

FCC CFR47 PART 15 CERTIFICATION

TEST REPORT

FOR

2.4 GHz TRANSCEIVER RADIO with RS232 INTERFACE

MODEL: WISER, WISER2000, WISER2100, WISER2200, WISER2300, AND WISER2400

BRAND NAME: OTC

FCC ID: MKZ0207232XG

REPORT NUMBER: 02U1319-1

ISSUE DATE: JULY 10, 2002

Prepared for

OTC WIRELESS, INC. 48507 MILMONT DRIVE FREMONT, CA 94538 USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561 F MONTEREY ROAD MORGAN HILL, CA 95037, USA

TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENT

1. T	EST RESULT CERTIFICATION	3
2. E	UT DESCRIPTION	4
3. T	EST METHODOLOGY	4
4. T]	EST FACILITY	4
5. A	CCREDITATION AND LISTING	4
5.1.	LABORATORY ACCREDITATIONS AND LISTINGS	5
6. C	ALIBRATION AND UNCERTAINTY	
6.1.		
6.2.		
6.3.		
7. SI	UPPORT EQUIPMENT / EUT SETUP	7
8. A	PPLICABLE RULES AND BRIEF TEST RESULT	10
9. T	EST SETUP, PROCEDURE AND RESULT	
9.1.	PEAK POWER OUTPUT	
9.2.	6 DB BANDWIDTH MEASUREMENT	
9.3.	CONDUCTED SPURIOUS EMISSION	20
9.4.		
9.5.	RESTRICTED BAND EDGE MEASUREMENT	
9.6.		
- •	6.1. RADIATED EMISSION AND RESTRICTED BANDS	
9.7.		
9.8.	SETUP PHOTOS	44

1. TEST RESULT CERTIFICATION

COMPANY NAME: OTC WIRELESS, INC.

48507 MILMONT DRIVE FREMONT, CA 94538 USA

CONTACT PERSON: YAN ZHENG / PRODUCTION ENGINEER

TELEPHONE NO: (510) 490-8288 extension 215

EUT DESCRIPTION: TRANSCEIVER RADIO WITH RS232 INTERFACE

MODEL NUMBER: WiSER, WiSER2000, WiSER2100, WiSER2200, WiSER2300,

AND WiSER2400

DATE TESTED: MAY 28, 2002-JUNE 28, 2002

TYPE OF EQUIPMENT	INTENTIONAL RADIATOR
EQUIPMENT TYPE	2.4GHz TRANSCEIVER
MEASUREMENT PROCEDURE	ANSI 63.4 / 1992, TIA/EIA 603
PROCEDURE	CERTIFICATION
FCC RULE	CFR 47 PART 15 Subpart C

Compliance Certification Services, Inc. tested the above equipment for compliance with the requirement set forth in CFR 47, PART 15 Subpart C. The equipment in the configuration described in this report, shows the measured emission levels emanating from the equipment do not exceed the specified limit.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By:

St Ch

Tested By:

STEVE CHENG

EMC ENGINEERING MANAGER

COMPLIANCE CERTIFICATION SERVICES

KERWIN CORPUZ ASSOCIATE EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

DATE: JULY 10, 2002

FCC ID: MKZ0207232XG

Page 3 of 47

2. EUT DESCRIPTION

The Models: WiSER, WiSER2000, WiSER2100, WiSER2200, WiSER2300, and WiSER2400 are a time-division-duplex wireless 802.11b Direct Sequence Spread Spectrum Transceiver that operates at 2.4GHz for a computer data communication applications. The device functions both as a transmitter and a receiver. The transmitting and the receiving operations are time-domain duplexed. This unit provides a power output of 13.63dBm (23.1mW) and an Omni Directional Antenna with a 2dBi gain.

DATE: JULY 10, 2002

FCC ID: MKZ0207232XG

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures documented on chapter 13 of ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

4. TEST FACILITY

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT (1300F2))

5.1. Laboratory Accreditations and Listings

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP*	FCC Part 15, CISPR 22, AS/NZS 3548,IEC	
		61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC	
		61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC	200065-0
		61000-4-11, CNS 13438	
USA	FCC	3/10 meter Open Area Test Sites to perform	
		FCC Part 15/18 measurements	
			1300
Japan	VCCI	CISPR 22 Two OATS and one conducted Site	VCCI
			VCCI
			R-1014, R-619, C-640
Norway	NEMKO	EN50081-1, EN50081-2, EN50082-1,	
		EN50082-2, IEC61000-6-1, IEC61000-6-2,	(N)
		EN50083-2, EN50091-2, EN50130-4,	ELA 117
		EN55011, EN55013, EN55014-1, EN55104,	
		EN55015, EN61547, EN55022, EN55024,	
		EN61000-3-2, EN61000-3-3, EN60945,	
		EN61326-1	
Norway	NEMKO	EN60601-1-2 and IEC 60601-1-2, the	
		Collateral Standards for Electro-Medical	(N)
		Products. MDD, 93/42/EEC, AIMD	ELA-171
		90/385/EEC	
Taiwan	BSMI	CNS 13438	商
			tó
			SL2-IN-E-1012
Canada	Industry	RSS210 Low Power Transmitter and Receiver	Canada
	Canada		IC2324 A,B,C, and F

^{*}No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government

6. CALIBRATION AND UNCERTAINTY

6.1. Measuring Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

DATE: JULY 10, 2002

FCC ID: MKZ0207232XG

6.2. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Radiated Emission				
30MHz – 200 MHz +/- 3.3dB				
200MHz – 1000MHz	+4.5/-2.9dB			
1000MHz – 2000MHz	+4.6/-2.2dB			
Power Line Conducted Emission				
150kHz – 30MHz +/-2.9				

Any results falling within the above values are deemed to be marginal.

