Nemko Test Report:

3L0477RUS2Rev3

Applicant:

Enfora Inc. 661 E/ 18th Street Plano, Texas 75074

Equipment Under Test: (E.U.T.) Aspen – GSM/GPRS Wireless Modem GSM0108

In Accordance With:

FCC Parts 24, Subpart E Broadband PCS Subscriber Station

Tested By:

Nemko Dallas Inc. 802 N. Kealy Lewisville, TX 75057-3136

20- Jill

Authorized By:

Tom Tidwell, Frontline Manager

Date:

17May04

Total Number of Pages: 39

EQUIPMENT:

GSM0108

Table of Contents

Section 1.	Summary of Test Results
Section 2.	General Equipment Specification5
Section 3.	RF Power Output7
Section 4.	Occupied Bandwidth9
Section 5.	Spurious Emissions at Antenna Terminals11
Section 6.	Field Strength of Spurious25
Section 7.	Frequency Stability28
Section 8.	Test Equipment List
ANNEX A - T	EST METHODOLOGIES
ANNEX B - T	EST DIAGRAMS

EQUIPMENT:	GSM0108

Section 1.	Summary of Test Result
------------	------------------------

GSM0108

Manufacturer: Enfora Inc.

Model No.: GSM0108

Serial No.: 28

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 24, Subpart E.

\bowtie	New Submission		Production Unit
	Class II Permissive Change	\boxtimes	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE. See "Summary of Test Data".

TESTED BY: ____Eldon Berry_____

DATE: _26 Aug., 2003_

Nemko Dallas Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

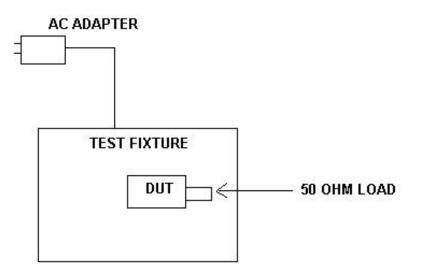
Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Dallas Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

This report applies only to the items tested.

Summary Of Test Data

NAME OF TEST	PARA. NO.	SPEC.	RESULT
RF Power Output	24.232	2W eirp	Complies
Occupied Bandwidth (TDMA) 24.23		Not Specified	Complies
Spurious Emissions at Antenna Terminals	24.238(a)	-13 dBm	Complies
Field Strength of Spurious Emissions	24.238(a)	-13 dBm E.I.R.P.	Complies
Frequency Stability	24.235	+/- 0.05 ppm	Complies

Footnotes:


Section 2. General Equipment Specification

Supply Voltage Input:	3.3 - 5 Vdc
Frequency Bands:	 Block A 1850 – 1865 MHz Block D 1865 – 1870 MHz Block B 1870 – 1885 MHz Block E 1885 – 1890 MHz Block F : 1890 – 1895 MHz Block C 1895 – 1910 MHz
Type of Modulation and Designator:	GPRS 270KG7W
Output Impedance:	50 ohms
RF Output (Rated):	1 watt conducted, 2 watts eirp

System Description

This device is a wireless GSM/GPRS wireless modem that operates in the PCS band and in the 800 MHz "AMPS" band.

System Diagram

PARA. NO.: 24.232(b)

DATE: 22Aug03

EQUIPMENT: GSM0108

Section 3. RF Power Output

NAME OF TEST:	RF Power Output
---------------	------------------------

TESTED BY: Eldon Berry

Test Results:

Complies.

Measurement Data:

RF Power Output (Conducted)

Job No.: 3L0477R	Date:	8/22/03
Specification: CFR 47, Part 24	Temperature(°C):	21
Tested By: Eldon Berry	Humidity(%)	50
E.U.T.: <u>GSM0108</u>		
Configuration: EUT on test fixture.		
Detector: Average		

Test Equipment Used:

Power Meter:	E4418B	Directional Coupler:
Power Sensor:	E9304A	Cable #1: 1083
Load:		Cable #2:
Spectrum Analyzer:	NA	Cable #3:
Attenuator #1	1604	Cable #4:
Attenuator #2:		Cable #5:
Attenuator #3:		Cable #6:
Attenuator #4:		Power Splitter:

Measurement Uncertainty: <u>+/- .7 dB</u>

Frequency MHz	Channel	Modulation Type	Output Power (dBm)	Output Power (mW)
1850.2	512	GPRS	29.8	954.99
1880.2	662	GPRS	29.7	933.25
1909.8	810	GPRS	28.8	758.58

Power meter set for 12.5 % duty cycle.

Cable and attenuator verified with generator # 1053

Typical antenna gain is 3.3 dBi. Thus the maximum eirp from above would be 29.8 dBm + 3.3 dBi = 33.1 dBm (2 watts).

