	42.00	9.50	0.00	73.43	74.0	-0.57	Р
2489	54.86	29.20	3.40	42.00	9.50	0.00	35.96	54.0	-18.04	Α

Page 44 of 63

Page 45 of 63

Page 46 of 63

10.7. RADIATED EMISSION

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
30 to 1000	🛛 Peak 🗌 Quasi Peak	⊠ 100 KHz □ 120 KHz	 ☐ 100 KHz ☐ 120 KHz
Above 1000	Peak Average	1 MHz 1 MHz	∑ 1 MHz □ 10 Hz

Fig 1: Radiated Emission Measurement 30 to 1000 MHz

Page 47 of 63

Fig 2: Radiated Emission Above 1000 MHz

TEST SETUP & PROCEDURE

1. The EUT was placed on the turn table 0.8 meter above ground in 3 meter open area test site.

2. Set the resolution bandwidth to 120KHz in the test receiver and select Peak function to scan the frequency below 1 GHz.

3. Shift the interference-receiving antenna located in antenna tower upwards and downwards between 1 and 4 meters above ground and find out the local peak emission on frequency domain.

4. Locate the interference-receiving antenna at the position where the local peak reach the maximum emission.

5. Rotate the turn table and stop at the angle where the measurement device has maximum reading

6. Shift the interference-receiving antenna again to detect the maximum emission of the local peak

7. If the reading of the local peak under Peak function is lower than limit by 6dB, then Quasi Peak detection is not needed and this reading should be recorded. And if it is higher than Peak limit, then the test is fail. Others, switch the receiver to Quasi Peak function, set the resolution bandwidth to 100kHz and repeat the procedures $C \sim F$. If the reading is lower than limit, this reading should be recorded, otherwise, the test is fail.

8. Set the resolution and video bandwidth of the spectrum analyzer to 1MHz and repeat procedures C ~ F for frequency band from 1 GHz to 10 times carrier frequency.

Page 48 of 63

9. If the reading for the local peak is lower than the Average limit, no further testing is needed in this local peak and this reading should be recorded. If it is higher than Average limit but lower than Peak limit, then set the resolution bandwidth to 1MHz and video bandwidth to 300Hz. Repeat procedures C ~ F. If the maximum reading is lower than Average limit, then this reading should be recorded. If it is higher, then the test is fail.

<u>RESULT</u>

No non-compliance noted, as shown below.

Page 49 of 63

	FC UL 561F MON PHONE: (4 EUT	C, VCCI, (, CSA, TU TEREY RR 08) 463-00 Comp Descrip	CISPR, CE V, BSMI, I DAD, SAN B85 SP Dany: Dtion:	AUSTEL, DHHS, NVL JOSE, CA FAX: (408) 4 OTC WII 2.4GHz	NZ AP 95037-9001 463-0888 RELESS. I STATION	NC. RADIO (N	Proj Rep Date& T Test I	ect #: ort #: Fime: Engr: IEZLink:	01U1006 011018B 10/18/01 KERWIN E)	-1 1 9:59 AM CORPUZ	
	Test Cor T Mode o	ıfigura [ype of f Operc	tion : Test: ution:	EUT ON VCCI CL TX	<u>LY</u> ASS B				<<	Main Sheet]
Frea.	Reading	AF	Closs	Pre-amp	Level	Limit	Margin	Pol	Az	Heiaht	Mark
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	EN_B	(dB)	(H/V)	(Deg)	(Meter)	(P/Q/A)
176.00	43.20	9.39	2.94	29.29	26.23	30.00	-3.77	10mV	0.00	1.00	Р
220.00	40.50	11.37	3.32	29.05	26.14	30.00	-3.86	10mV	0.00	1.00	Р
352.00	42.10	14.34	4.28	29.09	31.64	37.00	-5.36	10mV	315.00	1.00	Р
264.00	44.00	12.50	3.66	28.89	31.27	37.00	-5.73	10mV	0.00	1.00	Р
528.00	34.90	18.06	5.46	29.75	28.67	37.00	-8.33	10mV	315.00	1.00	P
308.00 6 Worst	39.50 Data	12.72	3.98	28.86	27.34	37.00	-9.66	10mV	0.00	1.00	Р

