

## FCC CFR47 PART 15 CERTIFICATION

## **TEST REPORT**

## FOR

## 2.4 GHz 802.11b Radio Outdoor Unit with External Antenna

## **MODEL: AVCW-100/200**

## FCC ID: MKZ0208WODU0E

**REPORT NUMBER: 02U1433-1** 

ISSUE DATE: September 19, 2002

Prepared for OTC WIRELESS, INC. 48507 MILMONT DRIVE FREMONT, CA 94538 USA

Prepared by COMPLIANCE CERTIFICATION SERVICES 561 F MONTEREY ROAD MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

## TABLE OF CONTENT

| 1. | TES                  | ST RESULT CERTIFICATION                                                                       |    |
|----|----------------------|-----------------------------------------------------------------------------------------------|----|
| 2. | EU.                  | T DESCRIPTION                                                                                 |    |
| 3. | EU                   | T MODIFICATION                                                                                |    |
| 4. | TES                  | ST METHODOLOGY                                                                                |    |
| 5. | TES                  | ST FACILITY                                                                                   |    |
| 6. | AC                   | CREDITATION AND LISTING                                                                       | 5  |
|    | 6.1.                 | LABORATORY ACCREDITATIONS AND LISTINGS                                                        | 6  |
| 7. | CA                   | LIBRATION AND UNCERTAINTY                                                                     | 7  |
|    | 7.1.<br>7.2.<br>7.3. | Measuring Instrument Calibration<br>Measurement Uncertainty<br>Test and Measurement Equipment |    |
| 8. | SUI                  | PPORT EQUIPMENT / EUT SETUP                                                                   |    |
| 9. | API                  | PLICABLE RULES AND BRIEF TEST RESULT                                                          |    |
| 10 | . т                  | EST SETUP, PROCEDURE AND RESULT                                                               |    |
|    | 10.1.                | PEAK POWER OUTPUT                                                                             |    |
|    | 10.2.                | 6 DB BANDWIDTH MEASUREMENT                                                                    |    |
|    | 10.3.                | CONDUCTED SPURIOUS EMISSION                                                                   |    |
|    | 10.4.                | PEAK POWER SPECTRAL DENSITY                                                                   |    |
|    | 10.5.                | RADIATED EMISSION                                                                             |    |
|    | 10.5                 | 5.1. RADIATED EMISSION, BANDEDGES & RESTRICTED BANDS                                          |    |
|    | 10.6.                | POWER LINE CONDUCTED EMISSION                                                                 |    |
|    | 107                  | SETUP PHOTOS                                                                                  | 70 |

Page 2 of 76

# 1. TEST RESULT CERTIFICATION

| DATE TESTED:     | JULY 3, 2002 -SEPTEMBER 4, 2002                                    |
|------------------|--------------------------------------------------------------------|
| MODEL NAME:      | AVCW-100/200                                                       |
| EUT DESCRIPTION: | 2.4GHZ 802.11B RADIO OUTDOOR UNIT WITH EXTERNAL ANTENNA            |
| COMPANY NAME:    | OTC WIRELESS, INC.<br>48507 MILMONT DRIVE<br>FREMONT, CA 94538 USA |

| TYPE OF EQUIPMENT     | INTENTIONAL RADIATOR          |
|-----------------------|-------------------------------|
| EQUIPMENT TYPE        | 2.4GHz RADIO                  |
| MEASUREMENT PROCEDURE | ANSI 63.4 / 1992, TIA/EIA 603 |
| PROCEDURE             | CERTIFICATION                 |
| FCC RULE              | CFR 47 PART 15 Subpart C      |

Compliance Certification Services, Inc. tested the above equipment for compliance with the requirement set forth in CFR 47, PART 15 Subpart C. The equipment in the configuration described in this report, shows the measured emission levels emanating from the equipment do not exceed the specified limit.