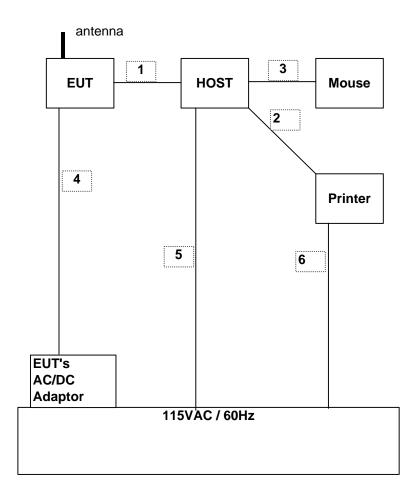
6.3. Test and Measurement Equipment

The following test and measurement equipment was utilized for the tests documented in this report:

DATE: JULY 10, 2002

FCC ID: MKZ0207232XG

TEST AND MEASUREMENT EQUIPMENT LIST					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due Date	
Spectrum Analyzer HP		8566B	2140A01296	5/23/03	
Spectrum Display	HP	85662A	3026A19146	5/23/03	
Quasi-Peak Detector	HP	85650A	2811A01335	5/23/03	
Preamplifier	HP	8447D	2944A06833	8/21/02	
Bicon Antenna	EATON	94455-1	1197	3/30/03	
LP Antenna	EMCO	3146	9107-3163	3/30/03	
Line Filter	Lindgren	LMF-3489	497	N.C.R.	
LISN	Fisher Custom Communication	LISN-50/250-25-2	2023	8/2/02	
EMI Test Receiver	Rohde & Schwarz	ESHS 20	827129/006	4/17/03	
Preamplifier (1 - 26.5GHz)	MITEQ	NSP2600-44	646456	4/26/03	
Horn Antenna (1 - 18GHz)	EMCO	3115	6739	1/31/03	
Horn Antenna (18 - 26GHz)	Antenna Research Associates	MWH 1826/B	1013	7/26/02	
Harmonic Mixer (18-26.5GHz)	HP	11970K	3003A03109	9/23/02	
Microwave Amplifier	HP	11975A	2517A01067	8/23/02	
Power Meter	Agilent	E4416A	GB41050340	12/19/02	
Power Sensor	Agilent	E9323A	US40410117	12/19/02	
High Pass Filter (4.57GHz)	FSY Microwave	FM-4570-9SS	003	N.C.R.	


7. SUPPORT EQUIPMENT / EUT SETUP

The following peripheral support equipment was utilized to operate the equipment under test:


^{*} Was use for ITE devices minimum cofiguration requirement:

PERIPHERAL SUPPORT EQUIPMENT LIST					
Device Type Manufacturer Model Serial Number FCC ID					
PC Laptop	Personal Computer Inc	N340S8	PB344S811902382	DoC	
* Mouse	Logitech	M-S34	LZC9303079	DZL211029	
* Printer	JCM Gold	GP965	20001149	DoC	
EUT's AC/DC	AK II Power Supply	A10D1-05MP	A984606445	N/A	

The following setup was used to operate the equipment under test:

SETUP BELOW 1 GHz TEST

SETUP ABOVE 1 GHz TEST

Page 8 of 47

I/O CABLES

DATE: JULY 10, 2002

FCC ID: MKZ0207232XG

	TEST I/O CABLES							
Cable	I/O	# of I/O	Connector	Type of	Cable	Data		
No	Port	Port	Type	Cable	Length	Traffic	Bundled	Remark
1	Data	1	DB9/RJ45	Un-Shielded	1m	Yes	No	N/A
2	Parallel	1	DB25	Shielded	2m	No	Yes	N/A
3	Mouse	1	PS/2	Drain-Wire	1.8m	Yes	No	N/A
4	AC/DC	1	USA	Un-Shielded	1.8m	No	Yes	Bundled during Line Conducted test
5	AC/DC	1	USA	Un-Shielded	2m	No	No	N/A
6	AC	1	USA	Un-Shielded	1.8m	No	No	N/A

8. APPLICABLE RULES AND BRIEF TEST RESULT

§15.247 (a) (2) - BANDWIDTH LIMITATION

(a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

Spec limit: > 500 kHz.

Test result: No non-compliance noted.

Channel	Frequency (MHz)	Bandwidth (MHz)
LOW	2412	8.96
MID	2442	9.04
HIGH	2468	9.16

§15.247 (b) (1) - POWER OUTPUT

- (b) The maximum peak output power of the intentional radiator shall not exceed the following:
- (1) For frequency hopping systems operating in the 2400-2483.5 MHz or 5725-5850 MHz band, and all direct sequence systems: 1 watt.

Spec limit: As specified above, 1W maximum.
Test result: Measured by Peak Power Meter. No non-compliance noted.

Channel	Frequency (MHz)	Output Power (watts)
LOW	2412	0.0231 (13.63 dBm)
MID	2442	0.0171 (12.32 dBm)
HIGH	2468	0.0173 (12.40 dBm)

§15.247 (c) – SPURIOUS EMISSION

(c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

DATE: JULY 10, 2002

FCC ID: MKZ0207232XG

Test result: No non-compliance noted. See section 10.3.

§15.247 (d) - PEAK POWER SPECTRAL DENSITY

(d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Spec limit: < 8dBm.

Test result: No non-compliance noted.

Channel	Frequency (MHz)	Results (dBm)
LOW	2412	-12.90
MID	2442	-13.30
HIGH	2468	-14.10

§15.205- RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

DATE: JULY 10, 2002

FCC ID: MKZ0207232XG

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$\binom{2}{}$
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Spec limit: As specified above,.

Test result: No non-compliance noted. See section 10.6 Radiated Emission.

² Above 38.6

§15.207- CONDUCTED LIMITS

(a) For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 450 kHz to 30 MHz shall not exceed 250 microvolts. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

FCC 15.207

FREQUENCY RANGE	FIELD STRENGTH	FIELD STRENGTH
	(Microvolts)	(dBuV)/QP
450kHz-30MHz	250	48

Spec limit: As specified above.

Test result: No non-compliance noted.

§15.209- RADIATED EMISSION LIMITS; GENERAL REQUIREMENTS

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

DATE: JULY 10, 2002

FCC ID: MKZ0207232XG

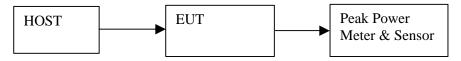
Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

FCC PART 15.209

MEASURING DISTANCE OF 3 METER											
FREQUENCY RANGE	FIELD STRENGTH	FIELD STRENGTH									
(MHz)	(Microvolts/m)	(dBuV/m)									
30-88	100	40									
88-216	150	43.5									
216-960	200	46									
Above 960	500	54									

Spec limit: As specified above.


Test result: No non-compliance noted.

⁽b) In the emission table above, the tighter limit applies at the band edges.

9. TEST SETUP, PROCEDURE AND RESULT

9.1. PEAK POWER OUTPUT

TEST SETUP

TEST PROCEDURE

The EUT is configured on a test bench as shown above in a continuously transmitting mode. While the transmitter is on, the Peak Power Meter captures the emission displaying the value on screen. Recorded the value on a template below.