Page 50 of 63

REPORT NO: 01U1006-1 EUT: 2.4 GHz Spread Spectrum Station Radio

Harmonic I	Emissio	ns												
OTC Wirel	ess									10/18/	01			
Channel 1	: 2412 (GHz								Hue V	ang			
										A site	(1.0 Me	ter)		
F(MHz)	READ	NG	AF	CL	AMP	DIST	HPF	ΤΟΤΑΙ		LIMIT		MARG	IN	POL
	(dBuV)		(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/	<u>(m)</u>	(dBuV	/m)	(dB)		(H/V)
	Pk	Avg						Pk	Avg	Pk	Avg	Pk	Avg	
4824	60.2	33.48	33	5.44	41	9.5	1	49.14	22.42	74	54	-24.9	-31.6	Н
7237	47.36	33.52	37	6.29	41.43	9.5	1	40.72	26.88	74	54	-33.3	-27.1	Н
9648	50.9	34.4	38.1	7.31	39.3	9.5	1	48.51	32.01	74	54	-25.5	-22	Н
12060	45.84	34.61	39	8.5	39.5	9.5	1	45.34	34.11	74	54	-28.7	-19.9	Н
14472	48.32	37.59	41.3	9.69	42.5	9.5	1	48.31	37.58	74	54	-25.7	-16.4	Н
16884	49.63	37.75	43.2	11.05	44.03	9.5	1	51.35	39.47	74	54	-22.7	-14.5	Н
4824	64.88	34.05	33	5.44	41	9.5	1	53.82	22.99	74	54	-20.2	-31	V
7237	52.83	34.56	37	6.29	41.43	9.5	1	46.19	27.92	74	54	-27.8	-26.1	V
9648	49.15	34.04	38.1	7.31	39.3	9.5	1	46.76	31.65	74	54	-27.2	-22.4	V
12060	47.41	34.5	39	8.5	39.5	9.5	1	46.91	34	74	54	-27.1	-20	V
14472	48.88	37.6	41.3	9.69	42.5	9.5	1	48.87	37.59	74	54	-25.1	-16.4	V
16884	50.03	38.72	43.2	11.05	44.03	9.5	1	51.75	40.44	74	54	-22.3	-13.6	V
NOTE: AL	L READ	DINGS	MEASU	RED AT 1	METER.									
DIST: Corr	ection t	o extrap	oolate re	eading to 3r	n specifi	cation o	listan	ce		-				
											ANALYZER SETTINGS			
AF: Antenr	na Facto	or							PEAK	(Pk):	Res by	N	Avg. b	W
AMP: Pre-a	amp ga	in									1MHz		1MHz	
CL: Cable	loss								AVG(F	Pk):	Res by	N	Avg. b	W
HPF: High	pass fil	ter inse	rtion los	S							1MHz		10Hz	

Page 51 of 63

REPORT NO: 01U1006-1
EUT: 2.4 GHz Spread Spectrum Station Radio

COMPL	ANCE	ENG	NEER	ING SER	VICES	, INC.								
Harmonic	Emissio	ns												
OTC Wirel	ess									10/18/	01			
Channel 7	: 2442	MHz								Hue Va	ang		-	
										A site	(1.0 Me	ter)		
F(MHz)	READ	NG	AF	CL	AMP	DIST	HPF	ΤΟΤΑΙ	-	LIMIT		MARG	IN	POL
	(dBuV)		(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/	<u>(m)</u>	(dBuV/	<u>(m)</u>	(dB)		(H/V)
	Pk	Avg						Pk	Avg	Pk	Avg	Pk	Avg	
4884	61.33	33.87	33	5.44	41	9.5	1	50.27	22.81	74	54	-23.7	-31.2	Н
7327	49.12	34	37	6.29	41.43	9.5	1	42.48	27.36	74	54	-31.5	-26.6	Н
9768	48.9	32.86	38.1	7.31	39.3	9.5	1	46.51	30.47	74	54	-27.5	-23.5	Н
12209	46.35	34.28	39	8.5	39.5	9.5	1	45.85	33.78	74	54	-28.2	-20.2	Н
14652	50.35	37.78	41.3	9.69	42.5	9.5	1	50.34	37.77	74	54	-23.7	-16.2	Н
17094	50.35	38.66	43.2	11.05	44.03	9.5	1	52.07	40.38	74	54	-21.9	-13.6	Н
4884	66.38	34.46	33	5.44	41	9.5	1	55.32	23.4	74	54	-18.7	-30.6	V
7327	49.81	33.96	37	6.29	41.43	9.5	1	43.17	27.32	74	54	-30.8	-26.7	V
9768	47.07	32.95	38.1	7.31	39.3	9.5	1	44.68	30.56	74	54	-29.3	-23.4	V
12209	46	34.5	39	8.5	39.5	9.5	1	45.5	34	74	54	-28.5	-20	V
14652	49.63	37.9	41.3	9.69	42.5	9.5	1	49.62	37.89	74	54	-24.4	-16.1	V
17094	48.61	38.73	43.2	11.05	44.03	9.5	1	50.33	40.45	74	54	-23.7	-13.6	V
NOTE: AL	L REAL	DINGS	MEASU	IRED AT 1	METER.									
DIST: Corr	rection t	o extrap	oolate re	eading to 3r	n specifi	cation of	distan	се						
											ANALYZER SETTINGS			
AF: Anten	na Facto	or							PEAK	(Pk):	Res bw Avg. bw			
AMP: Pre-	amp ga	in									1MHz		1MHz	
CL: Cable	loss								AVG(F	?k):	Res by	N	Avg. b	w
HPF: High	pass fil	ter inse	rtion los	s							1MHz		10Hz	

