

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION

Applicant Information

Enfora, L.P. 661 E. 18th St.

United States

Plano, TX 75074

Test Lab

CELLTECH LABS INC.

Testing and Engineering Services

1955 Moss Court Kelowna, B.C. Canada V1Y 9L3

FCC IDENTIFIER:

IC IDENTIFIER:

Phone: 250-448-7047 Fax: 250-448-7046

e-mail: info@celltechlabs.com web site: www.celltechlabs.com

> MIVLBH0104 4160A-LBH0104

LBH0104 Model No.: **Model Name: Pinehurst**

Rule Part(s): 47 CFR §2.1093; IC RSS-102 Issue 1 (Provisional)

Test Procedure(s): FCC OET Bulletin 65, Supplement C (01-01)

IEEE Standard 1528-2003

Portable Dual-Band GSM Communicator Device Description: FCC Classification: PCS Licensed Transmitter Held to Face (PCF)

Mode(s) of Operation: PCS/Cellular GSM (Voice)

Modulation Scheme: **GMSK**

Tx Frequency Range(s): 1850.2 - 1909.8 MHz (PCS GSM)

824.2 - 848.8 MHz (Cellular GSM) 30 dBm Conducted (PCS Band)

Max. RF Output Power: 33 dBm Conducted (Cellular Band)

Internal Helical Coil (Dual-Band GSM) Antenna Type(s) Tested: **Battery Type(s) Tested:** Internal Lithium-ion 3.7 V, 870 mAh

Body-Worn Accessories Tested: Generic Earbud with Lapel-Microphone

Nitelze Small Clip Case Phone Holster with Plastic Belt-Clip

Max. SAR Levels Evaluated: PCS Band: 0.128 W/kg (Face) / 0.261 W/kg (Body)

Cellular Band: 0.285 W/kg (Face) / 0.372 W/kg (Body)

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device has demonstrated compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), Industry Canada RSS-102 Issue 1 (Provisional) and IEEE Standard 1528-2003 for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Performed By:

Spencer Watson

Compliance Technologist Celltech Labs Inc.

Scenser Watson

Reviewed By:

Celltech Labs Inc.

sall W. Pupe Russell W. Pipe **Senior Compliance Technologist**

© 2004 Celltech Labs Inc. 1 of 22

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

	TABLE OF CONTENTS	
1.0	INTRODUCTION	3
	DESCRIPTION OF DUT	
2.0	DESCRIPTION OF DUT	3
3.0	SAR MEASUREMENT SYSTEM	4
3.0	SAN MEASUNEMENT STOTEM	7
4.0	MEASUREMENT SUMMARY	5-6
5.0	DETAILS OF SAR EVALUATION	7
6.0	EVALUATION PROCEDURES	7
		_
7.0	SYSTEM PERFORMANCE CHECK	8
8.0	SIMULATED EQUIVALENT TISSUES	9
0.0	SIMULATED EQUIVALENT TISSUES	9
9.0	SAR SAFETY LIMITS	9
0.0	OAK OAI ETT EINITO	
10.0	ROBOT SYSTEM SPECIFICATIONS	10
11.0	PROBE SPECIFICATION (ET3DV6)	11
12.0	SAM PHANTOM V4.0C	11
40.0	DEVICE HOLDER	44
13.0	DEVICE HOLDER	11
14.0	TEST EQUIPMENT LIST	12
14.0	TEOT EQUI MENT EIGT	
15.0	MEASUREMENT UNCERTAINTIES	13-14
16.0	REFERENCES	15
	NDIX A - SAR MEASUREMENT DATA	16
	NDIX B - SYSTEM PERFORMANCE CHECK DATA	17
	NDIX C - SYSTEM VALIDATION	18
	NDIX D - PROBE CALIBRATION	19 20
	NDIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY	21
	NDIX G - SAR TEST SETUP & DUT PHOTOGRAPHS	22

© 2004 Celltech Labs Inc. 2 of 22

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

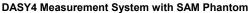
1.0 INTRODUCTION

This measurement report demonstrates that the Enfora, L.P. Model: LBH0104 Dual-Band PCS/Cellular GSM Communicator FCC ID: MIVLBH0104 complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]), IC RSS-102 Issue 1 (Provisional) (see reference [4]), and IEEE Standard 1528-2003 (see reference [5]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION of Device Under Test (DUT)

FCC Rule Part(s)	47 CFR §2.1093						
IC Rule Part(s)	RSS-102 Issue 1 (Provisional)						
Device Classification	PCS Licensed Transmitter held to face (PCF)						
	FCC OET	Bulletin 65, S	, Supplement C (01-01)				
Test Procedure(s)	IC RSS-102 Issue 1 (Provisional)						
	I	EEE Standard	1528-200	93			
Device Description	Dual-Band PCS/Cellular GSM Communicator						
FCC IDENTIFIER	MIVLBH0104						
IC IDENTIFIER	4160A-LBH0104						
Model No.	LBH0104						
Model Name	Pinehurst						
Serial No.	SAR1		Production Unit				
Tx Frequency Range(s)	1850.2 - 1909.8 M	Hz	824.2 - 848.8 MHz				
Mode(s) of Operation	PCS GSM			Cellular GSM			
Modulation Scheme	GMSK			GMSK			
Max. RF Output Power Tested	30 dBm Conducted (PL0)		PCS Band			
max. Ki Output Fower Testeu	33 dBm Conducted (Cellular Band				
Battery Type(s) Tested	Lithium-ion	3.7 V, 87	'0 mAh	Internal			
Antenna Type(s) Tested	Internal Helical Coil Dual-Band GSM						
Body-Worn Accessories Tested	Generi	c Earbud with	Lapel-Mic	rophone			
Body-World Accessories Tested	Nitelze Small Clip Case Phone Holster with Plastic Belt-Clip						

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Cor	824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora	
2004 Celltech	Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.				



Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 Measurement System with SAM Phantom

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104	
Model:	LBH0104	Portable Dual-Band GSM Cor	824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora		
2004 Celltech	Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

22.1

≥ 15

1000

٥С

cm

23.4

≥ 15

4.0 MEASUREMENT SUMMARY

1880 MHz Brain Fluid

IEEE Target

± 5%

1.40

Measured

1.39

	FACE-HELD SAR EVALUATION RESULTS																							
Test Date			Channel Test Antenna Battery Type Type		Battery Posi Type to PI		Battery Positi Type to Pla		•		Sattery Position Type to Planar		Battery Position Type to Planar		Battery Position Type to Planar		Battery Position Type to Planar		Separation Distance to Planar Phantom	Po Be	ond. ower fore est	Measured SAR 1g (W/kg)	SAR Drift During Test	Scaled SAR 1g (W/kg) by drift
									(cm)	PL	dBm		(dB)	,										
Nov-29	1880.2	Mid	190	PCS GSM	Internal	Li-io	nn i	Side Side)	2.5	0	30	0.125	-0.0908	0.128										
Nov-30	836.6	Mid	190	Cellular GSM	Internal	Li-io	n Front Side		2.5	5	33	0.277	-0.123	0.285										
	ANSI / IEEE C95.1 1999 - SAFETY LIMIT BRAIN: 1.6 W/kg (averaged over 1 gram) Spatial Peak - Uncontrolled Exposure / General Population																							
Test	Date(s)		Novemb	er 29, 2004	No	November 30, 20		30, 2004 Measure		Туре		1880 MHz	835 MHz	Unit										
		1	880 MHz	Brain Fluid	835	835 MHz Brain Flu			Relative Humidity			30	30	%										
	c Constant ε _r	IEEI	E Target	Measured	IEEE '	Target	rget Measured		get Measured		asured Atmospheric Pro		Э	102.8	102.7	kPa								
	·	40.0	± 5%	38.1	41.5	± 5%	40.1		5% 40.1		5% 40.1		Ambient Temperature		•	24.1	24.1	°C						

Note(s):

Conductivity

σ (mho/m)

The measurement results were obtained with the DUT tested in the conditions described in this report.
 Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.

IEEE Target

0.90

835 MHz Brain Fluid

± 5%

Measured

0.90

Fluid Temperature

Fluid Depth

 $\rho (Kg/m^3)$

- 2. If the scaled SAR levels at the mid channel (50% duty cycle) were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional per FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]).
- 3. The power drifts measured by the DASY4 system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above test data table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 6. The SAR measurements were performed within 24 hours of the system performance check.

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Cor	nmunicator	824.4 - 848.8 / 1850.2	enfora	
2004 Celltech	Labs Inc.	This document is not to be reproduced	l in whole or in pa	art without the written permis	sion of Celltech La	abs Inc. 5 of 22

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

MEASUREMENT SUMMARY (Cont.)

	BODY-WORN SAR EVALUATION RESULTS												
Freq. (MHz)	Cha	nnel	Test Mode	Antenna Type	Battery Type	Body-Worn Accessory	DUT Position to Planar Phantom	Separation Distance to Planar Phantom (cm)	Cond. Power Before Test (dBm)		Measured SAR 1g (W/kg)	SAR Drift During Test (dB)	Scaled SAR 1g (W/kg) by drift
								(CIII)	PL	dBm		(ub)	
1880.2	Mid	190	PCS GSM	Internal	Li-ion	Earbud-Mic Belt-Holster	Back Side	2.5	0	30	0.254	-0.126	0.261
836.6	Mid	190	Cellular GSM	Internal	Li-ion	Earbud-Mic Belt-Holster	Back Side	2.5	5	33	0.361	-0.126	0.372
	ANSI / IEEE C95.1 1999 - SAFETY LIMIT BODY: 1.6 W/kg (averaged over 1 gram) Spatial Peak - Uncontrolled Exposure / General Population												
Test	Date(s)		November 30,	2004	Novem	ber 30, 2004	Measure	ed Fluid Type		1880 M	Hz	335 MHz	Unit
1880 MHz Body Fluid		835 MH	z Body Fluid	Relativ	ve Humidity		30		30	%			

Test Date(s)	No	vember 3	30, 2004	No	November 30, 2004 N		Measured Fluid Type	1880 MHz 835 MHz		Unit
Dielectric	1880 MHz Body Fluid			835 MHz Body Fluid		dy Fluid	Relative Humidity	30	30	%
Constant	IEEE 1	Γarget	Measured	IEEE	Target	Measured	Atmospheric Pressure	102.8	102.7	kPa
ε _r	53.3	± 5%	50.8	55.2	± 5%	53.7	Ambient Temperature	23.6	23.6	°C
	1	880 MHz	Body		835 MHz	Body	Fluid Temperature	22.6	22.2	°C
Conductivity σ (mho/m)	IEEE 1	Γarget	Measured	IEEE	Target	Measured	Fluid Depth	≥ 15	≥ 15	cm
	1.52	± 5%	1.53	0.97	± 5%	1.00	ρ (Kg /m³)		1000	

Note(s):

- The measurement results were obtained with the DUT tested in the conditions described in this report.
 Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in
 Appendix A.
- If the scaled SAR levels at the mid channel (50% duty cycle) were ≥ 3 dB below the SAR limit, SAR
 evaluation for the low and high channels was optional per FCC OET Bulletin 65, Supplement C, Edition 01-01
 (see reference [3]).
- The power drifts measured by the DASY4 system for the duration of the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the above test data table.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 6. The SAR measurements were performed within 24 hours of the system performance check.