**Note**: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Tested By:

Approved & Released For CCS By:

m to

MIKE HECKROTTE CHIEF ENIGNEER COMPLIANCE CERTIFICATION SERVICES

| - | E | <br>- |
|---|---|-------|
|   |   | -     |

FRANK IBRAHIM EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 3 of 76

# 2. EUT DESCRIPTION

The Model AVCW-100/200, an outdoor unit, is a time-division-duplex wireless 802.11b Direct Sequence Spread Spectrum Transceiver that operates 2.4GHz-2.4835GHz for a computer data communication applications. The device functions both as a transmitter and a receiver. The transmitting and receiving operations are a time-domain duplexed. This unit provides a power output of 15.8dBm (38mW) and an omni antenna with 15dBi gain, or parabolic antenna with 24dBi gain.

# 3. EUT MODIFICATION

In order to comply with 15.209, there were modifications made to this Model AVCW-100/200. The modifications are listed below.

| Mod.#1: | Add C103 (0.1uF), C104 (1000pf) on the digital board between Pin1 of U11 and Ground.                                                       |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Mod.#2: | Add a ferrite bead on the location L10 (BLM21P300S) between Pin1 of U11 and Vccs.                                                          |
| Mod.#3: | Replace 00hm resistor on location R24, R82 on the RF board with a ferrite bead (BLM21P300S).                                               |
| Mod#4:  | Filter, model F-30-3000-R, manufactured by RLC Electronics has to be used along with 24dBi Parabolic antenna in AVCW-100/200 applications. |

Page 4 of 76

# 4. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures documented on chapter 13 of ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

# 5. TEST FACILITY

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

# 6. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT (1300F2))

Page 5 of 76

| Country Agency |          | Scope of Accreditation                       | Logo                 |
|----------------|----------|----------------------------------------------|----------------------|
| USA            | NVLAP*   | FCC Part 15, CISPR 22, AS/NZS 3548,IEC       | โลด้                 |
|                |          | 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC |                      |
|                |          | 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC | 200065-0             |
|                |          | 61000-4-11, CNS 13438                        |                      |
| USA            | FCC      | 3/10 meter Open Area Test Sites to perform   |                      |
|                |          | FCC Part 15/18 measurements                  |                      |
|                |          |                                              | 1300                 |
| Japan          | VCCI     | CISPR 22 Two OATS and one conducted Site     | VCCI                 |
|                |          |                                              |                      |
|                |          |                                              | R-1014, R-619, C-640 |
| Norway         | NEMKO    | EN50081-1, EN50081-2, EN50082-1,             |                      |
| _              |          | EN50082-2, IEC61000-6-1, IEC61000-6-2,       |                      |
|                |          | EN50083-2, EN50091-2, EN50130-4,             | ELA 117              |
|                |          | EN55011, EN55013, EN55014-1, EN55104,        |                      |
|                |          | EN55015, EN61547, EN55022, EN55024,          |                      |
|                |          | EN61000-3-2, EN61000-3-3, EN60945,           |                      |
|                |          | EN61326-1                                    |                      |
| Norway         | NEMKO    | EN60601-1-2 and IEC 60601-1-2, the           |                      |
| _              |          | Collateral Standards for Electro-Medical     |                      |
|                |          | Products. MDD, 93/42/EEC, AIMD               | ELA-171              |
|                |          | 90/385/EEC                                   |                      |
| Taiwan         | BSMI     | CNS 13438                                    | (A)                  |
|                |          |                                              |                      |
|                |          |                                              |                      |
|                |          |                                              | SL2-IN-E-1012        |
| Canada         | Industry | RSS210 Low Power Transmitter and Receiver    | Canada               |
|                | Canada   |                                              | IC2324 A,B,C, and F  |

## 6.1. Laboratory Accreditations and Listings

\*No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government

Page 6 of 76

# 7. CALIBRATION AND UNCERTAINTY

# 7.1. Measuring Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

## 7.2. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| Radiated Emission             |             |  |  |  |  |
|-------------------------------|-------------|--|--|--|--|
| 30MHz – 200 MHz               | +/- 3.3dB   |  |  |  |  |
| 200MHz – 1000MHz              | +4.5/-2.9dB |  |  |  |  |
| 1000MHz - 2000MHz             | +4.6/-2.2dB |  |  |  |  |
| Power Line Conducted Emission |             |  |  |  |  |
| 150kHz – 30MHz                | +/-2.9      |  |  |  |  |

Any results falling within the above values are deemed to be marginal.