Channel	Frequency (MHz)	Output Power (watts)
LOW	2412	0.0231 (13.63 dBm)
MID	2442	0.0171 (12.32 dBm)
HIGH	2468	0.0173 (12.40 dBm)

MAXIMUM PEAK POWER OUTPUT

9.2. 6 dB BANDWIDTH MEASUREMENT

Page 15 of 47

DOCUMENT NO: CCSUP4031A TEL: (408) 463-0885 FAX: (408) 463-0888

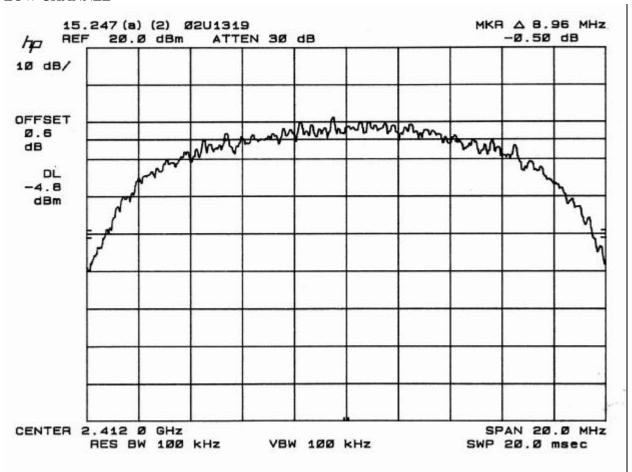
DATE: JULY 10, 2002 FCC ID: MKZ0207232XG

DATE: JULY 10, 2002 FCC ID: MKZ0207232XG

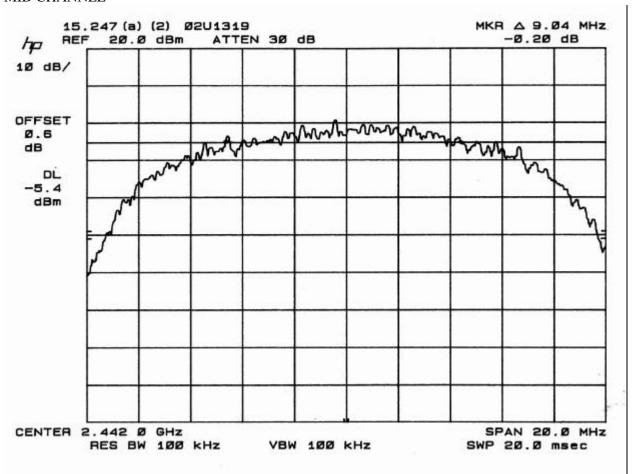
TEST SETUP

Detector Function Setting of Test Receiver

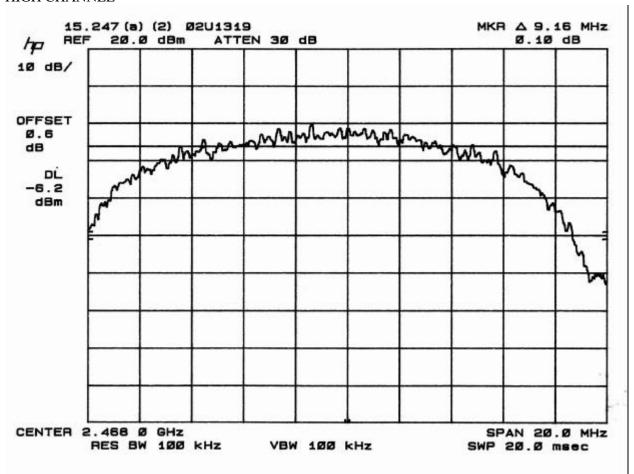
Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth		
Above 1000	Neak	⊠ 100 kHz	⊠ 100 kHz		


TEST PROCEDURE

The EUT transmitter output was connected to the spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 kHz RBW and 100 kHz VBW.


RESULT

No non-compliance noted. See plots below.

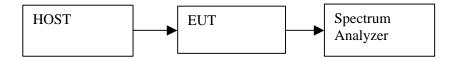

LOW CHANNEL

MID CHANNEL

HIGH CHANNEL

CONDUCTED SPURIOUS EMISSION

TEST SETUP

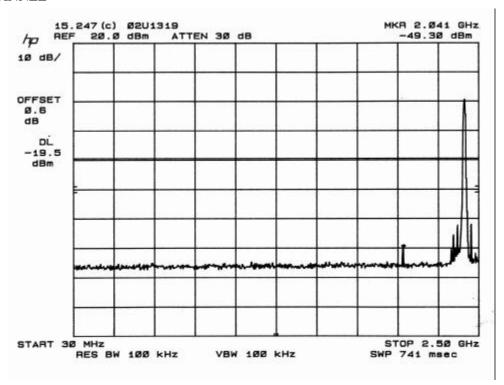

9.3.

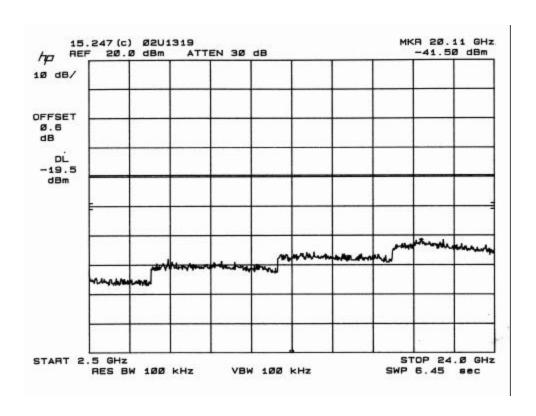
Detector Function Setting of Test Receiver

Frequency Range (MHz)	1 Detector Function		Video Bandwidth		
30 - 24000	Neak Peak	⊠ 100 kHz	⊠ 100 kHz		

DATE: JULY 10, 2002

FCC ID: MKZ0207232XG

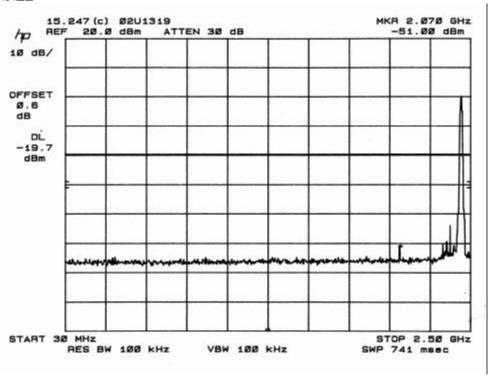

TEST PROCEDURE

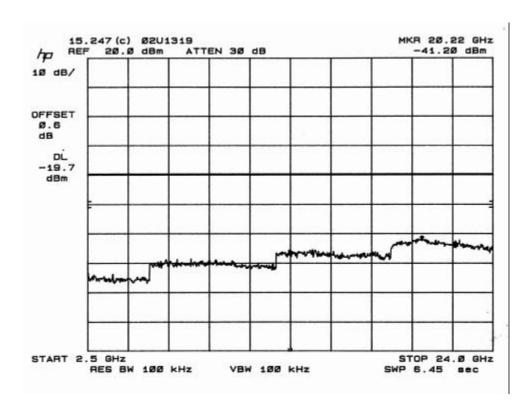

Connect the Eut's antenna port to the Spectrum Analyzer's input port. Investigate the entire frequency of the carrier frequency, up to the tenth harmonic.