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission					sion of Celltech La	bs Inc. 6 of 22

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

5.0 DETAILS OF SAR EVALUATION

The Enfora, L.P. Model: LBH0104 Dual-Band PCS/Cellular GSM Communicator FCC ID: MIVLBH0104 was compliant for localized Specific Absorption Rate (SAR) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix G.

- 1. The DUT was evaluated in a face-held configuration with the front of the device placed parallel to the outer surface of the planar phantom. A 2.5 cm separation distance was maintained between the front side of the DUT and the outer surface of the planar phantom for the duration of the tests.
- 2. The DUT was evaluated in a body-worn configuration with the DUT placed inside the Nitelze Small Clip Case Phone Holster accessory. The back side of the DUT was facing the back side of the Nitelze Small Clip Case Phone Holster accessory. The plastic belt-clip attached to the back side of the Nitelze Small Clip Case Phone Holster accessory was placed parallel to, and touching, the outer surface of the planar phantom. The belt-clip provided a 2.5 cm separation distance between the back side of the DUT and the outer surface of the planar phantom. An earbud/lapel-microphone accessory was connected to the audio jack of the DUT for the duration of the body-worn SAR evaluations.
- 3. The power levels were set prior to the SAR evaluations using the PCTM software program provided by the manufacturer. The cellular band (850 MHz) was set to max. power level (PL5 = 33 dBm), and the PCS band (1900 MHz) set to max. power level (PL0 = 30 dBm).
- 4. The DUT was set to test mode via internal software from Laptop PC. The SAR measurements were performed with the DUT transmitting continuously at maximum power in 1 time slot (crest factor = 8.3).
- The power drifts measured by the DASY4 system during the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the test data tables (pages 5-6).
- 6. The SAR evaluations were performed with a fully charged battery prior to each test.
- 7. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluation. The temperatures reported were consistent for all measurement periods.
- 8. The dielectric parameters of the simulated tissue mixtures were measured prior to the evaluation using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters).
- 9. The SAR evaluations were performed using the planar section of the SAM phantom.

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away form the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix D). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5x5x7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7x7x7 points) to ensure complete capture of the peak spatial-average SAR.</p>

Applicant:	ant: Enfora, L.P.		FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	.BH0104 Portable Dual-Band GSM Communicato		824.4 - 848.8 / 1850.2	enfora	
2004 Celltech Labs Inc.		This document is not to be reproduced	l in whole or in pa	art without the written permis	sion of Celltech La	abs Inc. 7 of 22

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a system check was performed at the planar section of the SAM phantom with an 835MHz dipole and a 1900MHz dipole (see Appendix C for system validation procedures). The dielectric parameters of the simulated brain tissue mixture were measured prior to the system performance check using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix E for printout of measured fluid dielectric parameters). A forward power of 250mW was applied to the dipole and the system was verified to a tolerance of ±10% (see Appendix B for system performance check test plots).

	SYSTEM PERFORMANCE CHECK												
Test			SAR 1g (W/kg)		Dielectric Constant ε _r		Conductivity σ (mho/m)		Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.
Date	Freq. (MHz)	IEEE Target	Measured	IEEE Target	Measured	IEEE Target	Measured	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
11/29/04	1900	9.93 ±10%	9.94 (+0.1%)	40.0 ±5%	38.0	1.40 ±5%	1.41	1000	24.0	23.4	≥ 15	30	102.8
11/30/04	835	2.38 ±10%	2.35 (-1.3%)	41.5 ±5%	40.1	0.90 ±5%	0.90	1000	24.2	22.1	≥ 15	30	102.8

Note(s):

^{1.} The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures listed in the above table were consistent for all measurement periods.



Figure 1. System Performance Check Setup Diagram

College man

835MHz Dipole Setup

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	0104 Portable Dual-Band GSM Communic		824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	Labs Inc.	This document is not to be reproduced	I in whole or in pa	art without the written permis	sion of Celltech La	abs Inc. 8 of 22

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

8.0 SIMULATED EQUIVALENT TISSUES

The 1880/1900MHz simulated equivalent tissue mixtures consist of Glycol-monobutyl, water, and salt. The 835MHz simulated tissue mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide was added and visual inspection was made to ensure air bubbles were not trapped during the mixing process. The fluids were prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

1880/1900 MHz TISSUE MIXTURES					
INGREDIENT	1900 MHz Brain	1880 MHz Brain	1880 MHz Body		
INOREDIENT	System Check	DUT Evaluation	DUT Evaluation		
Water	55.85 %	55.85 %	69.85 %		
Glycol Monobutyl	44.00 %	44.00 %	29.89 %		
Salt	0.15 %	0.15 %	0.26 %		

835 MHz TISSUE MIXTURES						
INGREDIENT	835 MHz Brain	835 MHz Body				
INGILEDIENT	System Check & DUT Evaluation	DUT Evaluation				
Water	40.71 %	53.79 %				
Sugar	56.63 %	45.13 %				
Salt	1.48 %	0.98 %				
HEC	0.99 %					
Bactericide	0.19 %	0.10 %				

9.0 SAR SAFETY LIMITS

	SAR	(W/kg)
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	Labs Inc.	his document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.				ibs Inc. 9 of 22

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

POSITIONER: Stäubli Unimation Corp. Robot Model: RX60L

Repeatability: 0.02 mm

No. of axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: AMD Athlon XP 2400+

Clock Speed: 2.0 GHz

Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY4 software

Connecting Lines: Optical downlink for data and status info.

Optical uplink for commands and clock

DASY4 Measurement Server

Function: Real-time data evaluation for field measurements and surface detection

Hardware: PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM **Connections:** COM1, COM2, DAE, Robot, Ethernet, Service Interface

E-Field Probe

Model: ET3DV6 Serial No.: 1387

Construction: Triangular core fiber optic detection system

Frequency: 10 MHz to 6 GHz

Linearity: $\pm 0.2 \text{ dB } (30 \text{ MHz to 3 GHz})$

Phantom(s)

Type:SAM V4.0CShell Material:FiberglasThickness: $2.0 \pm 0.1 \text{ mm}$ Volume:Approx. 25 liters

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech	Labs Inc.	This document is not to be reproduced	art without the written permis	sion of Celltech La	ibs Inc. 10 of 22	

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

11.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents,

e.g. glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

Frequency: 10 MHz to >6 GHz; Linearity: ± 0.2 dB

(30 MHz to 3 GHz)

Directivity: ± 0.2 dB in brain tissue (rotation around probe axis)

 $\pm 0.4~\text{dB}$ in brain tissue (rotation normal to probe axis)

Dynamic Range: 5 μ W/g to >100 mW/g; Linearity: \pm 0.2 dB

Surface Detection ± 0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces

Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz

Compliance tests of portable phone

ET3DV6 E-Field Probe

12.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix F for specifications of the SAM phantom V4.0C).

SAM Phantom V4.0C

13.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	Labs Inc.	This document is not to be reproduced	art without the written permis	sion of Celltech La	bs Inc. 11 of 22	

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

14.0 TEST EQUIPMENT LIST

TEST EQUIPMENT	SERIAL NO.	CALIBRATION DATE
Schmid & Partner DASY4 System	-	-
-DASY4 Measurement Server	1078	N/A
-Robot	599396-01	N/A
-DAE3	353	Dec 2003
-DAE3	370	May 2004
-ET3DV6 E-Field Probe	1387	Mar 2004
-ET3DV6 E-Field Probe	1590	May 2004
-300MHz Validation Dipole	135	Oct 2004
-450MHz Validation Dipole	136	Nov 2004
-835MHz Validation Dipole	411	Mar 2004
-900MHz Validation Dipole	054	June 2004
-1800MHz Validation Dipole	247	June 2004
-1900MHz Validation Dipole	151	June 2004
-2450MHz Validation Dipole	150	Sept 2004
-SAM Phantom V4.0C	1033	N/A
-Barski Planar Phantom	03-01	N/A
-Plexiglas Planar Phantom	161	N/A
-Validation Planar Phantom	137	N/A
HP 85070C Dielectric Probe Kit	N/A	N/A
Gigatronics 8651A Power Meter	8650137	April 2004
Gigatronics 8652A Power Meter	1835267	April 2004
Gigatronics 80701A Power Sensor	1833535	April 2004
Gigatronics 80701A Power Sensor	1833542	April 2004
Gigatronics 80701A Power Sensor	1834350	April 2004
HP E4408B Spectrum Analyzer	US39240170	Dec 2003
HP 8594E Spectrum Analyzer	3543A02721	April 2004
HP 8753E Network Analyzer	US38433013	April 2004
HP 8648D Signal Generator	3847A00611	April 2004
Amplifier Research 5S1G4 Power Amplifier	26235	N/A

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech	Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Celltech Labs				bs Inc. 12 of 22

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

15.0 MEASUREMENT UNCERTAINTIES

UN	UNCERTAINTY BUDGET FOR DEVICE EVALUATION					
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (835 MHz)	± 5.95	Normal	1	1	± 5.95	8
Probe calibration (1900 MHz)	± 4.85	Normal	1	1	± 4.85	8
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	8
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	× ×
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	8
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	8
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	8
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	8
Readout electronics	± 1.0	Normal	1	1	± 1.0	8
Response time	± 0.8	Rectangular	√3	1	± 0.5	8
Integration time	± 1.4	Rectangular	√3	1	± 0.8	8
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	8
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	8
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	8
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	8
Test Sample Related						
Device positioning	± 6.0	Normal	√3	1	± 6.7	12
Device holder uncertainty	± 5.0	Normal	√3	1	± 5.9	8
Power drift	± 5.0	Rectangular	√3		± 2.9	8
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	œ
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Combined Standard Uncertainty						
835 MHz					± 13.76	
1900 MHz					± 13.32	
Expanded Uncertainty (k=2)					1	
835 MHz					± 27.51	
1900 MHz					± 26.64	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.				bs Inc. 13 of 22

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

MEASUREMENT UNCERTAINTIES (Cont.)

Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	v _i or v _{eff}
Measurement System						
Probe calibration (835 MHz)	± 5.95	Normal	1	1	± 5.95	∞
Probe calibration (1900 MHz)	± 4.85	Normal	1	1	± 4.85	∞
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	œ
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	œ
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	× ×
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	∞
Readout electronics	± 1.0	Normal	1	1	± 1.0	∞
Response time	± 0.8	Rectangular	√3	1	± 0.5	∞
Integration time	± 1.4	Rectangular	√3	1	± 0.8	∞
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	∞
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	∞
Dipole						
Dipole Axis to Liquid Distance	± 2.0	Rectangular	√3	1	± 1.2	∞
Input Power	± 4.7	Rectangular	√3	1	± 2.7	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Combined Standard Uncertainty						
835 MHz					± 10.54	
1900 MHz					± 9.97	
Expanded Uncertainty (k=2)						
835 MHz					± 21.09	
1900 MHz					± 19.93	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech	2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs					ibs Inc. 14 of 22

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

16.0 REFERENCES

- [1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6.
- [3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada, "Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields", Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.
- [5] IEEE Std 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": June 2003.