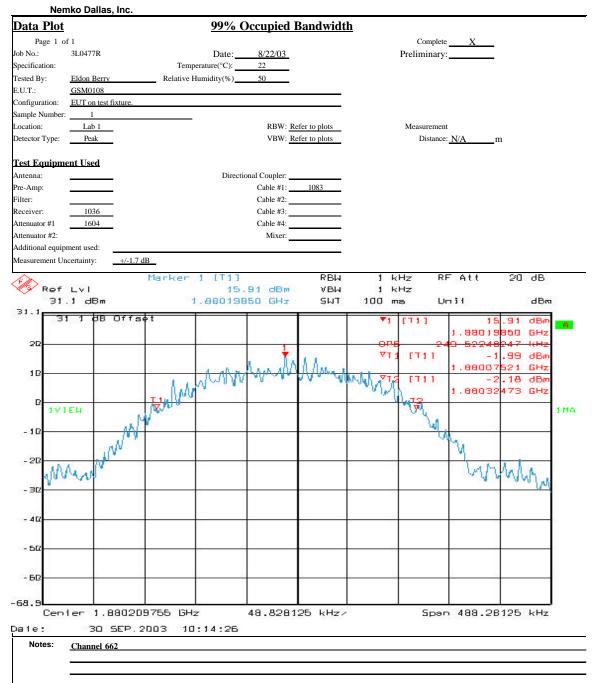
EQUIPMENT:

FCC PARTS 2 and 24 **GSM/GPRS Wireless Modem** Report No.: 3L0477RUS2

Dallas Headquarters:

	nko Dallas		ko				Te	802 N. Kealy wisville, TX 750 I: (972) 436-96 x: (972) 436-26	00
]	EIRP Substituti	ion Meth	nod			
Page 1 c	f 1						Complete	e <u>X</u>	
Job No.:	3L0477		Date	: 3/26/04				у	
Specification:	Part 24, EIRI	2	Temperature(°C)): <u>20</u>					
Tested By:	David Light		Relative Humidity(%) <u>37</u>					
E.U.T.:	GSM 0108					_			
Configuration:	Transmit at f	ull rf power				-			
Sample No:	1								
Location:	AC 1			RBW:		-	Measuremen		
Detector Type:	Peak			VBW:	3 MHz	-	Distance	: <u>3</u> n	a
Test Equipm	ent Used								
Antenna:	759			Directional Coupler:					
Pre-Amp:		Cable #1:				-			
Filter:		Cable #2:				-			
Receiver:	1036								
Attenuator #1		Cable #4:							
Attenuator #2:				Mixer:		-			
Additional equip						-			
Measurement U	ncertainty:	+/-1.6 dB							
Frequency	Meter	Correction	Pre-Amp	Substitution		EIRP	EIRP	Polarity	Comments
	Reading	Factor	Gain	Antenna Gain					
(MHz)	(dBm)	(dB)	(dB)	(dBi)		(dBm)	(mW)		
1850	-8.5	22.5	0	9.4		31.9	1549	V	
1880.2	-8.6	22.4	0	9.4		31.8	1514	V	
1909.8	-9.7	21.3	0	9.4		30.7	1175	V	
Notes			with the receive ante tation of maximum t	 nna Vert. And Hor. A ransmitted rf energy.	nd with the	l EUT in 3 ortho	ogonal axis. Tl	he data	

Section 4. Occupied Bandwidth


NAME OF TEST: Occupied Bandwidth	PARA. NO.: 24.238
TESTED BY: Eldon Berry	DATE: 22Aug03

Complies
(

Test Data:See attached plots.