RESULT

No non-compliance noted. See below plots for LOW, MID, HIGH channels.

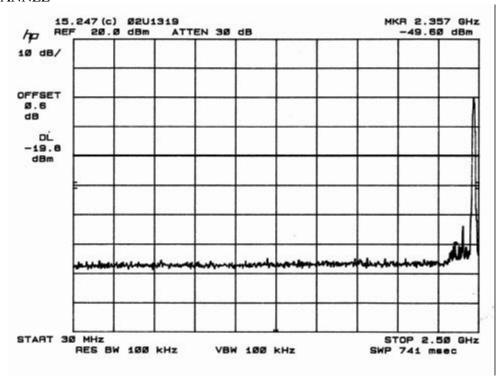
LOW CHANNEL

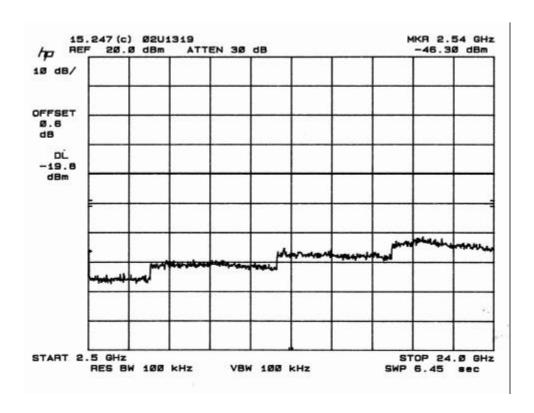



Page 21 of 47

DOCUMENT NO: CCSUP4031A TEL: (408) 463-0885 FAX: (408) 463-0888

This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

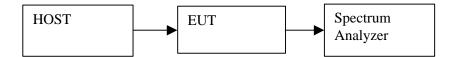

MID CHANNEL



Page 22 of 47

HIGH CHANNEL

Page 23 of 47


revision section of the document.

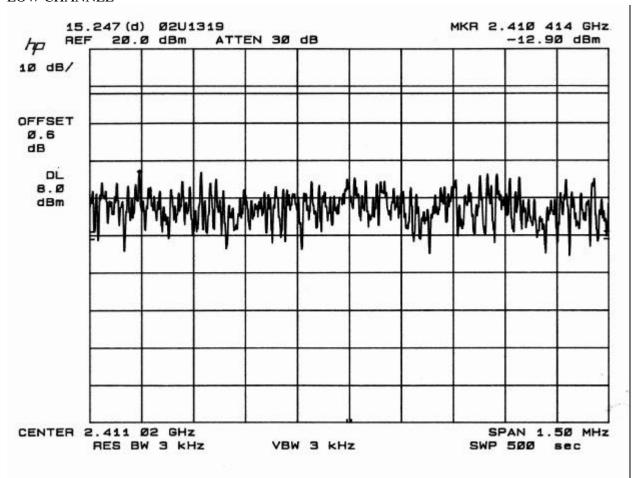
9.4. PEAK POWER SPECTRAL DENSITY

TEST SETUP

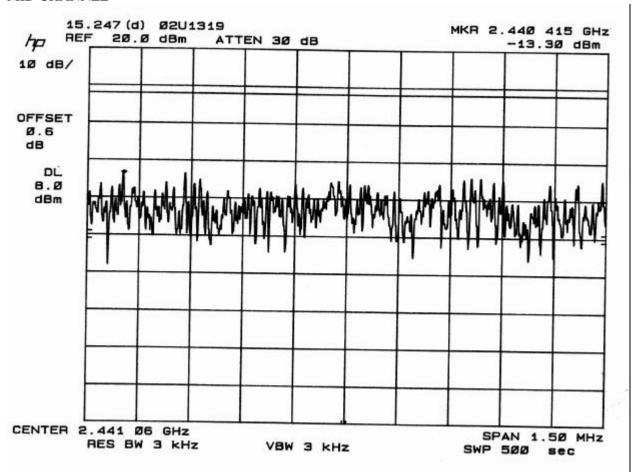
Detector Function Setting of Test Receiver

Frequency Range (MHz)	1		Video Bandwidth		
Above 1000	Neak Peak	∑ 3 kHz	∑ 3 kHz		

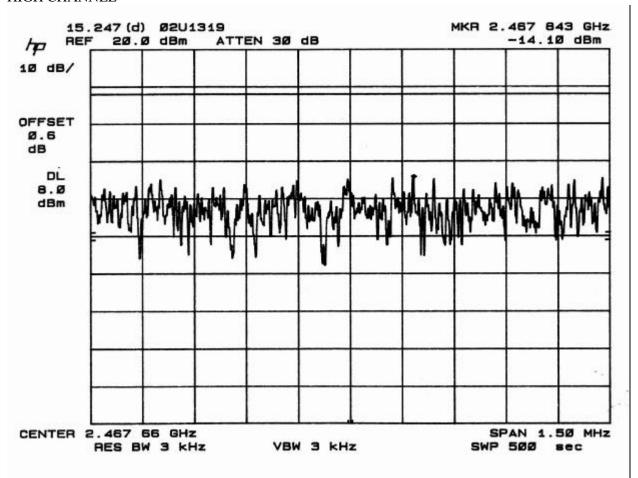
TEST PROCEDURE


The transmitter output was connected to the spectrum analyzer. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using 3 kHz RBW and 3 kHz VBW, set sweep time=span/3kHz. The power spectral density was measured and recorded. The sweep time is allowed to be longer than span/3KHz for a full response of the mixer in the spectrum analyzer.