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communic		824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Ce				sion of Celltech La	abs Inc. 15 of 22	

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX A - SAR MEASUREMENT DATA

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	BH0104 Portable Dual-Band GSM Commu		824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech L				bs Inc. 16 of 22		

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 11/29/04

Face-Held SAR - PCS Band - Front Side of DUT

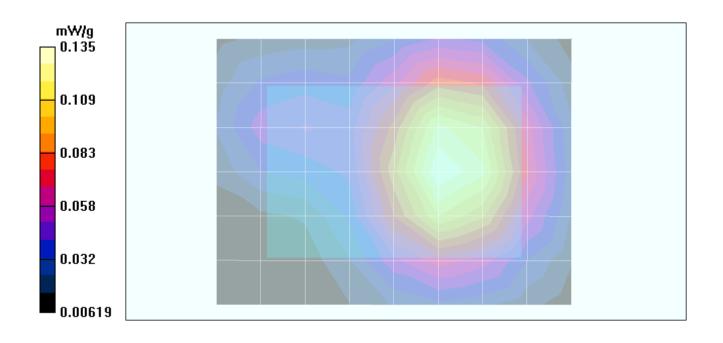
DUT: Enfora; Model: LBH0104; Type: Portable Dual-Band PCS/Cellular GSM Communicator; Serial: SAR1

Ambient Temp: 24.1 °C; Fluid Temp: 23.4 °C; Barometric Pressure: 102.8 kPa; Humidity: 30%

RF Conducted Power: 30 dBm (PL0) Communication System: PCS GSM 3.7V 870mAH Li-ion Internal Battery Frequency: 1880.2 MHz; Duty Cycle: 1:8.3

Medium: HSL1880 (σ = 1.39 mho/m; ε_r = 38.1; ρ = 1000 kg/m³)

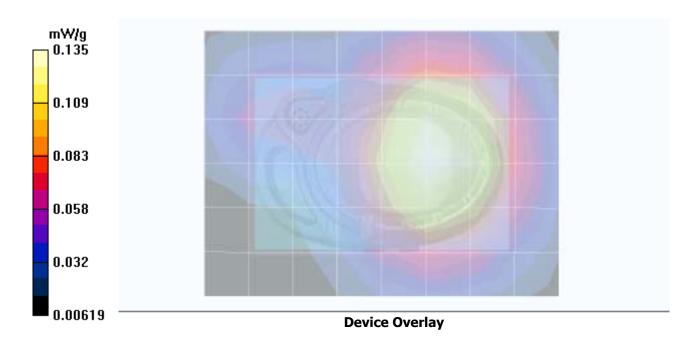
- Probe: ET3DV6 SN1387; ConvF(5.25, 5.25, 5.25); Calibrated: 18/03/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
 Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

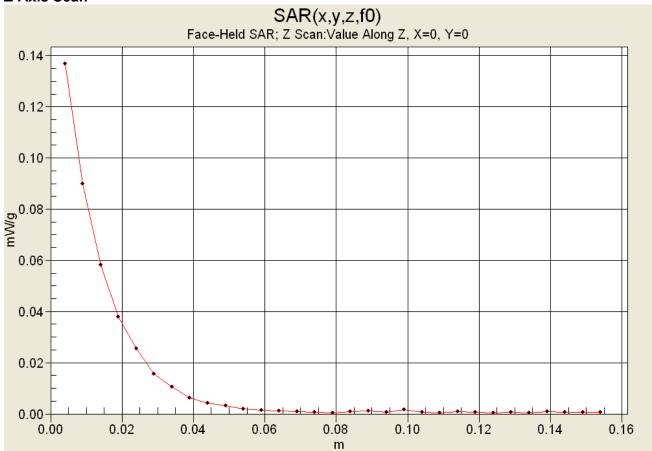

Face-Held - PCS Band - 2.5 cm Separation Distance - Mid Channel/Area Scan (7x9x1):

Measurement grid: dx=15mm, dy=15mm

Face-Held - PCS Band - 2.5 cm Separation Distance - Mid Channel/Zoom Scan 2 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.08 V/m; Power Drift = -0.0908 dB Peak SAR (extrapolated) = 0.185 W/kg


SAR(1 g) = 0.125 mW/g; SAR(10 g) = 0.081 mW/g


Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Cor	nmunicator	824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the writt			or in part without the written	permission of Cel	Itech Labs Inc.

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Cor	nmunicator	824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech	2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written p			permission of Cel	Itech Labs Inc.	

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 11/30/04

Face-Held SAR - Cellular Band - Front Side of DUT

DUT: Enfora; Model: LBH0104; Type: Portable Dual-Band PCS/Cellular GSM Communicator; Serial: SAR1

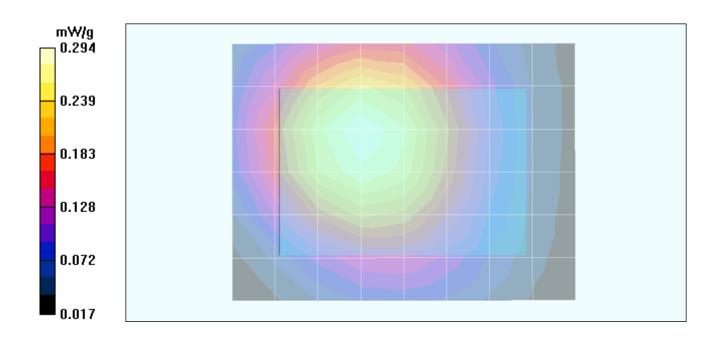
Ambient Temp: 24.1 °C; Fluid Temp: 22.1 °C; Barometric Pressure: 102.7 kPa; Humidity: 30%

RF Conducted Power: 33 dBm (PL5) Communication System: Cellular GSM 3.7V 870mAH Li-ion Internal Battery Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: HSL835 (σ = 0.90 mho/m; ε_r = 40.1; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1387; ConvF(6.71, 6.71, 6.71); Calibrated: 18/03/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

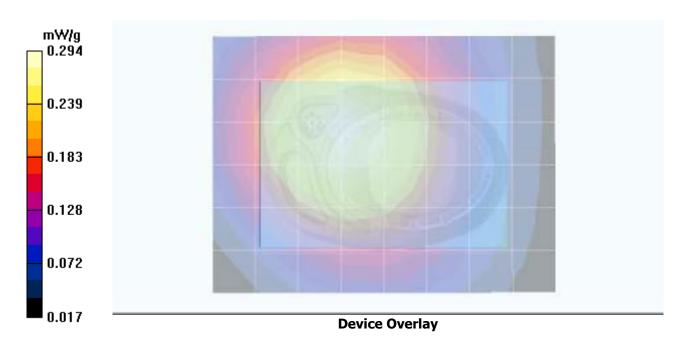
Face-Held - Cellular Band - 2.5 cm Separation Distance - Mid Channel/Area Scan (7x9x1):

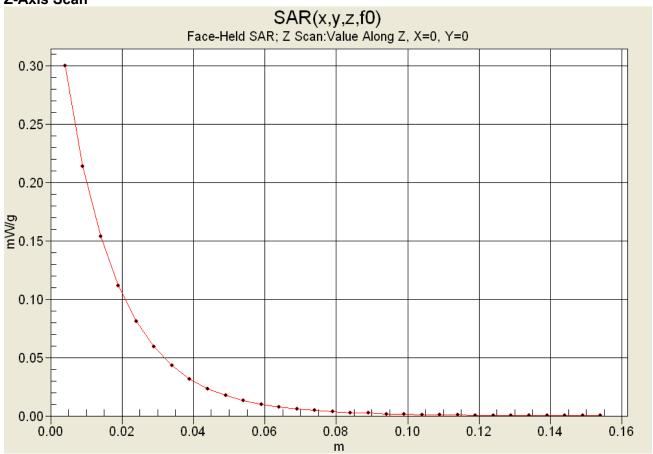

Measurement grid: dx=15mm, dy=15mm

Face-Held - Cellular Band - 2.5 cm Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17 V/m; Power Drift = -0.123 dB

Peak SAR (extrapolated) = 0.373 W/kg


SAR(1 g) = 0.277 mW/g; SAR(10 g) = 0.197 mW/g


Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Cor	nmunicator	824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without th			or in part without the written	permission of Cel	Itech Labs Inc.	

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Cellt				Itech Labs Inc.

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 11/30/04

Body-Worn SAR - PCS Band - Back Side of DUT

DUT: Enfora; Model: LBH0104; Type: Portable Dual-Band PCS/Cellular GSM Communicator; Serial: SAR1

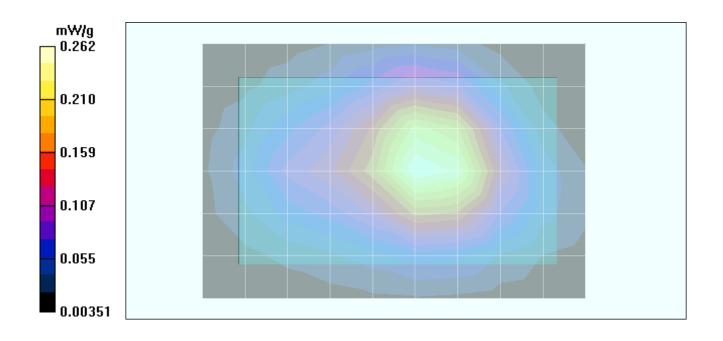
Body-Worn Accessories: DUT with Nitelze Small Clip Case Phone Holster & Belt-Clip; Generic Earbud/Lapel-Microphone

Ambient Temp: 23.6 °C; Fluid Temp: 22.6 °C; Barometric Pressure: 102.8 kPa; Humidity: 30%

RF Conducted Power: 30 dBm (PL0) Communication System: PCS GSM 3.7V 870mAH Li-ion Internal Battery Frequency: 1880.2 MHz; Duty Cycle: 1:8.3

Medium: M1880 (σ = 1.53 mho/m; ε_r = 50.8; ρ = 1000 kg/m³)

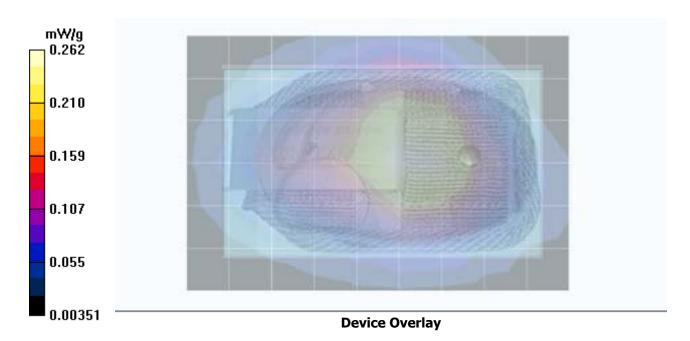
- Probe: ET3DV6 SN1387; ConvF(4.57, 4.57, 4.57); Calibrated: 18/03/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