FCC PARTS 2 and 24 GSM/GPRS Wireless Modem Report No.: 3L0477RUS2

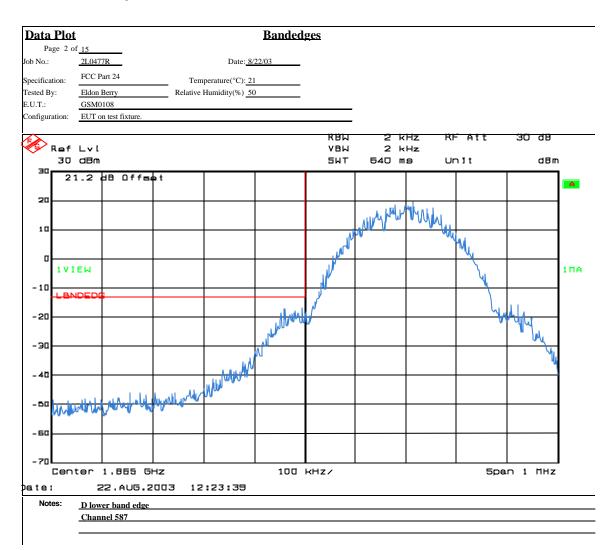
Test Plot – Occupied Bandwidth

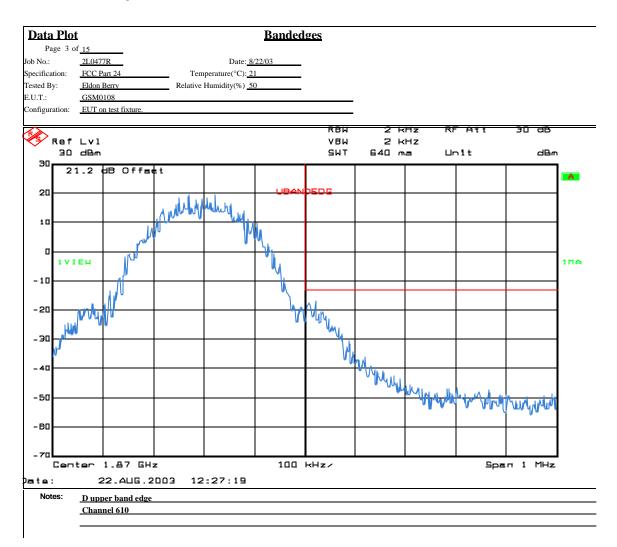
Section 5. Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions @ Antenna Terminals	PARA. NO.: 24.238
TESTED BY: Eldon Berry	DATE: 22Aug03

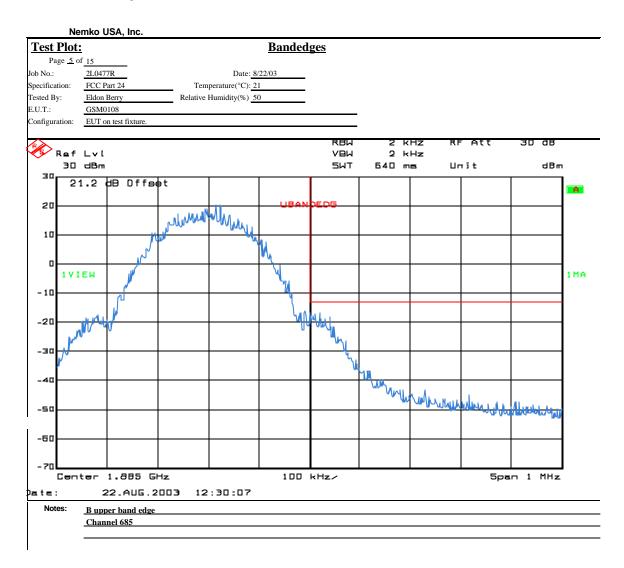
Test Results:	Complies
---------------	----------

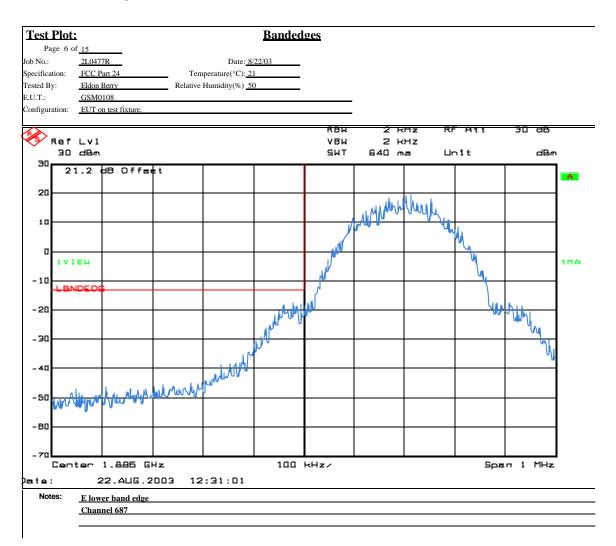
Test Data:

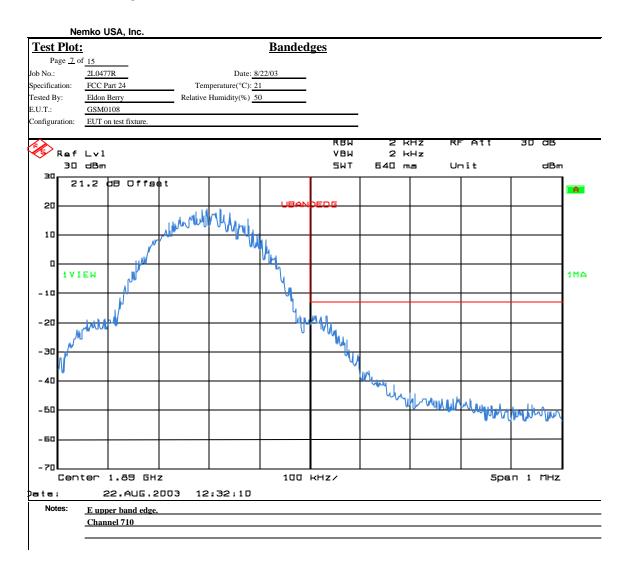

See attached plots.