Result:


No non-compliance noted. See below plots for LOW, MID, HIGH channels

DATE: JULY 10, 2002 FCC ID: MKZ0207232XG


LOW CHANNEL

MID CHANNEL

HIGH CHANNEL

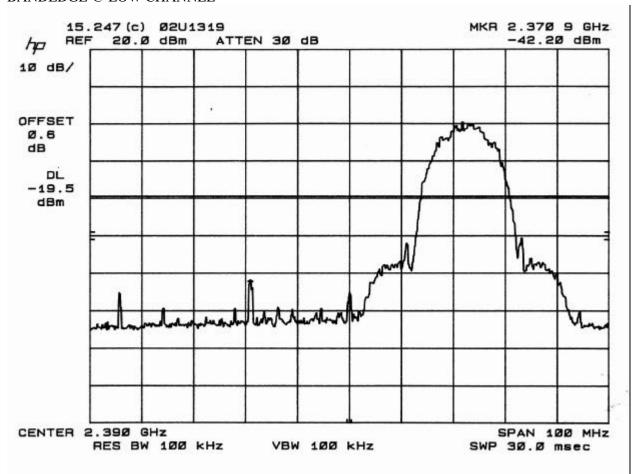
9.5. RESTRICTED BAND EDGE MEASUREMENT

TEST SETUP

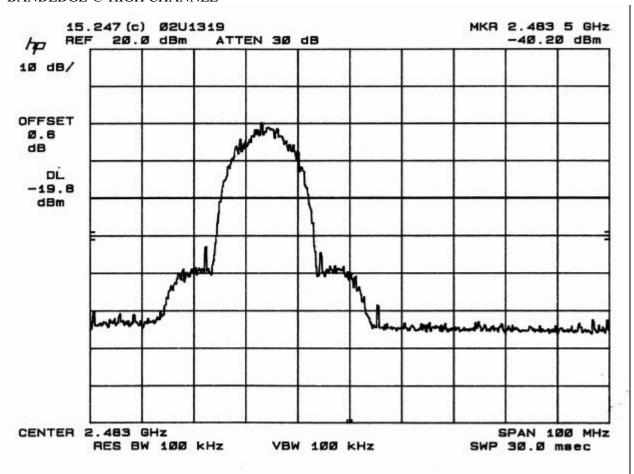
Detector Function Setting of Test Receiver

Betteetor r unetro	0		
Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
Above 1000	Peak Average	✓ 100 KHz✓ 1 MHz	∑ 100 KHz ☐ 10 Hz

TEST PROCEDURE


The transmitter output was connected to the spectrum analyzer through an attenuator; the lower and upper band edge of the EUT is investigated.

The resolutions and video bandwidth were set to 100kHz.


RESULT

No non-compliance noted. See below plots for LOW and HIGH channels

BANDEDGE @ LOW CHANNEL

BANDEDGE @ HIGH CHANNEL

9.6. RADIATED EMISSION

9.6.1. RADIATED EMISSION AND RESTRICTED BANDS

DATE: JULY 10, 2002

FCC ID: MKZ0207232XG

TEST SETUP

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth
30 to 1000	✓ Peak✓ Quasi Peak	∑ 100 KHz ∑ 1 MHz	∑ 100 KHz ∑ 1 MHz
Above 1000	Peak Average	∑ 1 MHz ∑ 1 MHz	∑ 1 MHz ∑ 10 Hz

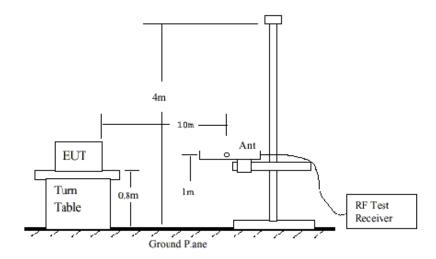


Fig 1: Radiated Emission Measurement 30 to 1000 MHz

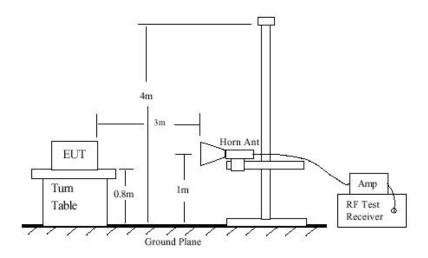


Fig 2: Radiated Emission Above 1000 MHz

TEST PROCEDURE

- 1. The EUT was placed on the turntable 0.8 meter above ground in 3 meter open area test site.
- 2. Set the resolution bandwidth to 100KHz in the test receiver and select Peak function to scan the frequency below 1 GHz.
- 3. Shift the interference-receiving antenna located in antenna tower upwards and downwards between 1 and 4 meters above ground and find out the local peak emission on frequency domain.
- 4. Locate the interference-receiving antenna at the position where the local peak reach the maximum emission.
- 5. Rotate the turntable and stop at the angle where the measurement device has maximum reading.
- 6. Shift the interference-receiving antenna again to detect the maximum emission of the local peak.
- 7. If the reading of the local peak under Peak function is lower than limit by 6dB, then Quasi Peak detection is not needed and this reading should be recorded. And if it is higher than Peak limit, then the test is fail. Others, switch the receiver to Quasi Peak function, set the resolution bandwidth to 100kHz and repeat the procedures (3)~(6). If

Page 32 of 47

REPORT NO: 02U1319-1 DATE: JULY 10, 2002 EUT: 2.4GHz Transceiver Radio with RS232 Interface FCC ID: MKZ0207232XG

the reading is lower than limit, this reading should be recorded, otherwise, the test is

8. Set the resolution and video bandwidth of the spectrum analyzer to 1MHz and repeat procedures (3)~(6) for frequency band from 1 GHz to 10 times carrier frequency.

9. If the reading for the local peak is lower than the Average limit, no further testing is needed in this local peak and this reading should be recorded. If it is higher than Average limit but lower than Peak limit, then set the resolution bandwidth to 1MHz and video bandwidth to 10Hz. Repeat procedures (3)~(6). If the maximum reading is lower than Average limit, then this reading should be recorded. If it is higher, then the test is fail.

RESULT

No non-compliance noted. See data below.