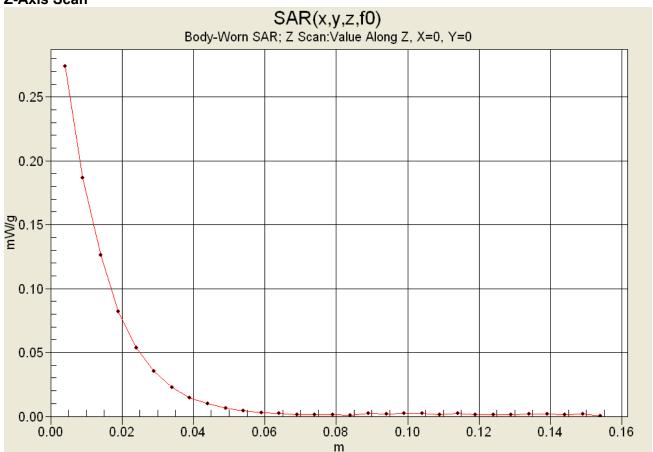

Body-Worn - PCS Band - 2.5 cm Belt-Clip & Holster Separation Distance - Mid Channel/Area Scan (7x10x1):

Measurement grid: dx=15mm, dy=15mm

Body-Worn - PCS Band - 2.5 cm Belt-Clip & Holster Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.2 V/m; Power Drift = -0.126 dB Peak SAR (extrapolated) = 0.363 W/kg


SAR(1 g) = 0.254 mW/g; SAR(10 g) = 0.162 mW/g


Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Cellt				Itech Labs Inc.

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Cor	nmunicator	824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Cellt				Itech Labs Inc.

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 11/30/04

Body-Worn SAR - Cellular Band - Back Side of DUT

DUT: Enfora Model: LBH0107; Type: Portable Dual-Band PCS/Cellular GSM Communicator; Serial: SAR1

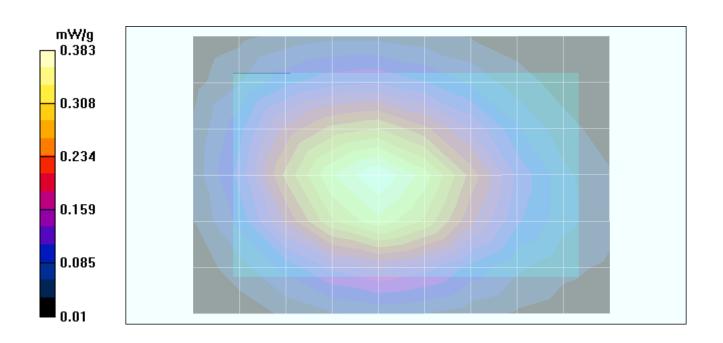
Body-Worn Accessories: DUT with Nitelze Small Clip Case Phone Holster & Belt-Clip; Generic Earbud/Lapel-Microphone

Ambient Temp: 23.6 °C; Fluid Temp: 22.2 °C; Barometric Pressure: 102.7 kPa; Humidity: 30%

RF Conducted Power: 33 dBm (PL5) Communication System: Cellular GSM 3.7V 870mAH Li-ion Internal Battery Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: M835 (σ = 1.00 mho/m; ϵ_r = 53.7; ρ = 1000 kg/m³)

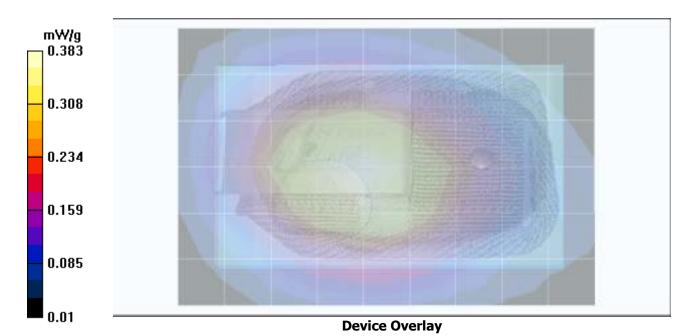
- Probe: ET3DV6 SN1387; ConvF(6.24, 6.24, 6.24); Calibrated: 18/03/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

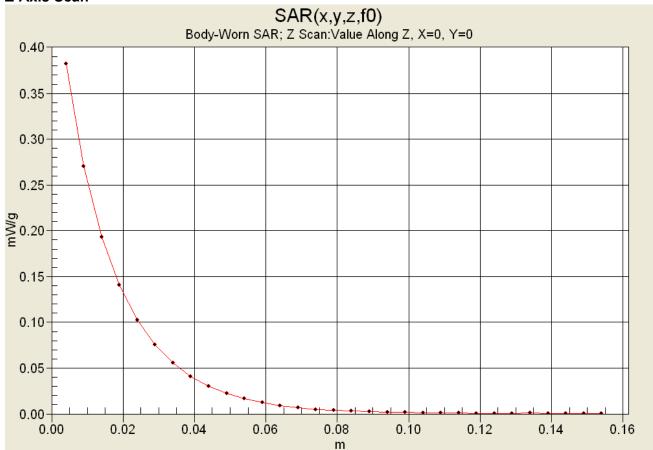

Body-Worn - Cellular Band - 2.5 cm Belt-Clip & Holster Separation Distance - Mid Channel/Area Scan (7x10x1):

Measurement grid: dx=15mm, dy=15mm

Body-Worn - Cellular Band - 2.5 cm Belt-Clip & Holster Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.8 V/m; Power Drift = -0.126 dB Peak SAR (extrapolated) = 0.508 W/kg


SAR(1 g) = 0.361 mW/g; SAR(10 g) = 0.248 mW/g


Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Cellt				Itech Labs Inc.

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Cor	nmunicator	824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Cellt				Itech Labs Inc.

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Cor	nmunicator	824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	Iltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					ibs Inc. 17 of 22

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested 11/29/04

System Performance Check - 1900 MHz Dipole

DUT: Dipole 1900 MHz; Model: D1900V2; Type: System Performance Check; Serial: 151; Calibrated: 06/18/2004

Ambient Temp: 24.0 °C; Fluid Temp: 23.4 °C; Barometric Pressure: 102.8 kPa; Humidity: 30%

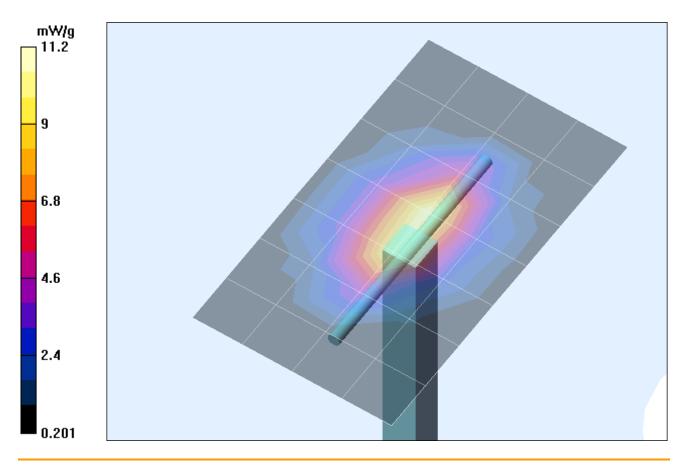
Communication System: CW Forward Conducted Power: 250 mW

Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 (σ = 1.41 mho/m; ϵ_r = 38.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1387; ConvF(5.25, 5.25, 5.25); Calibrated: 18/03/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

1900 MHz Dipole - System Performance Check/Area Scan (5x8x1):

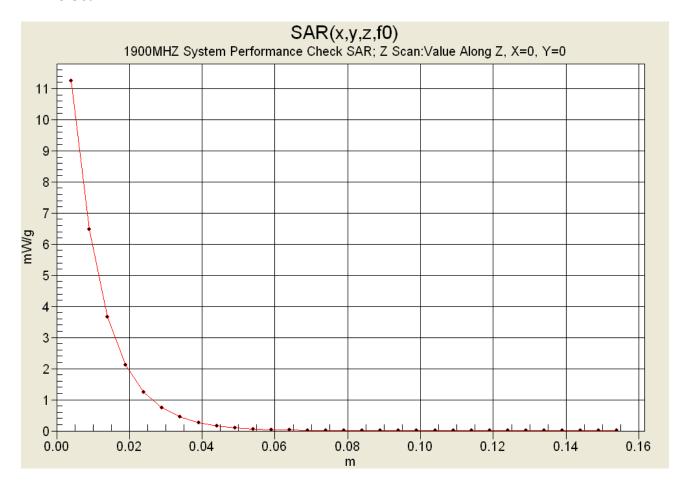

Measurement grid: dx=15mm, dy=15mm

1900 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.2 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 9.94 mW/g; SAR(10 g) = 5.21 mW/g



Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech	Labs Inc.	This document is not to be repr	or in part without the written	permission of Cel	Itech Labs Inc.	

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech	Labs Inc.	This document is not to be rep	or in part without the written	permission of Cel	Itech Labs Inc.	

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

Date Tested: 11/30/04

System Performance Check - 835 MHz Dipole

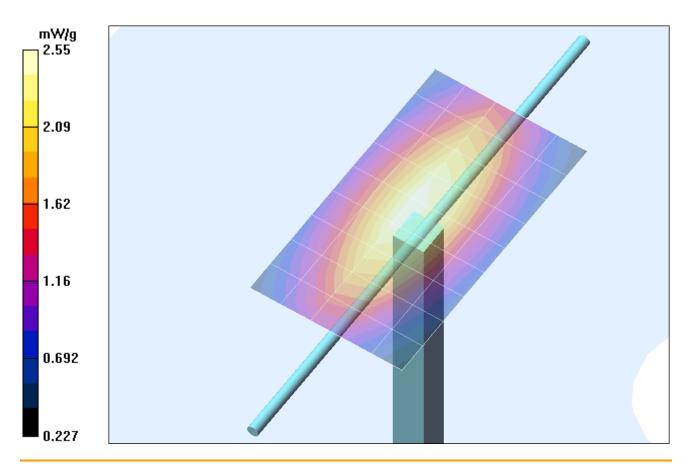
DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411; Calibrated: 03/16/2004

Ambient Temp: 24.2 °C; Fluid Temp: 22.1 °C; Barometric Pressure: 102.8 kPa; Humidity: 30%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 835 MHz; Duty Cycle: 1:1

Medium: ($\sigma = 0.90 \text{ mho/m}$; $\varepsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 SN1387; ConvF(6.71, 6.71, 6.71); Calibrated: 18/03/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004 - Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

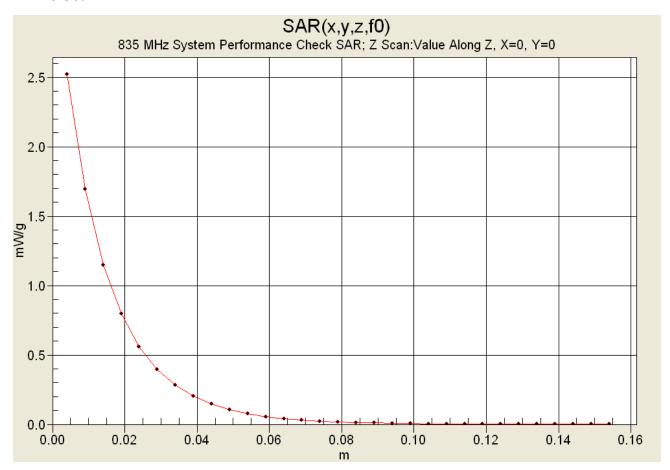

835 MHz Dipole - System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

835 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.8 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 3.51 W/kg

SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.53 mW/g



Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech	2004 Celltech Labs Inc. This document is not to be reproduced in who			or in part without the written	permission of Cel	Itech Labs Inc.