Page 7 of 76

# 7.3. Test and Measurement Equipment

The following test and measurement equipment was utilized for the tests documented in this report:

| TEST EQUIPMENTS LIST      |                            |                      |            |                    |  |  |
|---------------------------|----------------------------|----------------------|------------|--------------------|--|--|
| Name of Equipment         | Manufacturer               | Model No.            | Serial No. | Due Date           |  |  |
| Spectrum Display          | HP                         | 85662A               | 2152A03066 | 6/1/03             |  |  |
| Spectrum Analyzer         | HP100Hz - 22GHz            | 8566B                | 3014A06685 | 6/1/03             |  |  |
| Quasi-Peak Detector       | HP9K - 1GHz                | 85650A               | 3145A01654 | 6/1/03             |  |  |
| Pre-Amplifier             | MITEQ1-26GHz               | NSP2600-44           | 646456     | 4/26/03            |  |  |
| Horn Antenna              | EMCO                       | 3115                 | 6717       | 1/31/03            |  |  |
| Horn Antenna,(18 - 26GHz) | Antenna Research Associate | MWH 1826/B           | 1013       | 7/26/02 (Extended) |  |  |
| Spectrum Analyzer         | HP                         | 8593EM               | 3710A00205 | 3/18/04            |  |  |
| Spectrum Analyzer         | HP100Hz - 22GHz            | 8566B                | 2140A01296 | 5/23/03            |  |  |
| Quasi-Peak Detector       | HP9K - 1GHz                | 85650A               | 2811A01335 | 5/23/03            |  |  |
| Spectrum Display          | HP                         | 85662A               | 3026A19146 | 5/23/03            |  |  |
| Pre-Amplifier, 25dB       | HP0.1-1300MHz              | 8447D(P5)            | 2944A06550 | 8/22/03            |  |  |
| Antenna Bicon             | Eaton30-200MHz             | 944455-1             | 1214       | 3/29/03            |  |  |
| Antenna, LP               | EMCO200-2000MHz            | 3146                 | 2120       | 3/29/03            |  |  |
| LISN                      | Solar Elec. Co.            | 8012-50-R-24-BNC     | 837990     | 4/25/03            |  |  |
| LISN                      | Fischer 9k-100MHz          | FCC-LISN-50/250-25-2 | 114        | 4/23/03            |  |  |
| EMI Test Receiver         | Rhode & Schwarz            | ESHS 20              | 827129/002 | 4/17/03            |  |  |

# 8. SUPPORT EQUIPMENT / EUT SETUP

The following peripheral support equipment was utilized to operate the equipment under test:

• Was use for ITE devices minimum configuration requirement:

| TEST PERIPHERALS |                                                            |              |                 |     |  |  |  |  |
|------------------|------------------------------------------------------------|--------------|-----------------|-----|--|--|--|--|
| Device Type      | Device Type Manufacturer Model Number Serial Number FCC ID |              |                 |     |  |  |  |  |
| Laptop           | Personal Computer                                          | N340S8       | PB344S811902382 | DoC |  |  |  |  |
| AC/DC Adapter    | LI SHIN CORP                                               | LSE9802A2060 | 10810241        | N/A |  |  |  |  |
| AC/DC Adapter    | Not Provided                                               | A10D1-05MP   | A984606445      | N/A |  |  |  |  |
| DC Injector      | OTC Wireless                                               | N/A          | N/A             | N/A |  |  |  |  |