FCC, VCCI, CISPR, CE, AUSTEL, NZ UL, CSA, TUV, BSMI, DHHS, NVLAP

561F MONTEREY ROAD, SAN JOSE, CA 95037-9001 PHONE: (408) 463-0885 FAX: (408) 463-0888

OTC Wireless, Inc. Company:

2.4 GHz Transceiver Radio w/ RS232 Interface (AirEZY2411RS232) EUT Description:

Project #:

Report #:

Test Engr:

Date& Time:

02U1319-1

020628C01

Frank Ibrahim

06/28/02 10:16 AM

EUT, Laptop, Mouse, Printer Test Configuration:

FCC CLASS B Type of Test:

Normal Mode (Middle Channel, CH6) Mode of Operation:

<< Main Sheet

Freq.	Reading	AF	Closs	Pre-amp	Level	Limit	Margin	Pol	Az	Height	Mark
(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	FCC_B	(dB)	(H/V)	(Deg)	(Meter)	(P/Q/A)
308.00	55.00	14.73	2.61	26.70	45.64	46.00	-0.36	3mH	0.00	1.00	QP
308.00	52.30	14.73	2.61	26.70	42.94	46.00	-3.06	3mV	0.00	1.00	QP
836.00	43.00	21.74	4.70	27.73	41.71	46.00	-4.29	3mH	0.00	1.00	Р
484.00	48.00	17.63	3.38	27.86	41.15	46.00	-4.85	3mH	0.00	1.00	Р
748.00	43.30	21.33	4.40	27.93	41.10	46.00	-4.90	3mV	0.00	1.00	Р
924.00	40.30	23.02	5.00	27.44	40.87	46.00	-5.13	3mH	0.00	1.00	QP
6 Worst Data											

REPORT NO: 02U1319-1 DATE: JULY 10, 2002 EUT: 2.4GHz Transceiver Radio with RS232 Interface FCC ID: MKZ0207232XG

COMPLIANCE CERTIFICATION SERVICES, INC.

Radiated Emissions FCC 15.205

05/29/02 Kerwin Corpuz A-site (1.0 Meter)

OTC Wireless, Inc.

2.4 GHz Transceiver Radio with RS232 Interface (M/N: AirEZY2411RS232)

fo = 2412 MHz (low channel) TX mode

FREQ	READ	ING	AF	CL	AMP	DIST	HPF	TOTAL		LIMIT		MARGIN	
(MHz)	(dBuV))	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/i	m)	(dBuV/m)		(dB)	
	<u>Pk</u>	Avg						<u>Pk</u>	Avg	<u>Pk</u>	Avg	<u>Pk</u>	Avg
4824*	43.1	33.2	33.4	4	36.1	9.54	1	35.86	25.96	74	54	-38.1	-28
7236*	46.4	35.9	37	5	36.4	9.54	1	43.46	32.96	74	54	-30.5	-21
9648*	46.9	36.2	38.4	5.9	35.5	9.54	1	47.16	36.46	74	54	-26.8	-17.5
12060*	46	35	39.3	6.5	36.3	9.54	1	46.96	35.96	74	54	-27	-18
14472*	49.8	38.9	41.2	7.5	38	9.54	1	51.96	41.06	74	54	-22	-12.9
16884*	49.2	39	41.5	8.5	38.9	9.54	1	51.76	41.56	74	54	-22.2	-12.4
19296*	52.8	43.4	31.9	9.4	39.3	12	1	43.8	34.4	74	54	-30.2	-19.6
21708*	52.5	42.4	32.5	10.2	38.1	12	1	46.1	36	74	54	-27.9	-18

fo = 2442 MHz (mid channel) TX mode

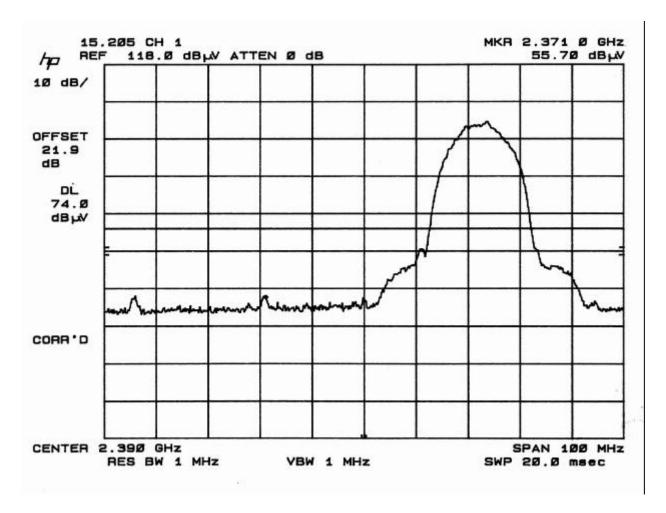
10 = 2442	IVI⊓Z (III	na cna	nnei)		I X IIIOa	е								
FREQ	READ	ING	AF	CL	AMP	DIST	HPF	TOTAL		LIMIT		MARG	MARGIN	
(MHz)	(dBuV))	(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/	(dBuV/m)		(dBuV/m)			
	<u>Pk</u>	Avg						<u>Pk</u>	Avg	Pk	Avg	Pk	Avg	
4884*	43.1	33.2	33.4	4	36.1	9.54	1	35.86	25.96	74	54	-38.1	-28	
7326*	46.4	35.9	37	5	36.4	9.54	1	43.46	32.96	74	54	-30.5	-21	
9768*	46.9	36.2	38.4	5.9	35.5	9.54	1	47.16	36.46	74	54	-26.8	-17.5	
12210*	46	35	39.3	6.5	36.3	9.54	1	46.96	35.96	74	54	-27	-18	
14652*	49.8	38.9	41.2	7.5	38	9.54	1	51.96	41.06	74	54	-22	-12.9	
17094*	49.2	39	41.5	8.5	38.9	9.54	1	51.76	41.56	74	54	-22.2	-12.4	
19536*	52.8	43.4	31.9	9.4	39.3	12	1	43.8	34.4	74	54	-30.2	-19.6	
21978*	52.5	42.4	32.5	10.2	38.1	12	1	46.1	36	74	54	-27.9	-18	