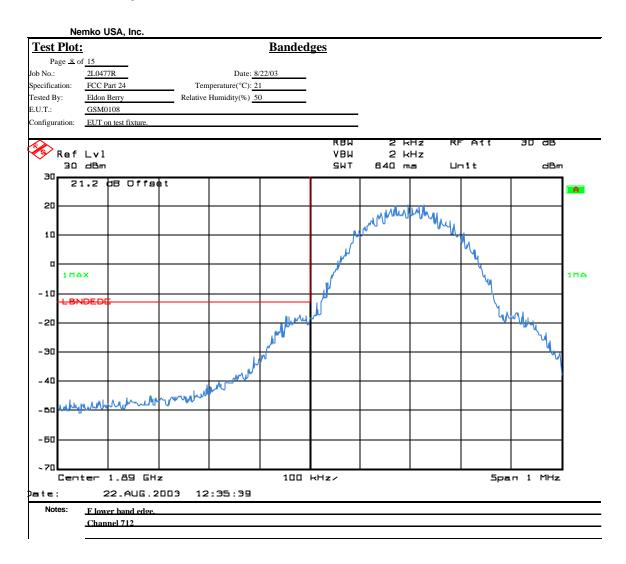

	nko Dall	as, Inc.									
<u>ata Plot</u>			<u>Spu</u>	rious Emi	ssions at A	Antenna T	Terminals				
Page 1 o									e <u>x</u>		
No.:	3L0477R			Date:	8/22/03			Preliminary	': <u></u>		
cification:		Part 2 and 24		perature(°C):							
ted By:	Eldon Be		Relative	Humidity(%)	50						
J.T.:	GSM0108										
nfiguration:	EUT on te S01	est fixture.									
nple Number: ation:					PRW- F	efer to plots		Measuremer	at		
ector Type:	Peak	_				efer to plots			n e: <u>na</u>	m	
st Equipm	ont Llead										
tenna:	ent Oscu			Directi	onal Coupler:						
-Amp:	-	_		Directi		1083					
er:					Cable #2:						
eiver:	1036										
enuator #1	1604				Cable #4:						
enuator #2:					Mixer:						
ditional equip	ment used:										
asurement Ur	certainty:	+/-1.7 d	В								
>						RBW	2 k	Hz R	F Att	30 dB	
Ref	∟∨1					٧ВЫ	2 k	Hz			
30	dBm					SML	1.25	ອ ມ	nIt	dBm	1
³⁰ 21	1.2 48	3 Off≡⊄	, +			r					1
				LI	MIT CHE	СК : Ре	ASSED				A
20						١٨u	hali				
10						M					
						1	ય				
	EU						4				1 M
	- 4						4				1.11
-10											
	DEDS-					1 °					
-20						/	ي ک	M.			
-90								- <mark>4</mark>			
					W						
_40				white your				প্			
				Mm					Mhon Whench		
-50		LULAN	Land a way	MMMY .					1 Vine	where the states of the states	
	WWWW W										
-60											
-70											
Cen	ter 1	.86 GH:	z		200	kHz∕			Spe	an 2 MHz	
te:	22	. AUG . 2	003 10	1:41:19							
Notes:	Channel	512. Lower	band edge.								

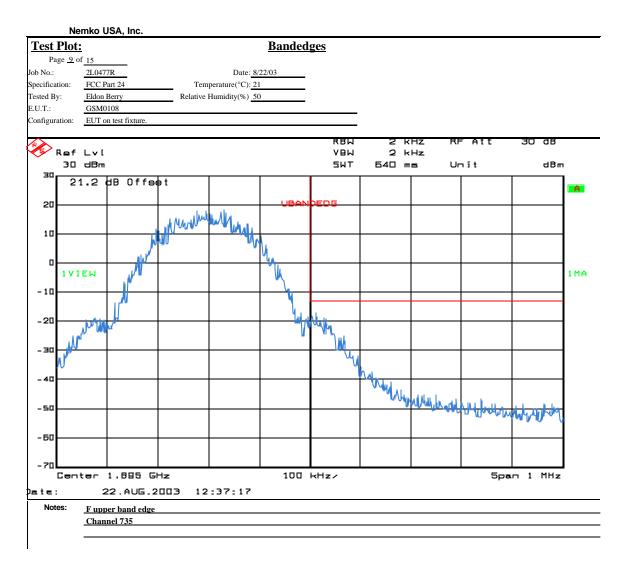
<u>ta Plot</u>		<u>Spu</u>	rious Emi	ssions at A	ntenna I	erminals			
	3 3L0477R CFR 47,		Date: <u>8/2</u>	22/03					
ication:	Part 2 and 24 Eldon Berry		perature(°C): <u>22</u> Humidity(%) 50						
	GSM0108 EUT on test fixtu	re.							
Ref I 30 (RBW VBW SWT	2 k 2 k 1_25	Hz	(F Att	<u>Э</u> dB dBm
21	.2 dB OF	fact	LI	MIT CHE		ASSED			
			Manthe	MA					
D			ľ	N.					
1 V I E	EW								
¤			<u> </u>		blu				
œ		N			h.				
D					hu.				
□ 	the share and	Merlin			۷۱ ۱	mallered	ool===vtj/tjcjc	Munda	Mahahamelluker
1									wwwwhy
Cent	er 1.91	GHz		200	kHz/			 5p	en 2 MHz
otes:		G.2003 10 Joper band edge.	1:46:53						
		anna Danu cupe.							

