

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

L S	DECLARATION	OF COMPLIANCE IRE EVALUATION
Test LabCELLTECH LABS INC.Testing and Engineering Services1955 Moss CourtKelowna, B.C.Canada V1Y 9L3Phone:250-448-7047Fax:250-448-7046e-mail:info@celltechlabsweb site:www.celltechlabs	.com .com	Applicant Information ENFORA, L.P. 661 East 18 th Street Plano, TX 75074-5601 United States
FCC IDENTIFIER: Model No.: Model Name:	MIVGSM0110 GSM0110 Orion	
Rule Part(s):FCC 47 CFR §2.10Test Procedure(s):FCC OET BulletinDevice Classification:PCS Licensed TraDevice Description:Dual-Band GSM G		, Supplement C (01-01) mitter (PCB) IS Compact Flash Card (with PCMCIA Adapter)
Tx Frequency Range(s): RF Output Power Tested: Power Source(s) Tested: Antenna Type(s) Tested:	1850.2 - 1909.8 MHz (824.2 - 848.8 MHz (28.0 dBm (PCL 0) - P 31.0 dBm (PCL 5) - P Li-ion 3.7 V, 1000 mA Host Laptop PC AC F Host PDA Battery Po External ¼ λ	PCS GSM) ellular GSM) eak Conducted (PCS GPRS) eak Conducted (Cellular GPRS) h External Battery (Model: GWBC100) Power wer
Host Laptop PCs Tested: Host PDAs Tested:	Dell Inspiron 3800 (B Compaq Armada M3 Sony VAIO PCG-955/ Casio Cassiopeia E- Casio Cassiopeia E- HP iPAQ H2200 Serie	ottom PCMCIA slot - Left Side of PC) 00 (Single PCMCIA slot - Right Side of PC) 4 (Bottom PCMCIA slot - Left Side of PC) 125 (Compact Flash slot) 200 (Compact Flash slot) es (Compact Flash slot)
Max. SAR Level(s) Evaluated: 0.751 W/kg (1g) - PC 0.911 W/kg (1g) - PC 0.689 W/kg (1g) - Ce 0.668 W/kg (1g) - Ce		S GPRS (Dell Inspiron Laptop PC) S GPRS (HP iPAQ PDA) Iular GPRS (Sony VAIO Laptop PC) Iular GPRS (Casio E-200 PDA)

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device was found to be in compliance with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all person taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Performed By:

Spencer Watton

Spencer Watson Compliance Technologist Celltech Labs Inc.

Reviewed By:

W. Pupe

Russell W. Pipe Senior Compliance Technologist Celltech Labs Inc.

Applicant:	Enfora,	L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0	110	DUT Type:	Dual-Band GSM GPRS Compact Flas		Flash Card (with PCMCIA Adapter)	entora
2005 Celltech	Labs Inc.	This	document is not	to be reproduced in v	1 of 100		