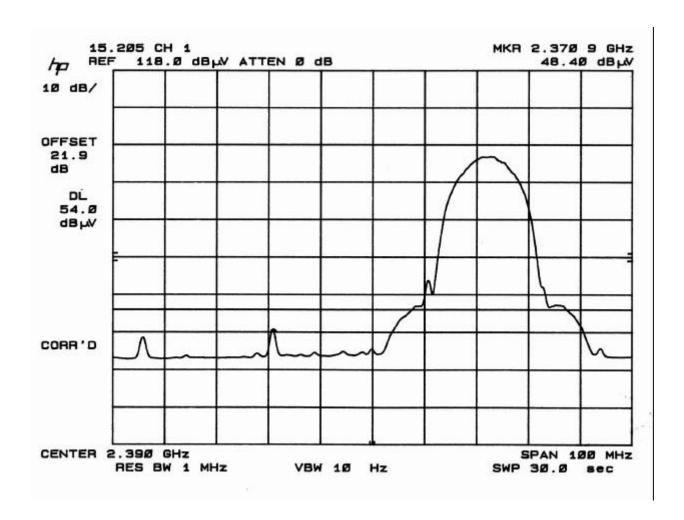
EUT: 2.4GHz Transceiver Radio with RS232 Interface

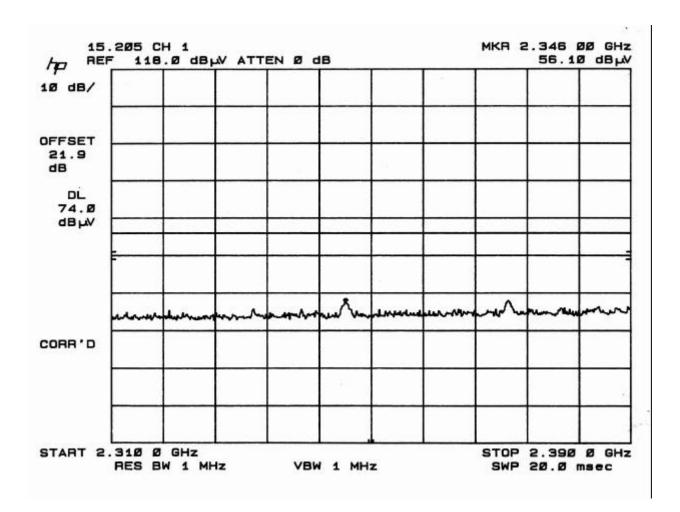
10 = 2	408 I	WHZ (N	ıgn cna	anneı)										
FRE	EQ	READ	ING	AF	CL	AMP	DIST	HPF	TOTAL		LIMIT		MARGIN	
(MH	łz)	(dBuV)		(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV/	m)	(dBuV/	/m)	(dB)	
		<u>Pk</u>	Avg						<u>Pk</u>	Avg	<u>Pk</u>	Avg	<u>Pk</u>	Avg
493	6*	43.1	33.2	33.4	4	36.1	9.54	1	35.86	25.96	74	54	-38.1	-28
740	4*	46.4	35.9	37	5	36.4	9.54	1	43.46	32.96	74	54	-30.5	-21
987	2*	46.9	36.2	38.4	5.9	35.5	9.54	1	47.16	36.46	74	54	-26.8	-17.5
1234	40*	46	35	39.3	6.5	36.3	9.54	1	46.96	35.96	74	54	-27	-18
1480	38*	49.8	38.9	41.2	7.5	38	9.54	1	51.96	41.06	74	54	-22	-12.9
1727	76*	49.2	39	41.5	8.5	38.9	9.54	1	51.76	41.56	74	54	-22.2	-12.4
1974	44*	52.8	43.4	31.9	9.4	39.3	12	1	43.8	34.4	74	54	-30.2	-19.6
222	12*	52.5	42.4	32.5	10.2	38.1	12	1	46.1	36	74	54	-27.9	-18

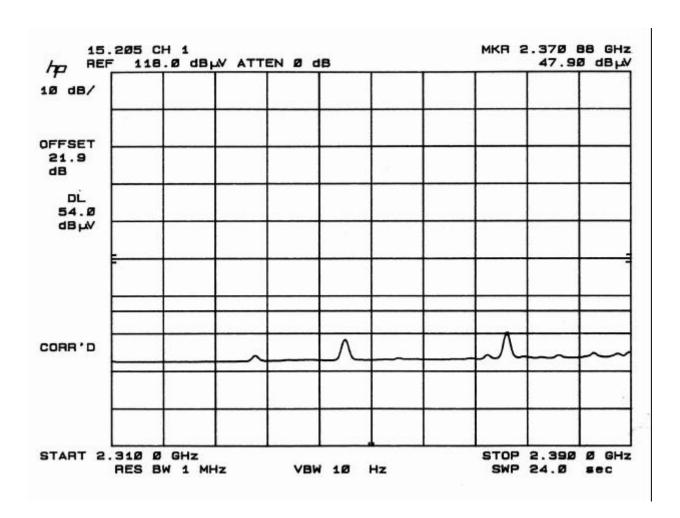
NOTE: * Measured noise floor (worse case vertical), horizontal (H) and vertical (V)

DIST: extrapolate reading from 3m specification distance to 1m measurement distance = -9.54dB extrapolate reading from 3m specification distance to 0.75m measurement distance = -12dB

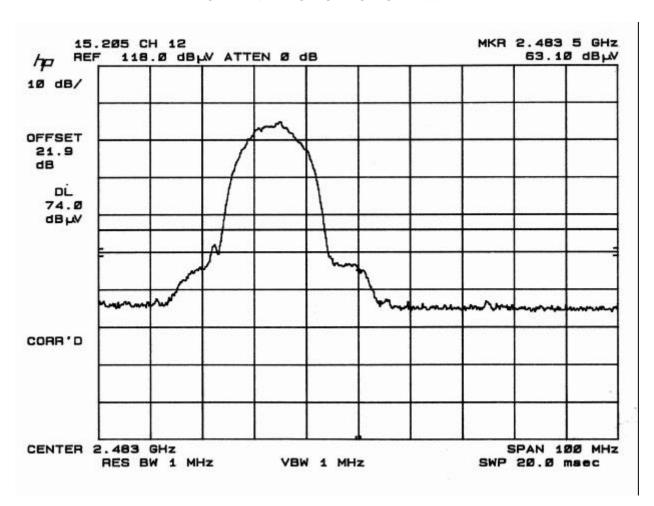

AF: Antenna Factor AMP: Pre-amp gain **CL**: SMA cable loss (13ft)