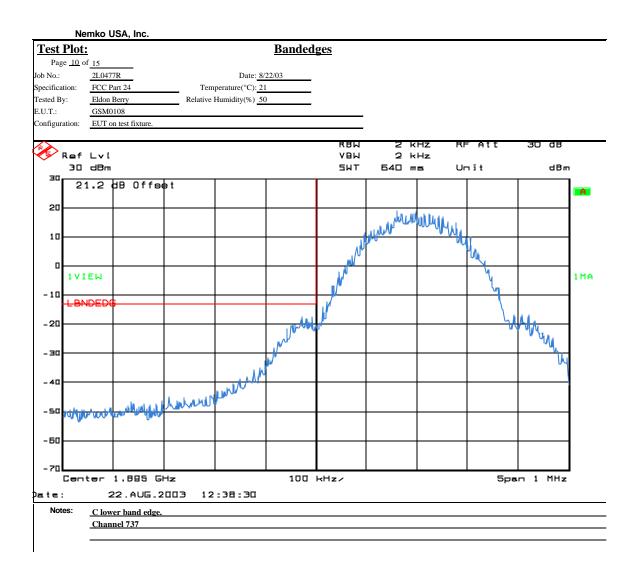

Nemko Dallas, Inc.											
Data Plo	t		Spur	ious Emi	ssions at A	Antenna T	erminals				
Page 3 o	-		-								
Job No.:	3L047	7R		Date: 8/2	2/03						
Specification:	CFR 4	7, Part 2 and 24	Temp	erature(°C): 22							
Tested By:	Eldon	Berry	Relative H	Humidity(%) 50							
E.U.T.:	GSM0	108									
Configuration:	EUT o	n test fixture.									
Ref			Marker			RBU	11		- Att	30 dB	
~	dBm		_	. 24- 1.627174	01 dBm	VBW SWT	א 1 ה ספ		τīt	dBm	
30		5	7	1.021114	isa Grz		90 n				-
2:	1.2	d8 Offse	t								A
20											
10											
0											
1 1 1	EΜ										1 MA
-10											
D1	-13	dBm——									
-20											
							mm		manna	mon	
-30	MM.N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		anna	Monin	munun					
I ľ											
-40											
-50											
-60											
-70										L	J
Ster	rt 3	0 MHz			887	MHz∕			Sto	p 9 GHz	
þete:	2	22.AUG.2	003 10	:51:49							
Notes:	Chan	nel 662									
		er 1 = Carrier									
	Mark	er 2 = Highest	emission								
1											


Ne	mko U	SA, Inc.										
Data Plot					Banded	lges						
Page 1 o	f 15					•		с	omplete	x		
Job No.:	2L0477	R		Date:	8/22/03			Prelin	ninary:			
Specification:	FCC Pa	rt 24	Temp	erature(°C):	21							
Tested By:	Eldon B	erry		Iumidity(%)								
E.U.T.:	GSM01	08										
Configuration:	EUT on	test fixture.										
Sample Number:	S01											
Location:	Lab					Refer to plots						
Detector Type:	Peak	<u>. </u>			VBW:	Refer to plots			-			
.												
Test Equipm	ent Used	1		Diment								
Antenna: Pre-Amp:				Directi	onal Coupler:	1083						
Filter:					Cable #1:							
Receiver:	103	6			-	0						
Attenuator #1	160				Cable #4:							
Attenuator #2:		_			Mixer:							
Additional equip	ment used	l:			-							
Measurement Ur			IB									
						RBW	2	кНz	RE	Att	30 dB	
Ref	∟∨1					VBW		kHz				
	dBm					SMT	640		Un	Īt	dBm	
30 21	1.2 6	B Offe	h +		1	1					_	
			יין									A
20			L		ЦВА			_				
			berred WH	4144								
10				- N								
1.5		مل م	-		LU I							
		, NV			^w y							
	ELL	IN I										1 MA
					N							1111
-10		-				-						
	_	۲.			4							
-20	<u>h adh</u>		l		4			_			┥────┦	
	'					Mai						
-30						્યુ						
/						শ						
_40							4					
-40							4					
								- Milli	Mun	manya	A	
-50										- <u> </u>	Clark March COL	
-60			 			-		_			4	
_70												
	ter 1	865 GI	Iz		100	kHz∕				Spa	an 1 MHz	
þete:	2:	2.AUG.2	003 12	:22:13								
Notes:	A uppe	er band edge										
	Channe											






N	emko l	JSA, Inc.										
Test Plot	:				Banded	ges						
Page 4												
Job No.:	2L047	'7R		Date: 8/	22/03							
Specification:	FCC I	Part 24	Tem	perature(°C): 21	1							
Tested By:	Eldon	Berry	Relative	Humidity(%) 50)							
E.U.T.:	GSM	0108										
Configuration:	EUT o	on test fixture.										
_												
🐼 n - 4	Lv1					KBM VBM		KHZ KHZ	RF	ATT	30 GB	
· ·	dBm					VUM SWT	540		Un	T +	dBr	
30.							<u> </u>			10		
2	1.2	d8 Offe	at									A
20							11.4	al Abata				
								MMM	M I			
10		1							<u></u>			
						l Ir	UN		1	Å.		
						الم				<u>М</u>		
1 V	IEW									M.		1MA
						J.						
						N						
						1				<u> </u>	11	
-20					L.M.M	1 ⁹					MANNIN.	
					where we wanted						M ₁	
- 90											~ U	
					N/						44	
- 40				~ A	•							
- 40				M/W								
			MILA	W -								
- 50 min		PH-MANA	where the second									
~ *	V* * 1											
- 60												
- 70 L										<u> </u>		
	nter	1.87 GH:	z		100	ĸHz∕				5pe	n 1 MHz	
⊅ete:	2	22.AUG.2	003 12	:28:15								
Notes:		er band edge										
		nel 612										
	<u>Unan</u>	unci 012										