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

1.0 INTRODUCTION 3 2.0 DESCRIPTION of Device Under Test (DUT) 3 3.0 SAR MEASUREMENT SYSTEM 4 4.0 MEASUREMENT SUMMARY 5 MEASUREMENT SUMMARY (Cont.) 6 MEASUREMENT SUMMARY (Cont.) 7 MEASUREMENT SUMMARY (Cont.) 8 5.0 DETAILS OF SAR EVALUATION 9 DETAILS OF SAR EVALUATION (Cont.) 10 6.0 EVALUATION PROCEDURES 10 7.0 SYSTEM PERFORMANCE CHECK 11 8.0 SIMULATED EQUIVALENT TISSUES 12 9.0 SAR SAFETY LIMITS 12 9.0 SAR SAFETY LIMITS 12 10.0 ROBOT SYSTEM SPECIFICATIONS 13 11.0 PROBE SPECIFICATION (ET3DV6) 14 12.0 SAM PHANTOM V4.0C 14 13.0 PLANAR PHANTOM 14 14.0 DEVICE HOLDER 15 16.0 MEASUREMENT UNCERTAINTIES 16 MEASUREMENT UNCERTAINTIES (Cont.) 17 17.0 REFERENCES 18 APPENDIX A - SAR MEASUREMENT DATA 19 APPENDIX A - SAR MEASUREMENT DATA 19 APPENDIX A - SAR MEASUREMENT DATA 19 APPENDIX A - SAR MEA	TABLE OF CONTENTS	
2.0 DESCRIPTION of Device Under Test (DUT) 3 3.0 SAR MEASUREMENT SYSTEM 4 4.0 MEASUREMENT SUMMARY 5 MEASUREMENT SUMMARY (Cont.) 6 MEASUREMENT SUMMARY (Cont.) 7 MEASUREMENT SUMMARY (Cont.) 7 MEASUREMENT SUMMARY (Cont.) 8 5.0 DETAILS OF SAR EVALUATION (Cont.) 10 6.0 EVALUATION PROCEDURES 10 7.0 SYSTEM PERFORMANCE CHECK 11 8.0 SIMULATED EQUIVALENT TISSUES 12 9.0 SAR SAFETY LIMITS 12 10.0 ROBOT SYSTEM SPECIFICATIONS 13 11.0 PROBE SPECIFICATION (ET3DV6) 14 12.0 SAM PHANTOM V4.0C 14 13.0 PLANAR PHANTOM 14 14.0 DEVICE HOLDER 16 MEASUREMENT UNCERTAINTIES 16 MEASUREMENT UNCERTAINTIES (Cont.) 17 17.0 REFERENCES 18 APPENDIX A - SAR MEASUREMENT DATA 19 APPENDIX A - SAR MEASUREMENT DATA 54 APPENDIX C - MEASUREMENT DATA 54 APPENDIX C - MEASUREMENT DATA 54 APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS 63	1.0 INTRODUCTION	3
3.0 SAR MEASUREMENT SYSTEM44.0 MEASUREMENT SUMMARY5MEASUREMENT SUMMARY (Cont.)6MEASUREMENT SUMMARY (Cont.)7MEASUREMENT SUMMARY (Cont.)85.0 DETAILS OF SAR EVALUATION9DETAILS OF SAR EVALUATION (Cont.)106.0 EVALUATION PROCEDURES107.0 SYSTEM PERFORMANCE CHECK118.0 SIMULATED EQUIVALENT TISSUES129.0 SAR SAFETY LIMITS129.0 SAR SAFETY LIMITS1311.0 PROBE SPECIFICATIONS1412.0 SAM PHANTOM V4.0C1413.0 PLANAR PHANTOM1414.0 DEVICE HOLDER1516.0 MEASUREMENT UNCERTAINTIES16MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA19APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX B - SYSTEM PERFORMANCE CHECK DATA68APPENDIX C - MEASUREMENT DATA19APPENDIX C - MEASUREMENT DATA68APPENDIX C - SAR TEST SETUP & DUT PHOTOGRAPHS<	2.0 DESCRIPTION of Device Under Test (DUT)	3
4.0 MEASUREMENT SUMMARY 5 MEASUREMENT SUMMARY (Cont.) 6 MEASUREMENT SUMMARY (Cont.) 7 MEASUREMENT SUMMARY (Cont.) 8 5.0 DETAILS OF SAR EVALUATION 9 DETAILS OF SAR EVALUATION (Cont.) 10 6.0 EVALUATION PROCEDURES 10 7.0 SYSTEM PERFORMANCE CHECK 11 8.0 SIMULATED EQUIVALENT TISSUES 12 9.0 SAR SAFETY LIMITS 12 10.0 ROBOT SYSTEM SPECIFICATIONS 13 11.0 PROBE SPECIFICATION (ET3DV6) 14 12.0 SAM PHANTOM V4.0C 14 13.0 PLANAR PHANTOM 14 14.0 DEVICE HOLDER 15 16.0 MEASUREMENT UNCERTAINTIES 16 MEASUREMENT UNCERTAINTIES (Cont.) 17 17.0 REFERENCES 18 APPENDIX A - SAR MEASUREMENT DATA 19 APPENDIX B - SYSTEM PERFORMANCE CHECK DATA 54 APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS 63 APP	3.0 SAR MEASUREMENT SYSTEM	4