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

Z-Axis Scan

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech	Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.				

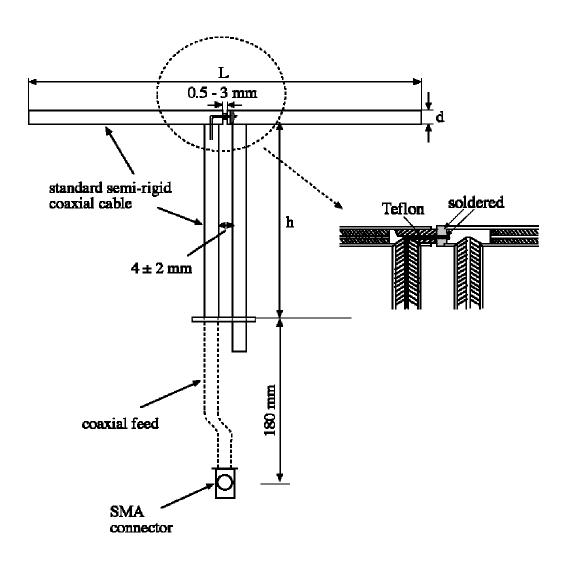
Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

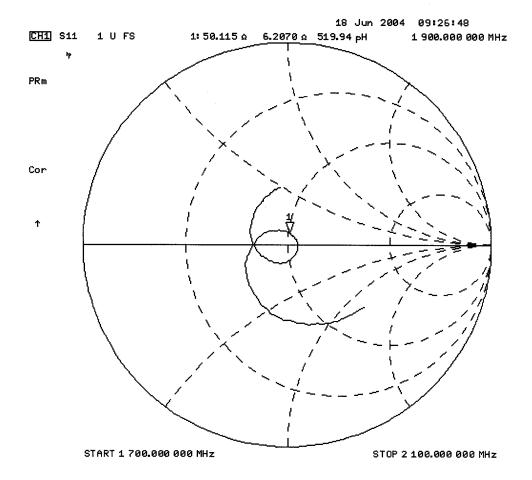
APPENDIX C - SYSTEM VALIDATION

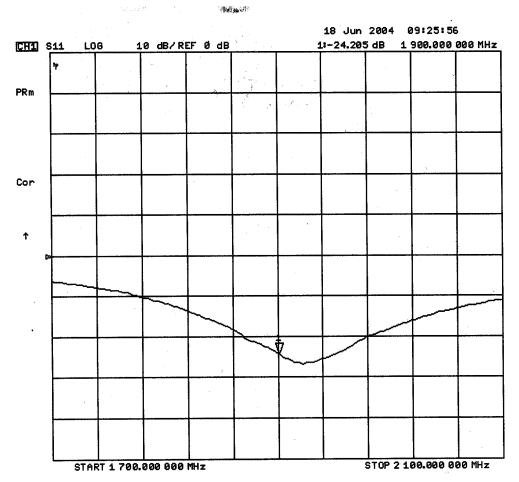
Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					abs Inc. 18 of 22	

1900 MHz SYSTEM VALIDATION DIPOLE

Type:	1900 MHz Validation Dipole
Serial Number:	151
Place of Calibration:	Celltech Labs Inc.
Date of Calibration:	June 18, 2004
Celltech Labs Inc. hereby certifies that this devi	ice has been calibrated on the date indicated above
Calibrated by:	Spenser Watson
Approved by:	Mussell W. Rupe


1. Dipole Construction & Electrical Characteristics


The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:


Feed point impedance at 1900MHz $Re{Z} = 50.115\Omega$

 $Im{Z} = 6.2070\Omega$

Return Loss at 1900MHz -24.205dB

Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

2. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ **Filling Volume:** Approx. 20 liters

Dimensions: 50 cm (W) x 100 cm (L)

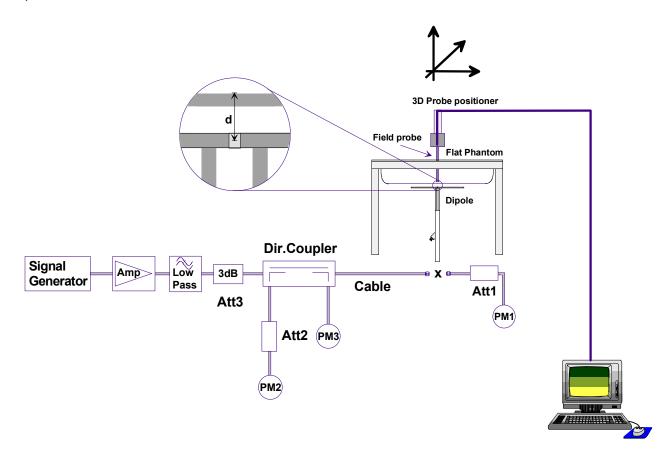
1900 MHz System Validation Setup

1900 MHz System Validation Setup

3. Measurement Conditions

The SAM phantom was filled with 1900 MHz brain simulating tissue.

Relative Permittivity: 38.3


Conductivity: 1.43 mho/m
Ambient Temperature: 24.0 °C
Fluid Temperature: 22.6 °C
Fluid Depth: \geq 15.0 cm
Barometric Pressure: 103.0 kPa
Humidity: 37%

The 1900 MHz tissue simulant consists of the following ingredients:

Ingredient	Percentage by weight
Water	55.85%
Glycol	44.00%
Salt	0.15%
Target Dielectric Parameters at 22 °C	$\epsilon_{\rm r} = 40.0$ $\sigma = 1.40 \; {\rm S/m}$

4. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 50dB below the forward power.

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Dipole SAR Test Results

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	10.1	40.40	5.30	21.20	17.4
Test 2	9.93	39.72	5.21	20.84	17.2
Test 3	9.98	39.92	5.23	20.92	17.3
Test 4	9.99	39.96	5.21 20.84		17.4
Test 5	9.97	39.88	5.22	20.88	17.4
Test 6	9.90	39.60	5.20	20.80	17.1
Test 7	9.93	39.72	5.21	20.84	17.2
Test 8	9.96	39.84	5.20	20.80	17.3
Test 9	9.94	39.76	5.20	20.80	17.2
Test 10	9.96	39.84	5.21	20.84	17.2
Average	9.966	39.864	5.219	20.876	17.27

The results have been normalized to 1W (forward power) into the dipole.

1g/10g Averaged Average Measured SAR @ 1W Input		IEEE Target SAR @ 1W Input	Deviation (%)
1 gram 39.864		39.7	+ 0.413
10 gram	20.876	20.5	+ 1.835

1900 MHz System Validation - June 18, 2004

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 151

Ambient Temp: 24.0°C; Fluid Temp: 22.6°C; Barometric Pressure: 103.0 kPa; Humidity: 37%

Communication System: CW

Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 ($\sigma = 1.43 \text{ mho/m}$; $\varepsilon_r = 38.3$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 SN1387; ConvF(5.25, 5.25, 5.25); Calibrated: 18/03/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

1900 MHz System Validation/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 96.9 V/m; Power Drift = 0.1 dB

1900 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.9 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.3 mW/g

1900 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.8 V/m; Power Drift = 0.0 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.21 mW/g

1900 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.2 V/m; Power Drift = 0.009 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 9.98 mW/g; SAR(10 g) = 5.23 mW/g

1900 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.9 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.99 mW/g; SAR(10 g) = 5.21 mW/g

1900 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.2 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.97 mW/g; SAR(10 g) = 5.22 mW/g

1900 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.8 V/m; Power Drift = -0.0 dB

Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 9.9 mW/g; SAR(10 g) = 5.2 mW/g

1900 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.8 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.21 mW/g

1900 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.1 V/m; Power Drift = -0.007 dB

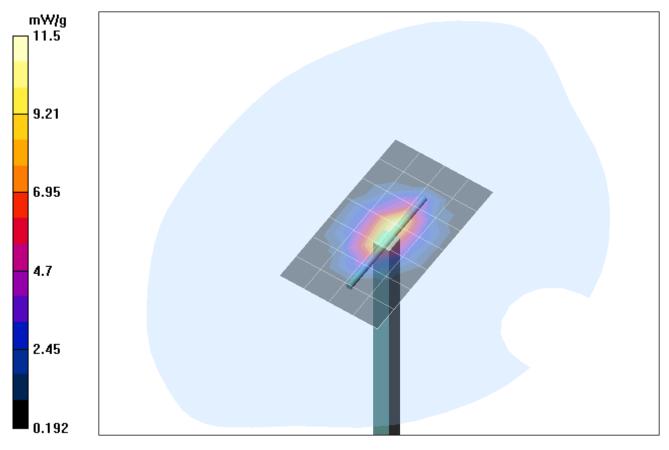
Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 9.96 mW/g; SAR(10 g) = 5.2 mW/g

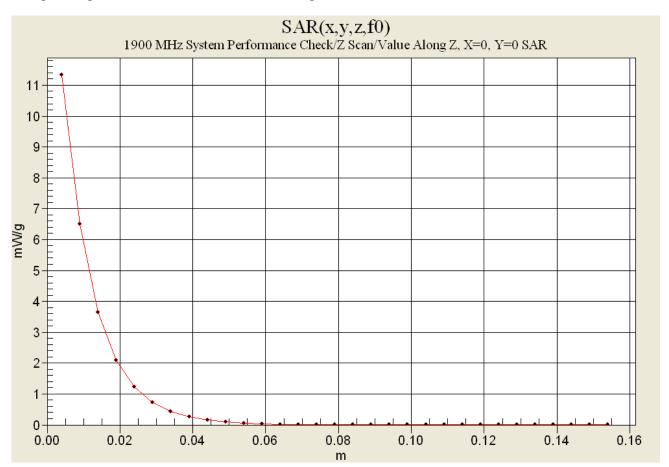
1900 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.7 V/m; Power Drift = -0.0 dB

Peak SAR (extrapolated) = 17.2 W/kg


SAR(1 g) = 9.94 mW/g; SAR(10 g) = 5.2 mW/g

1900 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.1 V/m; Power Drift = -0.0 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.96 mW/g; SAR(10 g) = 5.21 mW/g