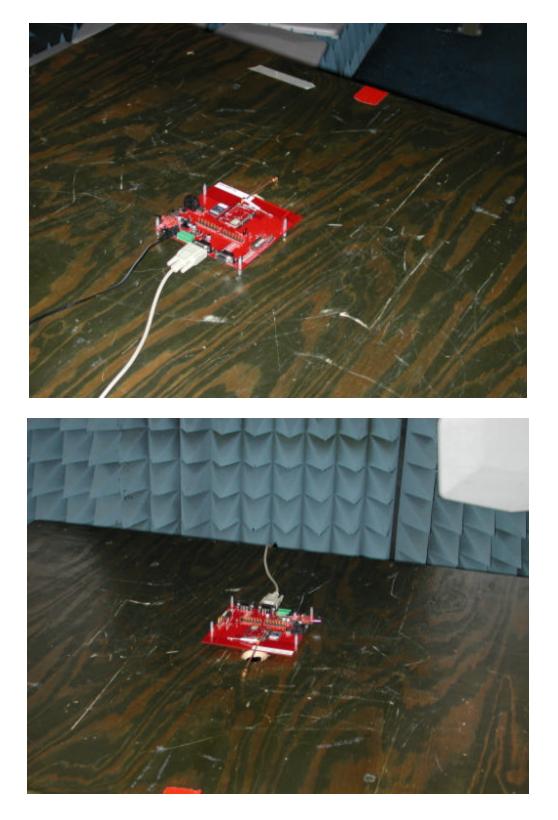


Section 6. Field Strength of Spurious

NAME OF TEST: Field Strength of Spurious	PARA. NO.: 24.238
TESTED BY: Eldon Berry	DATE: 22Aug03

Test Results: Complies.

Test Data:


See attached table.

Test Data - Radiated Emissions

Nen	nko Dallas	s, Inc.							
			E	IRP Substit	ution Me	thod			
Page 1 o	f 1		_				Complete	X	
Job No.:	3L0477R		Date:	8/22/03					
Specification:	PT 24		Temperature(°C):				j		-
Tested By:		v							
E.U.T.:	GSM0108					_			
Configuration:	EUT on test	fixture.				_			
Sample No:	1								
Location:	AC 3	-		RBW:	1 MHz	_	Measurement		
Detector Type:	Peak			VBW:	1 MHz	-	Distance:	3	m
Test Equipm	ent Used								
Antenna:	1304		Ι	Directional Coupler:					
Pre-Amp:	1016	-		Cable #1:		-			
Filter:	1482	-		Cable #2:	1485	-			
Receiver:	1464			-		_			
Attenuator #1		_		-		-			
Attenuator #2:		-							
Additional equip	ment used:					_			
Measurement Ur	ncertainty:	+/-1.7 dB							
Frequency	Meter	Correction	Pre-Amp	Substitution		EIRP	EIRP	Polarity	Comments
	Reading	Factor	Gain	Antenna Gain					
(MHz)	(dBm)	(dB)	(dB)	(dBi)		(dBm)	(mW)		
3760.4	-71.3	43.3	0	10.7		-17.3	0.0188	V	Channel 662
5640.6	-61.0	39.8	28.5	11.4		-38.3	0.0001	V	
7520.8	-62.5	41.8	34.1	11.3		-43.5	0.0000	V	
9401	-54.5	41.3	33.4	11.7		-34.9	0.0003	V	
11281.2	-43.2	43.7	34.6	12.5		-21.6	0.0069	V	
13161.4	-60.0	45.8	34.5	11.9		-36.8	0.0002	V	
15041.6	-63.0	45.2	32	12.8		-37.0	0.0002	V	
16921.8	-63.0	46.0	33.3	14.5		-35.8	0.0003	V	
2700 4	75.0	25.5		10.7		20.0	0.0010	п	
3760.4	-75.0	35.5	0	10.7		-28.8	0.0013	H	
5640.6	-63.8	37.8	28.5	11.4		-43.1	0.0000	H	}
7520.8	-62.7	41.5	34.1	11.3		-44.0	0.0000	H	}
9401	-57.7	42.3	33.4	11.7		-37.1	0.0002	H	
13161.4	-63.0	47.8	30.3	. 11.9		-33.6	0.0004	Н	1
Notes	Searched s	spectrum to the	10th harmonic of car	rrier					-

NOTE: The correction factor in the above table references the pre-calibrated path loss at that frequency and is the difference between the received signal level and the input to the substitution antenna. The same antennas, cables and test range are used for calibration and for measurement.