MEASUREMENT SUMMARY (Cont.) 6 MEASUREMENT SUMMARY (Cont.) 7 MEASUREMENT SUMMARY (Cont.) 8 5.0 DETAILS OF SAR EVALUATION 9 DETAILS OF SAR EVALUATION (Cont.) 10 6.0 EVALUATION PROCEDURES 10 7.0 SYSTEM PERFORMANCE CHECK 11 8.0 SIMULATED EQUIVALENT TISSUES 12 9.0 SAR SAFETY LIMITS 12 10.0 ROBOT SYSTEM SPECIFICATIONS 13 11.0 PROBE SPECIFICATION (ET3DV6) 14 12.0 SAM PHANTOM V4.0C 14 13.0 PLANAR PHANTOM 14 14.0 DEVICE HOLDER 14 15.0 TEST EQUIPMENT LIST 15 16.0 MEASUREMENT UNCERTAINTIES 16 MEASUREMENT UNCERTAINTIES (Cont.) 17 17.0 REFERENCES 18 APPENDIX A - SAR MEASUREMENT DATA 19 APPENDIX A - SAR MEASUREMENT DATA 54 APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS 63 APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS 63 APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS 63 APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS 68 APPENDIX F - P	4.0 MEASUREMENT SUMMARY	5
MEASUREMENT SUMMARY (Cont.) 7 MEASUREMENT SUMMARY (Cont.) 8 5.0 DETAILS OF SAR EVALUATION 9 DETAILS OF SAR EVALUATION (Cont.) 10 6.0 EVALUATION PROCEDURES 10 7.0 SYSTEM PERFORMANCE CHECK 11 8.0 SIMULATED EQUIVALENT TISSUES 12 9.0 SAR SAFETY LIMITS 12 10.0 ROBOT SYSTEM SPECIFICATIONS 13 11.0 PROBE SPECIFICATION (ET3DV6) 14 12.0 SAM PHANTOM V4.0C 14 13.0 PLANAR PHANTOM 14 14.0 DEVICE HOLDER 15 15.0 TEST EQUIPMENT LIST 15 16.0 MEASUREMENT UNCERTAINTIES (Cont.) 17 17.0 REFERENCES 18 APPENDIX A - SAR MEASUREMENT DATA 19 APPENDIX A - SAR MEASUREMENT DATA 54 APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS 63 APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS 68 APPENDIX E - SYSTEM VALIDATION 97 APPENDIX F - PROBE CALIBRATION 98 APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY 99	MEASUREMENT SUMMARY (Cont.)	6
MEASUREMENT SUMMARY (Cont.) 8 5.0 DETAILS OF SAR EVALUATION 9 DETAILS OF SAR EVALUATION (Cont.) 10 6.0 EVALUATION PROCEDURES 10 7.0 SYSTEM PERFORMANCE CHECK 11 8.0 SIMULATED EQUIVALENT TISSUES 12 9.0 SAR SAFETY LIMITS 12 10.0 ROBOT SYSTEM SPECIFICATIONS 13 11.0 PROBE SPECIFICATION (ET3DV6) 14 12.0 SAM PHANTOM V4.0C 14 13.0 PLANAR PHANTOM 14 14.0 DEVICE HOLDER 15 16.0 MEASUREMENT UNCERTAINTIES 16 MEASUREMENT UNCERTAINTIES (Cont.) 17 17.0 REFERENCES 18 APPENDIX A - SAR MEASUREMENT DATA 19 APPENDIX B - SYSTEM PERFORMANCE CHECK DATA 54 APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS 63 APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS 63 APPENDIX E - SYSTEM VALIDATION 97 APPENDIX F - PROBE CALIBRATION 98 APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY 99	MEASUREMENT SUMMARY (Cont.)	7