Page 52 of 63

REPORT NO: 01U1006-1
EUT: 2.4 GHz Spread Spectrum Station Radio

COMPLI	ANCE	ENG	NEER	ING SER	VICES	, INC.								
Harmonic Emissions														
ОТС										10/18/01				
Channel 11 : 2462 MHz										Hue Vang				
										A site (1.0		(1.0 Meter)		
F(MHz)	READ	ING	AF	CL	AMP	DIST	HPF	ΤΟΤΑΙ	_	LIMIT		MARG	IN	P0L
(dBuV)		(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/	′m)	(dBuV/	/m) (dB)			(H/V)	
	Pk	Avg						Pk	Avg	Pk	Avg	Pk	Avg	
									_		-		-	
4922	59	42.9	33	5.44	41	9.5	1	47.94	31.84	74	54	-26.1	-22.2	Н
7388	46	32	37	6.29	41.43	9.5	1	39.36	25.36	74	54	-34.6	-28.6	Н
9846	48	34	38.1	7.31	39.3	9.5	1	45.61	31.61	74	54	-28.4	-22.4	Н
12308	46	34.5	39	8.5	39.5	9.5	1	45.5	34	74	54	-28.5	-20	Н
14770	50	37.5	41.3	9.69	42.5	9.5	1	49.99	37.49	74	54	-24	-16.5	Н
17232	50.4	38.5	43.2	11.05	44.03	9.5	1	52.12	40.22	74	54	-21.9	-13.8	Н
4922	66.6	34.52	33	5.44	41	9.5	1	55.54	23.46	74	54	-18.5	-30.5	V
7388	47	36.21	37	6.29	41.43	9.5	1	40.36	29.57	74	54	-33.6	-24.4	V
9846	48	35.85	38.1	7.31	39.3	9.5	1	45.61	33.46	74	54	-28.4	-20.5	V
12308	48.4	36.28	39	8.5	39.5	9.5	1	47.9	35.78	74	54	-26.1	-18.2	V
14770	49.4	38.5	41.3	9.69	42.5	9.5	1	49.39	38.49	74	54	-24.6	-15.5	V
17232	41.77	39.9	43.2	11.05	44.03	9.5	1	43.49	41.62	74	54	-30.5	-12.4	V
NOTE: AL	NOTE: ALL READINGS MEASURED AT 1 METER.													
DIST: Corr	ection t	o extra	olate re	eading to 3r	n specifi	cation o	distan	се						
											ANALYZER SETTINGS			GS
AF: Antenna Factor							PEAK	(Pk):	Res by	N	Avg. b	w		
AMP: Pre-amp gain									1MHz		1MHz			
CL: Cable loss								AVG(F	?k):	Res by	N	Avg. b	w	
HPF: High pass filter insertion loss										1MHz		10Hz		

Page 53 of 63

10.8. POWER LINE CONDUCTED EMISSION

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth		
450 KHz to 30 MHz	⊠ Peak □ CISPR Quasi Peak	9 KHz	9 KHz		

TEST SETUP

TEST PROCEDURE

1. The EUT was placed on a wooden table 40 cm from a vertical ground plane and approximately 80 cm above the horizontal ground plane on the floor. The EUT was set to transmit in a continuous mode.

2. Line conducted data was recorded for both NEUTRAL and HOT lines.

RESULT

No non-compliance noted. See plot Line Conduction.

Page 54 of 63

With DC injector.

CONDUCTED EMISSIONS DATA (115VAC 60Hz)										
Freq.		Closs	Limit	EN B	Marg	Remark				
(MHz)	PK (dBuV)	OP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1/L2	
0.15	54.29			0.00	66.00	56.00	-11.71	-1.71	L1	
0.81	38.42			0.00	56.00	46.00	-17.58	-7.58	L1	
1.18	38.45			0.00	56.00	46.00	-17.55	-7.55	L1	
0.15	53.27			0.00	66.00	56.00	-12.73	-2.73	L2	
0.81	38.71			0.00	56.00	46.00	-17.29	-7.29	L2	
1.18	38.63			0.00	56.00	46.00	-17.37	-7.37	L2	
6 Worst Data										

With Out DC Injector.

CONDUCTED EMISSIONS DATA (115VAC 60Hz)									
Freq.		Closs	Limit	EN B	Margin		Remark		
(MHz)	PK (dBuV)	OP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1/L2
0.20	59.92		44.21	0.00	64.51	54.51	-4.59	-10.30	L1
0.61	48.06		39.69	0.00	56.00	46.00	-7.94	-6.31	L1
1.38	48.71		37.86	0.00	56.00	46.00	-7.29	-8.14	L1
0.20	54.62		41.14	0.00	64.46	54.46	-9.84	-13.32	L2
0.62	47.66		38.90	0.00	56.00	46.00	-8.34	-7.10	L2
1.44	49.07		37.40	0.00	56.00	46.00	-6.93	-8.60	L2
6 Worst Data									

Page 55 of 63

Page 56 of 63

Page 57 of 63

Page 58 of 63