Photographs of Test Setup

Section 7. Frequency Stability

Test Results: Complies.

- Equipment Used: Wavetek 3600D, Voltmeter # 1558, Thermometer # 619 Environmental Chamber # 283
- Temperature: 23 ?C
- **Relative Humidity:** 36 %

Measurement Data:

Band of Operation	PCS	
Mode	GPRS	
Channel	662	
Standard Test Frequency:	1880.264638	MHz
Standard Test Voltage:	3.8 Vdc	

Test Equipment: 283-1464-425-1031

Temperature	Voltage	Frequency	Change	Change
	(Vdc)	(MHz)	(Hz)	(PPM)
50	3.8	1880.264820	182	0.10
40	3.8	1880.264517	-121	-0.06
30	3.8	1880.264551	-87	-0.05
20	3.8	1880.264638	0	0.00
10	3.8	1880.264762	124	0.07
0	3.8	1880.264805	167	0.09
-10	3.8	1880.264798	160	0.09
-20	3.8	1880.264710	72	0.04
-30	3.8	1880.264717	79	0.04
20	4.8	1880.264630	-8	0.00
20	3.3	1880.264748 110		0.06

Section 8. Test Equipment List

Nemko	Descriptio	Manufacturer Model	Serial	Çalibratio Date	Çalibratio Du
1083	Cable 2m	Astrolab 32027-2-29094-72TC	N/A	CBU	N/A
	Power meter	E4418B	GB39401848	12/11/02	12/11/04
	Power sensor	E9304A	MY41494308	9/9/02	9/9/03
1604	ATTENUATOR	NARDA 776B-20	NONE	N/A	N/A
1036	SPECTRUM ANALYZER	ROHDE & FSEK30	830844/006	12/18/01	12/19/03
1304	HORN ANTENNA	ELECTRO METRICS RGA-60	6151	07/30/01	07/31/03
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	07/24/03	07/24/04
1482	Band Pass	K & L 11SH10-4000/T12000-0/0	2	Cal B4	N/A
1464	Spectrum	Hewlett 8563E	3551A04428	02/11/03	02/11/05
1484	Cable 2.0-18.0 Ghz	Storm PR90-010-072	N/A	07/24/03	07/23/04
1485	Cable 2.0-18.0 Ghz	Storm PR90-010-216	N/A	07/24/03	07/23/04
283	Environmental Chamber with controller #	ENVIROTRONIC SH27 & 2030-22844	129010083	04/22/03	04/21/04
425	DIGITAL MULTIMETER	FLUKE 45-01	5930073	10/03/02	10/03/03
1031	D C power	Hewlett 6002A	2930A-12218	Not	N/A

ANNEX A - TEST METHODOLOGIES

NAME OF TEST: RF Power Output

PARA. NO.: 2.1046

Minimum Standard: Para. No.24.232. Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

Method Of Measurement:	CDMA Per ANSI/J-STD-008
	TDMA Per ANSI/J-STD-010
	PCS 1900 Per ANSI/J-STD-007

Detachable Antenna:

The peak power at antenna terminals is measured using an in-line peak power meter or a spectrum analyzer.

Integral Antenna:

Test Method: TIA/EIA-603-1992, Section 2.2.12

The antenna substitution method was used to determine the equivalent radiated power at spurious frequencies. The spurious emissions were measured at a distance of 3 meters. The EUT was then replaced with a reference substitution antenna with a known gain referenced to a dipole. This antenna was fed with a signal at the spurious frequency. The level of the signal was adjusted to repeat the previously measured level. The resulting erp is the signal level fed to the reference antenna corrected for gain referenced to a dipole.

NAME OF TEST: Occupied Bandwidth

PARA. NO.: 2.1049

Minimum Standard: Para. No. 24.238(b). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB.

Method Of Measurement:

CDMA Per ANSI/J-STD-008

Spectrum analyzer settings: RBW: 30 kHz VBW: ? RBW Span: 5 MHz Sweep: Auto

GSM Per ANSI/J-STD-007

RBW: 3 kHz VBW: ? RBW Span: 2 MHz Sweep: Auto

NADC Per IS-136

RBW: 1 kHz VBW: ? RBW Span: 1 MHz Sweep: Auto

NAME OF TEST:	Spurious Emission at Antenna	PARA. NO.: 2.1053
Terminals		

Minimum Standard:Para. No.24.238(a). On any frequency outside a
licensee's frequency block, the power of any emission
shall be attenuated below the transmitter power by at
least 43 + 10 log (P) dB.

Method Of Measurement:

Spectrum analyzer settings:

CDMA Per ANSI/J-STD-008

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 20 kHz (< 1MHz from Band Edge) VBW: ? RBW Sweep: Auto Video Avg: 6 Sweeps

NADC Per IS-136

GSM Per ANSI/J-STD-007

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 3 kHz (< 1 MHz from Band Edge) VBW: ? RBW Sweep: Auto Video Avg: Disabled

RBW: 1 MHz (> 1 MHz from Band Edge) RBW: 1 kHz (< 1 MHz from Band Edge) VBW: ? RBW Sweep: Auto Video Avg: Disabled

To demonstrate compliance at band edges the frequency of the input signal is set to the lowest and highest assigned channel and the center frequency of the spectrum analyzer is set to the upper and lower edges of the appropriate frequency block.