Page 8 of 76

The following setup was used to operate the equipment under test:



| TEST I / O CABLES |            |          |           |             |        |         |         |        |
|-------------------|------------|----------|-----------|-------------|--------|---------|---------|--------|
| Cable             | I/O        | # of I/O | Connector | Type of     | Cable  | Data    |         |        |
| No                | Port       | Port     | Туре      | Cable       | Length | Traffic | Bundled | Remark |
| 1                 | AC         | 3        | US 115V   | Un-shielded | 1m     | No      | No      | N/A    |
| 2                 | Networking | 1        | RJ45      | Un-shielded | 0.5m   | Yes     | No      | N/A    |

Page 9 of 76

# 9. APPLICABLE RULES AND BRIEF TEST RESULT

## §15.247 (a) (2) - BANDWIDTH LIMITATION

(a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

## §15.247 (b) (1) - POWER OUTPUT

(b) The maximum peak output power of the intentional radiator shall not exceed the following:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz or 5725-5850 MHz band, and all direct sequence systems: 1 watt.

## §15.247 (c) – SPURIOUS EMISSION

(c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

## §15.247 (d) - PEAK POWER SPECTRAL DENSITY

(d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Page 10 of 76

## §15.205- RESTRICTED BANDS OF OPERATIONS

| MHz                        | MHz                   | MHz             | GHz              |
|----------------------------|-----------------------|-----------------|------------------|
| 0.090 - 0.110              | 16.42 - 16.423        | 399.9 - 410     | 4.5 - 5.15       |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 - 16.69525   | 608 - 614       | 5.35 - 5.46      |
| 2.1735 - 2.1905            | 16.80425 - 16.80475   | 960 - 1240      | 7.25 - 7.75      |
| 4.125 - 4.128              | 25.5 - 25.67          | 1300 - 1427     | 8.025 - 8.5      |
| 4.17725 - 4.17775          | 37.5 - 38.25          | 1435 - 1626.5   | 9.0 - 9.2        |
| 4.20725 - 4.20775          | 73 - 74.6             | 1645.5 - 1646.5 | 9.3 - 9.5        |
| 6.215 - 6.218              | 74.8 - 75.2           | 1660 - 1710     | 10.6 - 12.7      |
| 6.26775 - 6.26825          | 108 - 121.94          | 1718.8 - 1722.2 | 13.25 - 13.4     |
| 6.31175 - 6.31225          | 123 - 138             | 2200 - 2300     | 14.47 - 14.5     |
| 8.291 - 8.294              | 149.9 - 150.05        | 2310 - 2390     | 15.35 - 16.2     |
| 8.362 - 8.366              | 156.52475 - 156.52525 | 2483.5 - 2500   | 17.7 - 21.4      |
| 8.37625 - 8.38675          | 156.7 - 156.9         | 2655 - 2900     | 22.01 - 23.12    |
| 8.41425 - 8.41475          | 162.0125 - 167.17     | 3260 - 3267     | 23.6 - 24.0      |
| 12.29 - 12.293             | 167.72 - 173.2        | 3332 - 3339     | 31.2 - 31.8      |
| 12.51975 - 12.52025        | 240 - 285             | 3345.8 - 3358   | 36.43 - 36.5     |
| 12.57675 - 12.57725        | 322 - 335.4           | 3600 - 4400     | ( <sup>2</sup> ) |
| 13.36 - 13.41              |                       |                 |                  |

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

<sup>1</sup> Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

<sup>2</sup> Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 11 of 76

### <u>§15.207- CONDUCTED LIMITS</u>

(a) For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 450 kHz to 30 MHz shall not exceed 250 microvolts. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

|                 | FCC 15.207     |                |
|-----------------|----------------|----------------|
| FREQUENCY RANGE | FIELD STRENGTH | FIELD STRENGTH |
|                 | (Microvolts)   | (dBuV)/QP      |
| 450kHz-30MHz    | 250            | 48             |