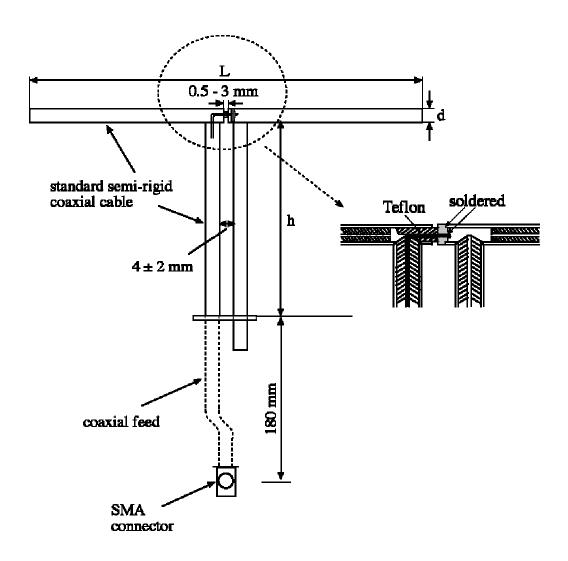
1 g average of 10 measurements: 9.966 mW/g 10 g average of 10 measurements: 5.219 mW/g

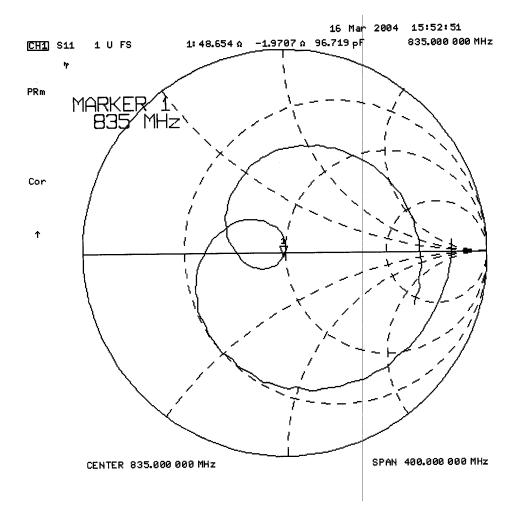
1900 MHz System Validation Measured Fluid Dielectric Parameters (Brain) June 18, 2004

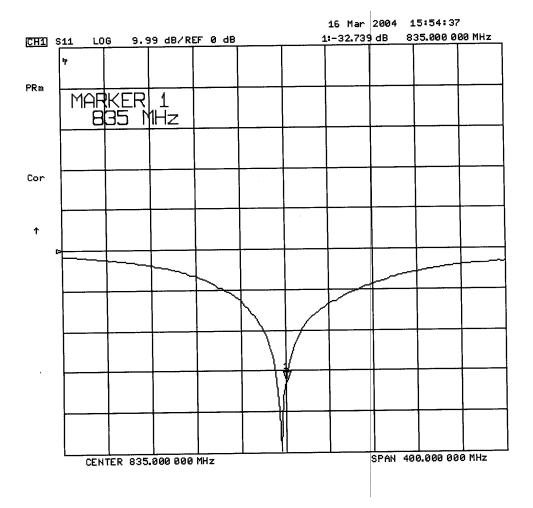
Frequency	e'	e"
1.800000000 GHz	38.7685	13.2945
1.810000000 GHz	38.7232	13.3253
1.820000000 GHz	38.6647	13.3519
1.830000000 GHz	38.6047	13.3737
1.840000000 GHz	38.5593	13.4078
1.850000000 GHz	38.5136	13.4244
1.860000000 GHz	38.4736	13.4289
1.870000000 GHz	38.4328	13.4399
1.880000000 GHz	38.3934	13.4856
1.890000000 GHz	38.3637	13.4872
1.900000000 GHz	38.3205	13.5178
1.910000000 GHz	38.2981	13.5327
1.920000000 GHz	38.2590	13.5755
1.930000000 GHz	38.2344	13.5976
1.940000000 GHz	38.2172	13.6297
1.950000000 GHz	38.1838	13.6574
1.960000000 GHz	38.1575	13.6807
1.970000000 GHz	38.1070	13.6962
1.980000000 GHz	38.0516	13.7296
1.990000000 GHz	38.0093	13.7634
2.000000000 GHz	37.9485	13.7978

835 MHz SYSTEM VALIDATION DIPOLE

Type:	835 MHz Validation Dipole
Serial Number:	411
Place of Calibration:	Celltech Labs Inc.
Date of Calibration:	March 16, 2004
Celltech Labs Inc. hereby certifies that this devi	ice has been calibrated on the date indicated above.
Calibrated by:	Spencer Watson
Approved by:	Russell W. Ripe


1. Dipole Construction & Electrical Characteristics


The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:


Feed point impedance at 835MHz Re{Z} = 48.654Ω

 $\text{Im}\{Z\} = -1.9707\Omega$

Return Loss at 835MHz -32.739dB

Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

2. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 20 liters

Dimensions: 50 cm (W) x 100 cm (L)

835 MHz System Validation Setup

835 MHz System Validation Setup

3. Measurement Conditions

The SAM phantom was filled with 835 MHz brain simulating tissue.

Relative Permittivity: 42.6

Conductivity: 0.94 mho/m

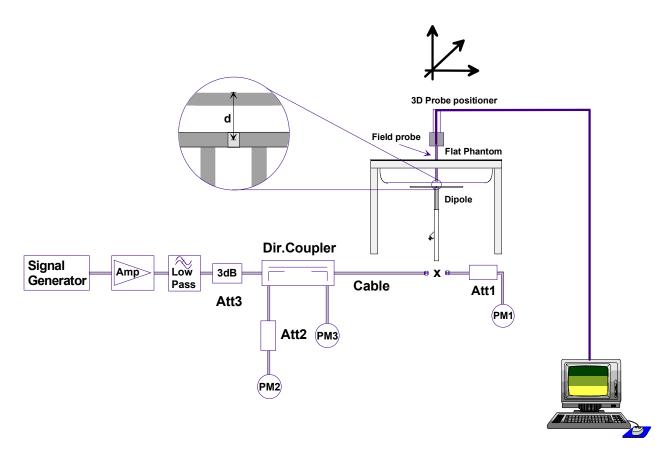
Ambient Temperature: 24.6 °C

Fluid Temperature: 21.9 °C

Fluid Depth: \geq 15.0 cm

Barometric Pressure: 101.6 kPa

Humidity: 31%


The 835 MHz simulating tissue consists of the following ingredients:

Ingredient	Percentage by weight		
Water	40.71%		
Sugar	56.63%		
Salt	1.48%		
HEC	0.99%		
Dowicil 75	0.19%		
Target Dielectric Parameters at 22 °C	$\varepsilon_{\rm r} = 41.5$ $\sigma = 0.90 \; {\rm S/m}$		

Measurements were taken in the flat section of the SAM phantom using a dosimetric E-field probe ET3DV6 (s/n: 1590, conversion factor 7.0).

4. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Dipole SAR Test Results

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	2.46	9.84	1.61	6.44	3.56
Test 2	2.45	9.80	1.60	6.40	3.56
Test 3	2.45	9.80	1.61	6.44	3.56
Test 4	2.44	9.76	1.60 6.40		3.55
Test 5	2.43	9.72	1.60	6.40	3.53
Test 6	2.44	9.76	1.60	6.40	3.53
Test 7	2.44	9.76	1.60	6.40	3.55
Test 8	2.44	9.76	1.60	6.40	3.54
Test 9	2.47	9.88	1.62	6.48	3.58
Test10	2.47	9.88	1.62	6.48	3.62
Average Value	2.45	9.80	1.61	6.42	3.56

The results have been normalized to 1W (forward power) into the dipole.

Averaged over 1cm (1g) of tissue: 9.80 mW/g

Averaged over 10cm (10g) of tissue: 6.42 mW/g

835 MHz System Validation - March 16, 2004

DUT: Dipole 835 MHz; Type: D835V2; Serial: 411

Ambient Temp: 24.6°C; Fluid Temp: 21.9°C; Barometric Pressure: 101.6 kPa; Humidity: 31%

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835 (σ = 0.94 mho/m; ϵ_r = 42.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(7, 7, 7); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: SAM 4.0: Type: Fiberglas: Serial: 1033
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

835 MHz System Validation/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

835 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.61 mW/g

835 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.61 mW/g

835 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

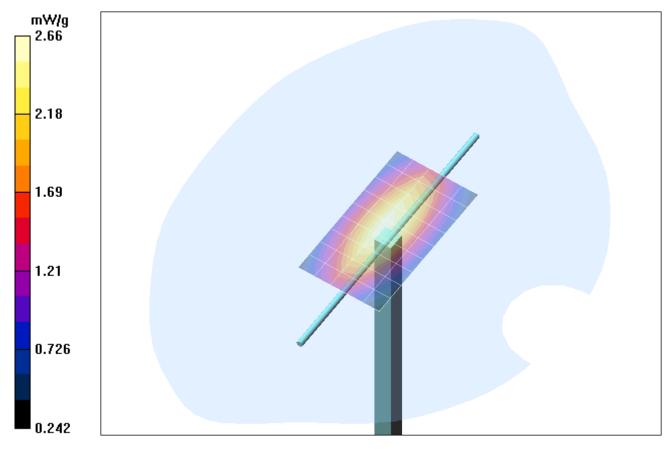
Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

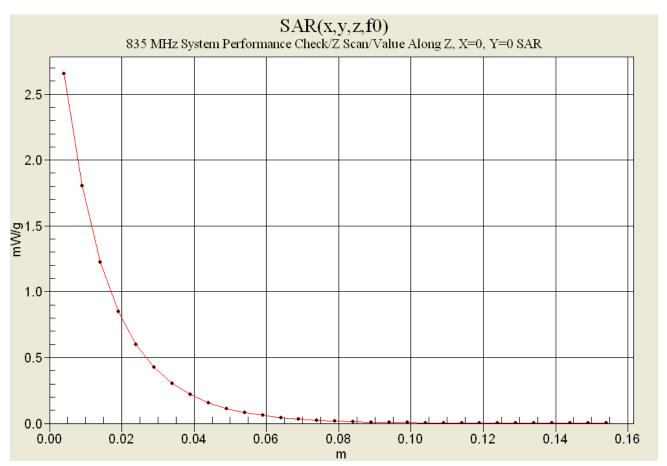
835 MHz System Validation/Zoom Scan 11 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.58 W/kg


SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

835 MHz System Validation/Zoom Scan 12 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

1 g average of 10 measurements: 2.449 mW/g 10 g average of 10 measurements: 1.606 mW/g