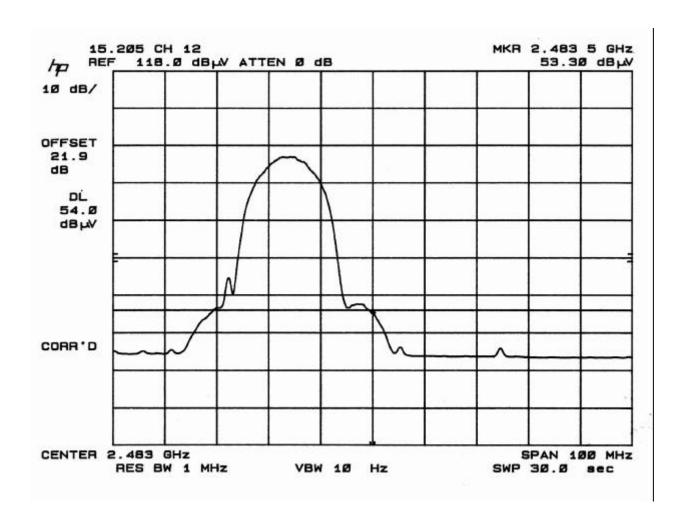

HPF: FSY High pass filter insertion loss (4.57GHz; S/N:003)


ANALYZER SETTINGS RES BW AVG BW Peak(Pk): 1MHz 1MHz Average(Avg): 1MHz 10Hz

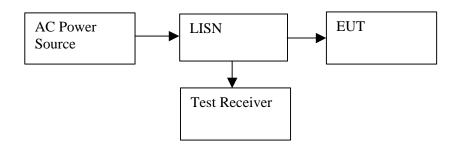

RESTRICTED BANDEDGE: 2310 – 2390 MHz and 2483.5 – 2500 MHz

BOTTOM BANDEDGE @ LOW CHANNEL





TOP BANDEDGE @ HIGH CHANNEL



9.7. POWER LINE CONDUCTED EMISSION

TEST SETUP

Detector Function Setting of Test Receiver

Frequency Range (MHz)	Detector Function	Resolution Bandwidth	Video Bandwidth	
450 KHz to 30 MHz	Peak Quasi Peak	⊠ 10 KHz	⊠ 10 KHz	

TEST PROCEDURE

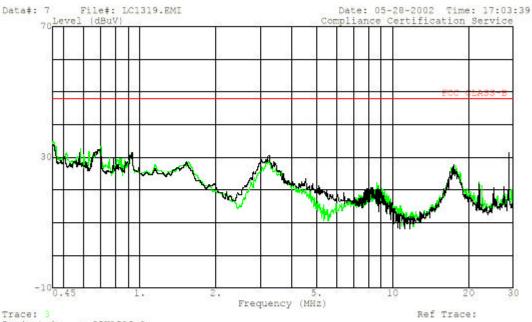
- 1. The EUT was placed on a wooden table 80 cm above the horizontal ground plane and 40 cm away from the vertical ground plane. The EUT was set to transmit / receive in a continuous mode.
- 2. Conducted disturbance was measured between the phase lead and the ground, and between the neutral lead and the ground. The frequency 0.450 30 MHz was investigated.

RESULT *No non-compliance noted. See Line Conduction plot*

CONDUCTED EMISSIONS DATA (115VAC 60Hz)										
Freq.	Reading			Closs	Limit	FCC_B	Margin		Remark	
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1/L2	
0.45	34.83			0.00	48.00		-13.17		L1	
0.70	33.30			0.00	48.00		-14.70		L1	
0.92	30.95			0.00	48.00		-17.05		L1	
0.45	33.94			0.00	48.00		-14.06		L2	
0.69	32.51			0.00	48.00		-15.49		L2	
0.93	31.49			0.00	48.00		-16.51		L2	
6 Worst I	Data									

Page 42 of 47

DOCUMENT NO: CCSUP4031A TEL: (408) 463-0885 FAX: (408) 463-0888


DATE: JULY 10, 2002

FCC ID: MKZ0207232XG

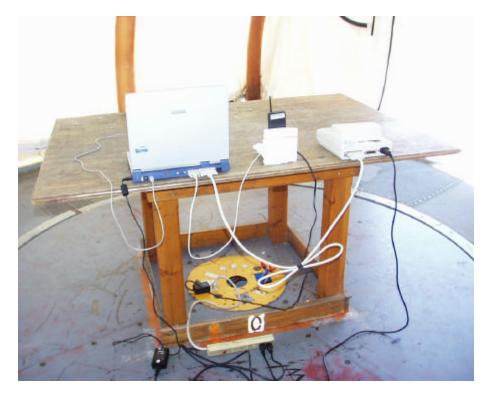
This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

561F Monterey Road, San Jose, CA 95037 Tel: |408| 463-0885 Fax: (408) 463-0888

Project # : 02Ul319-1 Test Engineer: Kerwin Corpuz

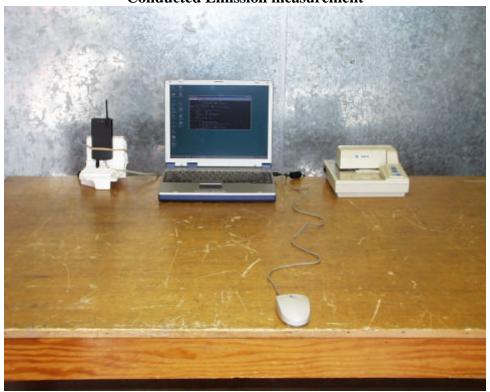
Company : OTC Wireless, Inc.
EUT : 2.4 GHz Tranceiver Radio with

: 2.4 GHZ Trancelver Radi : R\$232 Interface : Model: AirEZYZ411R\$232 Test Config : EUT/PC/Mouse/Printer Type of Test : FCC CLASS B

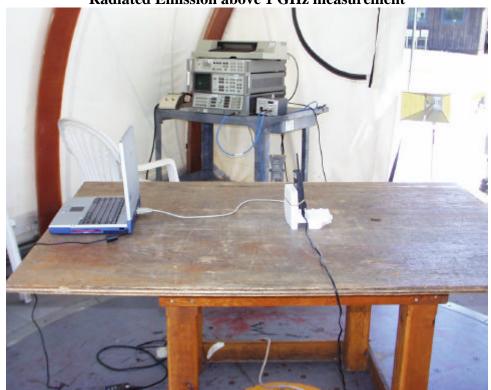

Mode of Op. : Rx : PEAK: Ll(green), L2(black) : 115Vac, 60Hz

DATE: JULY 10, 2002 FCC ID: MKZ0207232XG

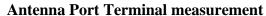
9.8. SETUP PHOTOS



Page 44 of 47


Conducted Emission measurement

Page 45 of 47


Radiated Emission above 1 GHz measurement

Radiated Emission above 18 GHz measurement

Page 46 of 47

END OF REPORT

Page 47 of 47