NAME OF TEST: Field Strength of Spurious Radiation PARA. NO.: 2.1053

Minimum Standard:Para. No.24.238(a). On any frequency outside a
licensee's frequency block, the power of any emission
shall be attenuated below the transmitter power by at
least 43 + 10 log (P) dB.

Calculation Of Field Strength Limit

Test Method: TIA/EIA-603-1992, Section 2.2.12

The antenna substitution method was used to determine the equivalent radiated power at spurious frequencies. The spurious emissions were measured at a distance of 3 meters. The EUT was then replaced with a reference substitution antenna with a known gain referenced to a dipole. This antenna was fed with a signal at the spurious frequency. The level of the signal was adjusted to repeat the previously measured level. The resulting erp is the signal level fed to the reference antenna corrected for gain referenced to a dipole.

NAME OF TEST: Frequency Stability

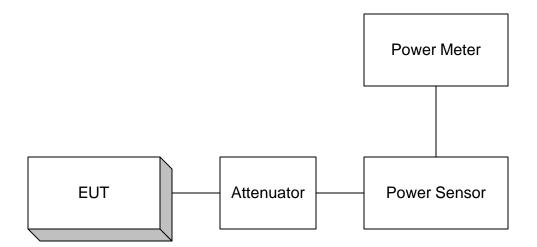
PARA. NO.: 2.1055

Minimum Standard: Para. No. 24.235. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

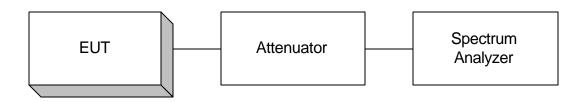
Method Of Measurement: CDMA Per ANSI/J-STD-008 TDMA Per ANSI/J-STD-007 NADC Per IS-136

Frequency Stability With Voltage Variation

The E.U.T. is placed in an environmental chamber and allowed to stabilize at +20 degrees Celsius for at least 15 minutes. With the voltage input to the E.U.T. set to 85% S.T.V., the frequency is measured in 30 second intervals for a period of 5 minutes. This procedure is repeated at 100% S.T.V. and 115% S.T.V.

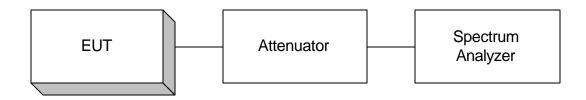

Frequency Stability With Temperature Variation

The input voltage to the E.U.T. is set to S.T.V. and the temperature of the environmental chamber is varied in 10 degree steps from -30 degrees C to +50 degrees C. The E.U.T. is allowed to stabilize at each temperature and the frequency is measured in 30 second intervals for a period of 5 minutes.

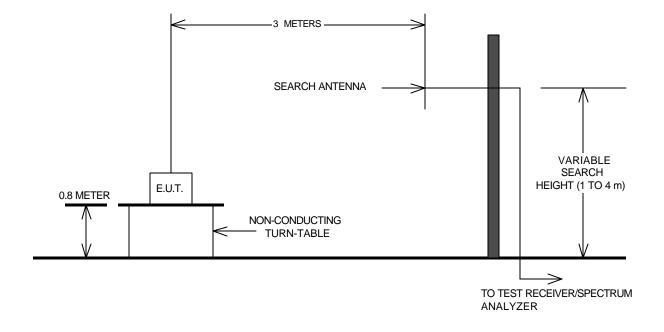

ANNEX B - TEST DIAGRAMS

Nemko Dallas		FCC PARTS 2 and 24
		GSM/GPRS Wireless Modem
EQUIPMENT:	GSM0108	Report No.: 3L0477RUS2

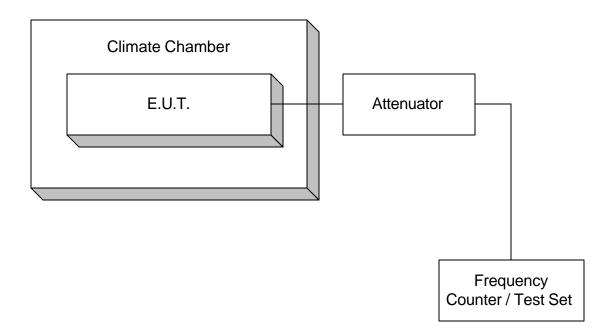
Para. No. 2.1046 - R.F. Power Output



Para. No. 2.1049 - Occupied Bandwidth



Nemko Dallas		FCC PARTS 2 and 24
		GSM/GPRS Wireless Modem
EQUIPMENT:	GSM0108	Report No.: 3L0477RUS2


Para. No. 2.1053 Spurious Emissions at Antenna Terminals

Para. No. 2.1053- Field Strength of Spurious Radiation

Para. No. 2.1055 - Frequency Stability