#### §15.209- RADIATED EMISSION LIMITS; GENERAL REQUIREMENTS

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency<br>(MHz) | Field Strength (micro volts/meter) | Measurement Distance<br>(meters) |
|--------------------|------------------------------------|----------------------------------|
| 30 - 88            | 100 **                             | 3                                |
| 88 - 216           | 150 **                             | 3                                |
| 216 - 960          | 200 **                             | 3                                |
| Above 960          | 500                                | 3                                |

\*\* Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(b) In the emission table above, the tighter limit applies at the band edges.

| 1 CC 1 AKT 15.209             |                |                |  |  |
|-------------------------------|----------------|----------------|--|--|
| MEASURING DISTANCE OF 3 METER |                |                |  |  |
| FREQUENCY RANGE               | FIELD STRENGTH | FIELD STRENGTH |  |  |
| (MHz)                         | (Microvolts/m) | (dBuV/m)       |  |  |
| 30-88                         | 100            | 40             |  |  |
| 88-216                        | 150            | 43.5           |  |  |
| 216-960                       | 200            | 46             |  |  |
| Above 960                     | 500            | 54             |  |  |

FCC PART 15.209

Page 12 of 76

# **10. TEST SETUP, PROCEDURE AND RESULT**

## **10.1. PEAK POWER OUTPUT**

### TEST SETUP



#### TEST PROCEDURE

The EUT is configured on a test bench as shown above in a continuously transmitting mode. While the transmitter is on, the Spectrum Analyzer captures the emission displaying the value on screen. Recorded the value on a template below.

| Channel | Frequency (MHz) | Output Power (watts) |
|---------|-----------------|----------------------|
| LOW     | 2412            | 0.038 (15.8 dBm)     |
| MID     | 2437            | 0.031 (14.9 dBm)     |
| HIGH    | 2462            | 0.029 (14.6 dBm)     |

See Plots Below:

Page 13 of 76

#### LOW CHANNEL CONDUCTED PEAK OUTPUT POWER CH1



Page 14 of 76

#### MIDDLE CHANNEL CONDUCTED PEAK OUTPUT POWER CH6



Page 15 of 76

#### HIGH CHANNEL CONDUCTED PEAK OUTPUT POWER CH11



Page 16 of 76

# 10.2. 6 dB BANDWIDTH MEASUREMENT

### TEST SETUP

Detector Function Setting of Test Receiver

| Frequency Range<br>(MHz) | Detector Function | Resolution<br>Bandwidth | Video Bandwidth |
|--------------------------|-------------------|-------------------------|-----------------|
| Above 1000               | Peak Peak         | 🛛 100 kHz               | 🔀 100 kHz       |



## TEST PROCEDURE

The EUT transmitter output was connected to the spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 kHz RBW and 100 kHz VBW.

## <u>RESULT</u>

No non-compliance noted. See plots below.

Page 17 of 76

LOW CHANNEL 6dB BANDWIDTH CH1



Page 18 of 76

MIDDLE CHANNEL 6dB BANDWIDTH CH6



Page 19 of 76

HIGH CHANNEL 6dB BANDWIDTH CH11



Page 20 of 76

# **10.3. CONDUCTED SPURIOUS EMISSION**

### TEST SETUP

Detector Function Setting of Test Receiver

| Frequency Range<br>(MHz) | Detector Function | Resolution<br>Bandwidth | Video Bandwidth |
|--------------------------|-------------------|-------------------------|-----------------|
| 30 - 25000               | Peak              | 🔀 100 kHz               | 🔀 100 kHz       |



#### TEST PROCEDURE

Connect the Eut's antenna port to the Spectrum Analyzer's input port. Investigate the entire frequency of the carrier frequency, up to the tenth harmonic.