835 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) March 16, 2004

Frequency	e'	e"
735.000000 MHz	43.8577	20.6938
745.000000 MHz	43.6899	20.6481
755.000000 MHz	43.5341	20.5840
765.000000 MHz	43.4161	20.5576
775.000000 MHz	43.3026	20.5312
785.000000 MHz	43.2065	20.5122
795.000000 MHz	43.1067	20.5061
805.000000 MHz	43.0154	20.4762
815.000000 MHz	42.8927	20.4182
825.000000 MHz	42.7420	20.3806
835.000000 MHz	42.6206	20.2993
845.000000 MHz	42.4357	20.2595
855.000000 MHz	42.2984	20.1872
865.000000 MHz	42.1422	20.1432
875.000000 MHz	42.0082	20.1253
885.000000 MHz	41.8996	20.1110
895.000000 MHz	41.8514	20.0192
905.000000 MHz	41.7550	20.0083
915.000000 MHz	41.6535	19.9701
925.000000 MHz	41.5521	19.9380
935.000000 MHz	41.4477	19.9175

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX D - PROBE CALIBRATION

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 19 of 22						

Calibration Laboratory of

Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Celltech

STATE OF THE PERSON NAMED IN		Character Contract		100	Minarelaner	Secretary Services	Secretary.	Service Services	Contract of the last of the la
CA	9 339 1 🖚	I 97 . 10	NO TO FA		TALL WE	के का का	t made 7	m.37	Clear tool named
THE COLD.	A 200 L		ध्वाक्ष व	110	K 8579 mm	3、福田		Chab. v	42 G
500% - 2 248	in Street & Road	A RAIT ARM !	R 25 F .			126 178 28	1 853 3	- M	A 18 -

Object(s)

ET3DV6 - SN:1387

Calibration procedure(s)

QA CAL-01.v2

Calibration procedure for dosimetric E-field probes

Calibration date:

March 18, 2004

Condition of the calibrated item

In Tolerance (according to the specific calibration document)

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Reference 20 dB Attenuator	SN: 5086 (20b)	3-Apr-03 (METAS, No. 251-0340)	Apr-04
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-03)	In house check: Oct 05

Calibrated by:

Name Nico Vetterli Function Technician Signature

Approved by:

Katja Pokovic

Laboratory Director

Date issued: March 18, 2004

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Probe ET3DV6

SN:1387

Manufactured:

Last calibrated:

Recalibrated:

September 21, 1999

February 26, 2003

March 18, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1387 March 18, 2004

DASY - Parameters of Probe: ET3DV6 SN:1387

Sensitivity in Free Space Diode Compression^A

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Plese see Page 7.

Boundary Effect

Head 900 MHz Typical

Typical SAR gradient: 5 % per mm

Sensor Cener to Phantom Surface Distance 3.7 mm 4.7 mm SAR_{be} [%] Without Correction Algorithm 9.3 4.4 SAR_{be} [%] With Correction Algorithm 0.0 0.1

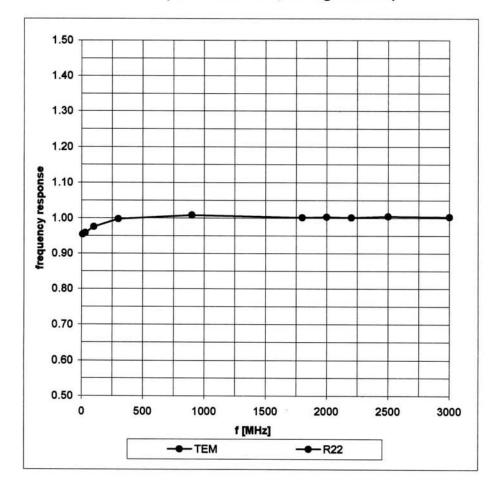
Head 1800 MHz Typical SAR gradient: 10 % per mm

Sensor to Surface Distance 3.7 mm 4.7 mm SAR_{be} [%] Without Correction Algorithm 14.8 10.0 SAR_{be} [%] With Correction Algorithm 0.2 0.0

Sensor Offset

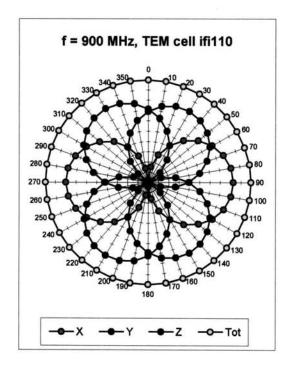
Probe Tip to Sensor Center 2.7 mm

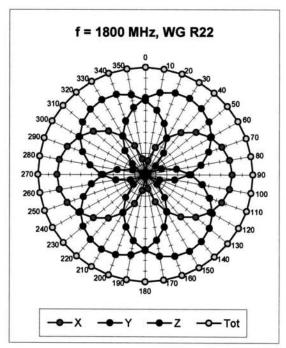
Optical Surface Detection in tolerance

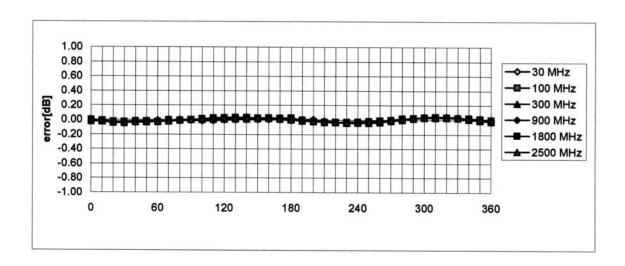

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A numerical linearization parameter: uncertainty not required

Frequency Response of E-Field

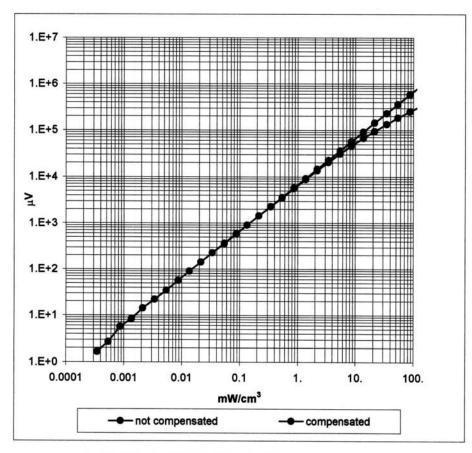

ET3DV6 SN:1387

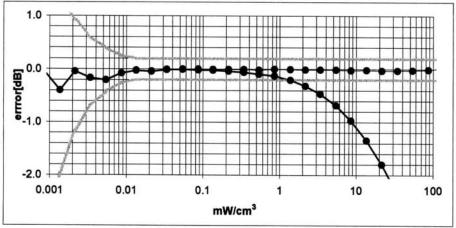

(TEM-Cell:ifi110, Waveguide R22)



ET3DV6 SN:1387 March 18, 2004

Receiving Pattern (ϕ) , θ = 0°

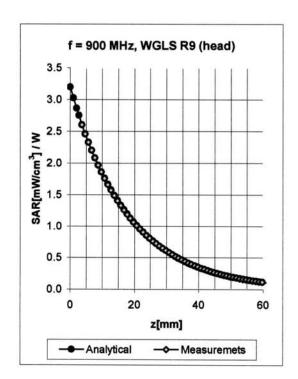


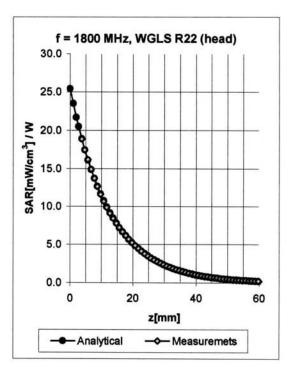


Axial Isotropy Error < ± 0.2 dB

Dynamic Range f(SAR_{head})

(Waveguide R22)

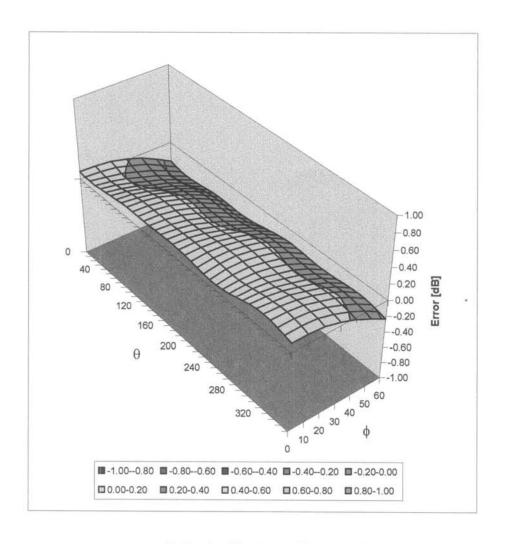




Probe Linearity < ± 0.2 dB

ET3DV6 SN:1387 March 18, 2004

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	750-950	Head	41.5 ± 5%	0.90 ± 5%	0.72	1.78	6.71 ± 11.9% (k=2)
1750	1700-1800	Head	40.0 ± 5%	1.40 ± 5%	0.51	2.67	5.38 ± 9.7% (k=2)
1900	1850-1950	Head	40.0 ± 5%	$1.40 \pm 5\%$	0.55	2.66	5.25 ± 9.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	$1.80 \pm 5\%$	0.99	1.89	4.77 ± 9.7% (k=2)
835	750-950	Body	55.2 ± 5%	0.97 ± 5%	0.56	2.04	6.24 ± 11.9% (k=2)
1750	1700-1800	Body	53.3 ± 5%	1.52 ± 5%	0.58	2.82	4.68 ± 9.7% (k=2)
1900	1850-1950	Body	53.3 ± 5%	1.52 ± 5%			
		Dody	MORANGA DA SANS	1.52 1 5%	0.62	2.77	4.57 ± 9.7% (k=2)
2450	2400-2500	Body	$52.7 \pm 5\%$	1.95 ± 5%	1.75	1.28	4.50 ± 9.7% (k=2)

^B The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (θ, ϕ), f = 900 MHz

Spherical Isotropy Error < ± 0.4 dB

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1387
Place of Assessment:	Zurich
Date of Assessment:	March 22, 2004
Probe Calibration Date:	March 18, 2004

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Moncley

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1387

Conversion factor (± standard deviation)

150 MHz	ConvF	9.1 ± 8%	$\epsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\%$ mho/m (head tissue)
300 MHz	ConvF	$7.8 \pm 8\%$	$\epsilon_r = 45.3 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
450 MHz	ConvF	$7.5 \pm 8\%$	$\epsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
150 MHz	ConvF	$8.7 \pm 8\%$	$\epsilon_r = 61.9 \pm 5\%$ $\sigma = 0.80 \pm 5\% \text{ mho/m}$ (body tissue)
450 MHz	ConvF	$7.6 \pm 8\%$	$\epsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\% \text{ mho/m}$ (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX E - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 20 of 22			abs Inc. 20 of 22	

1900 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) November 29, 2004

Frequency	e'	e"
1.800000000 GHz	38.4699	13.1334
1.810000000 GHz	38.4219	13.1644
1.820000000 GHz	38.3555	13.1824
1.830000000 GHz	38.3016	13.2142
1.840000000 GHz	38.2405	13.2415
1.850000000 GHz	38.1991	13.2750
1.860000000 GHz	38.1556	13.2833
1.870000000 GHz	38.1088	13.3086
1.880000000 GHz	38.0857	13.3372
1.890000000 GHz	38.0552	13.3615
1.900000000 GHz	38.0291	13.4007
1.910000000 GHz	37.9930	13.4168
1.920000000 GHz	37.9520	13.4564
1.930000000 GHz	37.9377	13.4853
1.940000000 GHz	37.8930	13.5012
1.950000000 GHz	37.8506	13.5419
1.960000000 GHz	37.7867	13.5327
1.970000000 GHz	37.7109	13.5487
1.980000000 GHz	37.6509	13.5695
1.990000000 GHz	37.5914	13.6075
2.000000000 GHz	37.5416	13.6453

1880 MHz DUT Evaluation (Face) Measured Fluid Dielectric Parameters (Brain) November 29, 2004

Frequency	e'	e"
1.800000000 GHz	38.4699	13.1334
1.810000000 GHz	38.4219	13.1644
1.820000000 GHz	38.3555	13.1824
1.830000000 GHz	38.3016	13.2142
1.840000000 GHz	38.2405	13.2415
1.850000000 GHz	38.1991	13.2750
1.860000000 GHz	38.1556	13.2833
1.870000000 GHz	38.1088	13.3086
1.880000000 GHz	38.0857	13.3372
1.890000000 GHz	38.0552	13.3615
1.900000000 GHz	38.0291	13.4007
1.910000000 GHz	37.9930	13.4168
1.920000000 GHz	37.9520	13.4564
1.930000000 GHz	37.9377	13.4853
1.940000000 GHz	37.8930	13.5012
1.950000000 GHz	37.8506	13.5419
1.960000000 GHz	37.7867	13.5327
1.970000000 GHz	37.7109	13.5487
1.980000000 GHz	37.6509	13.5695
1.990000000 GHz	37.5914	13.6075
2.000000000 GHz	37.5416	13.6453

1880 MHz DUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle) November 30, 2004

Frequency	e'	e"
1.800000000 GHz	51.1467	14.5119
1.810000000 GHz	51.1143	14.5255
1.820000000 GHz	51.0664	14.5485
1.830000000 GHz	51.0139	14.5721
1.840000000 GHz	50.9656	14.6070
1.850000000 GHz	50.9416	14.6180
1.860000000 GHz	50.8897	14.6318
1.870000000 GHz	50.8642	14.6412
1.880000000 GHz	50.8452	14.6770
1.890000000 GHz	50.8379	14.6957
1.900000000 GHz	50.8136	14.7293
1.910000000 GHz	50.7899	14.7413
1.920000000 GHz	50.7735	14.7718
1.930000000 GHz	50.7726	14.8099
1.940000000 GHz	50.7547	14.8347
1.950000000 GHz	50.7040	14.8681
1.960000000 GHz	50.6731	14.8981
1.970000000 GHz	50.6157	14.9278
1.980000000 GHz	50.5746	14.9853
1.990000000 GHz	50.5300	15.0290
2.000000000 GHz	50.4872	15.0995

835 MHz System Performance Check & DUT Evaluation (Face) Measured Fluid Dielectric Parameters (Brain) November 30, 2004

Frequency	e'	e"
735.000000 MHz	41.4293	19.7595
745.000000 MHz	41.2936	19.7060
755.000000 MHz	41.1505	19.6505
765.000000 MHz	41.0122	19.5958
775.000000 MHz	40.8550	19.5814
785.000000 MHz	40.7260	19.5278
795.000000 MHz	40.6118	19.5158
805.000000 MHz	40.5118	19.5009
815.000000 MHz	40.3648	19.4564
825.000000 MHz	40.2388	19.4345
835.000000 MHz	40.1142	19.4030
845.000000 MHz	39.9702	19.3624
855.000000 MHz	39.8331	19.3319
865.000000 MHz	39.7258	19.2843
875.000000 MHz	39.5760	19.2904
885.000000 MHz	39.4758	19.2435
895.000000 MHz	39.4128	19.1774
905.000000 MHz	39.3002	19.1368
915.000000 MHz	39.1798	19.0753
925.000000 MHz	39.0516	19.0758
935.000000 MHz	38.9550	19.0248

835 MHz DUT Evaluation (Body) Measured Fluid Dielectric Parameters (Muscle) November 30, 2004

Frequency	e'	e"
735.000000 MHz	54.7661	22.0007
745.000000 MHz	54.6576	21.9311
755.000000 MHz	54.5323	21.8686
765.000000 MHz	54.4546	21.8273
775.000000 MHz	54.3006	21.7892
785.000000 MHz	54.2070	21.7088
795.000000 MHz	54.1420	21.6659
805.000000 MHz	54.0740	21.6360
815.000000 MHz	53.9943	21.5937
825.000000 MHz	53.8757	21.5717
835.000000 MHz	53.7458	21.5051
845.000000 MHz	53.6193	21.5103
855.000000 MHz	53.4979	21.4273
865.000000 MHz	53.3864	21.4181
875.000000 MHz	53.2371	21.3811
885.000000 MHz	53.1564	21.3726
895.000000 MHz	53.1080	21.2469
905.000000 MHz	53.0114	21.2199
915.000000 MHz	52.9426	21.1880
925.000000 MHz	52.8513	21.1297
935.000000 MHz	52.7484	21.1231

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

APPENDIX F - SAM PHANTOM CERTIFICATE OF CONFORMITY

Applicant:		Enfora, L.P.	FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	2004 Celltech Labs Inc. This document is not to be reproduced in whole or in p			art without the written permis	sion of Celltech La	abs Inc. 21 of 22

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

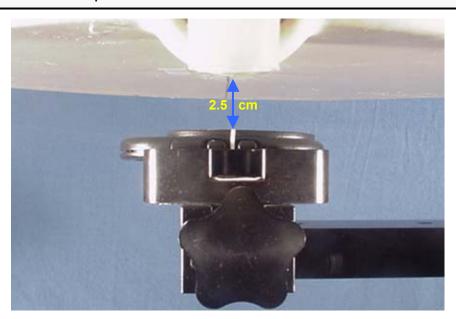
18.11.2001

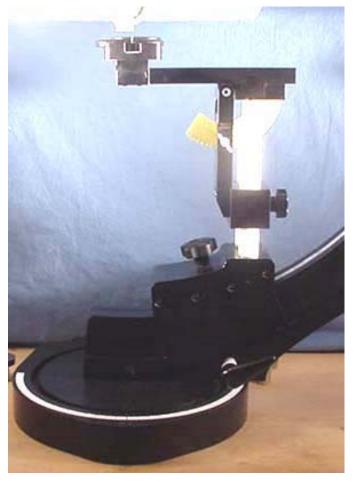
Signature / Stamp

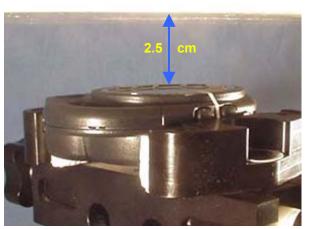
Schmid & Partner Fin Boulott

Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

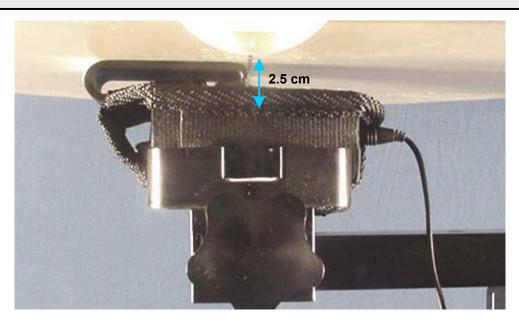

APPENDIX G - SAR TEST SETUP & DUT PHOTOGRAPHS

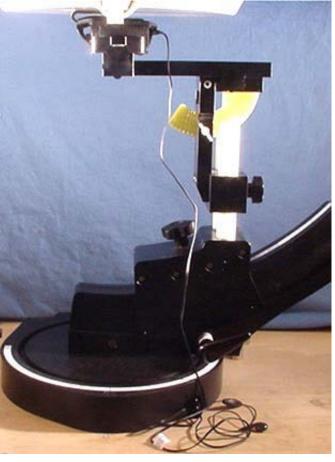

Applicant:	Enfora, L.P.		FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech Labs Inc. This document is not to be reproduced in whole or it			I in whole or in pa	art without the written permis	sion of Celltech La	abs Inc. 22 of 22



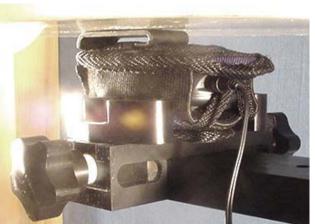
Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

FACE-HELD SAR TEST SETUP PHOTOGRAPHS 2.5 cm Separation Distance from Front of DUT to Phantom Surface


Applicant:	Enfora, L.P.		FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	2004 Celltech Labs Inc. This document is not to be reproduced in wh		roduced in whole	or in part without the written	permission of Cel	Itech Labs Inc.



Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation


BODY-WORN SAR TEST SETUP PHOTOGRAPHS

2.5 cm Belt-Clip Separation Distance from Back of DUT to Phantom Surface With Nitelze Small Clip Case Phone Holster and Generic Earbud/Lapel-Microphone

Applicant:	Enfora, L.P.		FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech	Labs Inc. This document is not to be reproduced in			or in part without the written	permission of Cell	Itech Labs Inc.

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

Front of DUT

Back of DUT

Top of DUT

Bottom of DUT

Applicant:	Enfora, L.P.		FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2	- 1909.8 MHz	enfora
2004 Celltech Labs Inc. This document is not to be reproduce		roduced in whole	or in part without the written	permission of Cel	Itech Labs Inc.	

Test Report S/N:	112204MIV-T593-S24G
Test Date(s):	November 29-30, 2004
Test Type:	FCC/IC SAR Evaluation

Left Side of DUT

Right Side of DUT

Applicant:	Enfora, L.P.		FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	BH0104 Portable Dual-Band GSM Communicato		824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech	Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.				

Test Report S/N:	112204MIV-T593-S24G		
Test Date(s):	November 29-30, 2004		
Test Type:	FCC/IC SAR Evaluation		

Front of Nitelze Small Clip Case Phone Holster

Back of Nitelze Small Clip Case Phone Holster

Left Side of Nitelze Small Clip Case Phone Holster

Right Side of Nitelze Small Clip Case Phone Holster

Plastic Belt-Clip

Applicant:	Enfora, L.P.		FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora
2004 Celltech	Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.				

Test Report S/N:	112204MIV-T593-S24G		
Test Date(s):	November 29-30, 2004		
Test Type:	FCC/IC SAR Evaluation		

DUT with Nitelze Small Clip Case Phone Holster & Generic Earbud/Lapel Microphone

Applicant:	Enfora, L.P.		FCC ID:	MIVLBH0104	IC ID:	4160A-LBH0104	
Model:	LBH0104	Portable Dual-Band GSM Communicator		824.4 - 848.8 / 1850.2 - 1909.8 MHz		enfora	
2004 Celltech	Labs Inc.	This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					