#### <u>RESULT</u>

No non-compliance noted. See below plots for LOW, MID, HIGH channels.

| Channel | Ferq (MHz) | Field Strength      | Limit (dBuV/m) | Margin (dB) |
|---------|------------|---------------------|----------------|-------------|
|         |            | (dBuV/m)            | -20dBc         |             |
| Low     | 818.1      | 45.25 (Noise Floor) | 87.4           | -42.15      |
| Low     | 2457       | 71.05               | 87.4           | -16.35      |
| Low     | 22880      | 62.69(Noise Floor)  | 87.4           | -24.71      |
| Middle  | 718.7      | 45.7(Noise Floor)   | 87.5           | -41.8       |
| Middle  | 2373       | 69.39               | 87.5           | -18.11      |
| Middle  | 23.16      | 62.54(Noise Floor)  | 87.5           | -24.96      |
| High    | 840        | 44.19(Noise Floor)  | 86.7           | -42.51      |
| High    | 2407       | 72.73               | 86.7           | -13.97      |
| High    | 22710      | 62.47(Noise Floor)  | 86.7           | -24.23      |

Page 21 of 76

#### LOW CHANNEL CONDUCTED SPURIOUS EMISSIONS CH1 (FUNDAMENTAL)



Page 22 of 76

#### LOW CHANNEL CONDUCTED SPURIOUS EMISSIONS CH1 (30-1000MHz)



Page 23 of 76

#### LOW CHANNEL CONDUCTED SPURIOUS EMISSIONS CH1 (1-2.68GHz)



Page 24 of 76

#### LOW CHANNEL CONDUCTED SPURIOUS EMISSIONS CH1 (2.68-25GHz)



Page 25 of 76

#### MIDDLE CHANNEL CONDUCTED SPURIOUS EMISSIONS CH6 (FUNDAMENTAL)



Page 26 of 76

#### MIDDLE CHANNEL CONDUCTED SPURIOUS EMISSIONS CH6 (30-1000MHz)



Page 27 of 76

#### MIDDLE CHANNEL CONDUCTED SPURIOUS EMISSIONS CH6 (1-2.68GHz)



Page 28 of 76

#### MIDDLE CHANNEL CONDUCTED SPURIOUS EMISSIONS CH6 (2.68-25GHz)



Page 29 of 76

#### HIGH CHANNEL CONDUCTED SPURIOUS EMISSIONS CH11 (FUNDAMENTAL)



Page 30 of 76

#### HIGH CHANNEL CONDUCTED SPURIOUS EMISSIONS CH11 (30-1000MHz)



Page 31 of 76

#### HIGH CHANNEL CONDUCTED SPURIOUS EMISSIONS CH11 (1-2.68GHz)



Page 32 of 76

#### HIGH CHANNEL CONDUCTED SPURIOUS EMISSIONS CH11 (2.68-25GHz)



Page 33 of 76

# **10.4. PEAK POWER SPECTRAL DENSITY**

### TEST SETUP

Detector Function Setting of Test Receiver

| Frequency Range<br>(MHz) | Detector Function | Resolution<br>Bandwidth | Video Bandwidth |
|--------------------------|-------------------|-------------------------|-----------------|
| Above 1000               | Peak Peak         | 3 kHz                   | ⊠ 10 kHz        |



## TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using 3 kHz RBW and 10 kHz VBW, set sweep time=span/3kHz. The power spectral density was measured and recorded. The sweep time is allowed to be longer than span/3KHz for a full response of the mixer in the spectrum analyzer.

#### Result:

No non-compliance noted. See below plots for LOW, MID, HIGH channels

| CHANNEL | FREQ (MHz) | RESULT (dBm) |
|---------|------------|--------------|
| LOW     | 2412       | -14.6        |
| MIDDLE  | 2437       | -15.2        |
| HIGH    | 2462       | -15.2        |

Page 34 of 76

LOW CHANNEL PSD CH1



Page 35 of 76