5.0 DETAILS OF SAR EVALUATION9DETAILS OF SAR EVALUATION (Cont.)106.0 EVALUATION PROCEDURES107.0 SYSTEM PERFORMANCE CHECK118.0 SIMULATED EQUIVALENT TISSUES129.0 SAR SAFETY LIMITS1210.0 ROBOT SYSTEM SPECIFICATIONS1311.0 PROBE SPECIFICATION (ET3DV6)1412.0 SAM PHANTOM V4.0C1413.0 PLANAR PHANTOM1414.0 DEVICE HOLDER1415.0 TEST EQUIPMENT LIST1516.0 MEASUREMENT UNCERTAINTIES16MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA54APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX F - PROBE CALIBRATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	MEASUREMENT SUMMARY (Cont.)	8
DETAILS OF SAR EVALUATION (Cont.)106.0 EVALUATION PROCEDURES107.0 SYSTEM PERFORMANCE CHECK118.0 SIMULATED EQUIVALENT TISSUES129.0 SAR SAFETY LIMITS129.0 NOBOT SYSTEM SPECIFICATIONS1311.0 PROBE SPECIFICATION (ET3DV6)1412.0 SAM PHANTOM V4.0C1413.0 PLANAR PHANTOM1414.0 DEVICE HOLDER1415.0 TEST EQUIPMENT LIST1516.0 MEASUREMENT UNCERTAINTIES16MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA54APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX F - PROBE CALIBRATION97APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	5.0 DETAILS OF SAR EVALUATION	9
6.0 EVALUATION PROCEDURES107.0 SYSTEM PERFORMANCE CHECK118.0 SIMULATED EQUIVALENT TISSUES129.0 SAR SAFETY LIMITS1210.0 ROBOT SYSTEM SPECIFICATIONS1311.0 PROBE SPECIFICATION (ET3DV6)1412.0 SAM PHANTOM V4.0C1413.0 PLANAR PHANTOM1414.0 DEVICE HOLDER1415.0 TEST EQUIPMENT LIST1516.0 MEASUREMENT UNCERTAINTIES16MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA54APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	DETAILS OF SAR EVALUATION (Cont.)	10
7.0 SYSTEM PERFORMANCE CHECK118.0 SIMULATED EQUIVALENT TISSUES129.0 SAR SAFETY LIMITS1210.0 ROBOT SYSTEM SPECIFICATIONS1311.0 PROBE SPECIFICATION (ET3DV6)1412.0 SAM PHANTOM V4.0C1413.0 PLANAR PHANTOM1414.0 DEVICE HOLDER1415.0 TEST EQUIPMENT LIST1516.0 MEASUREMENT UNCERTAINTIES16MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA19APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX F - PROBE CALIBRATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	6.0 EVALUATION PROCEDURES	10
8.0 SIMULATED EQUIVALENT TISSUES129.0 SAR SAFETY LIMITS1210.0 ROBOT SYSTEM SPECIFICATIONS1311.0 PROBE SPECIFICATION (ET3DV6)1412.0 SAM PHANTOM V4.0C1413.0 PLANAR PHANTOM1414.0 DEVICE HOLDER1415.0 TEST EQUIPMENT LIST1516.0 MEASUREMENT UNCERTAINTIES16MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA19APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX F - PROBE CALIBRATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	7.0 SYSTEM PERFORMANCE CHECK	11
9.0 SAR SAFETY LIMITS1210.0 ROBOT SYSTEM SPECIFICATIONS1311.0 PROBE SPECIFICATION (ET3DV6)1412.0 SAM PHANTOM V4.0C1413.0 PLANAR PHANTOM1414.0 DEVICE HOLDER1415.0 TEST EQUIPMENT LIST1516.0 MEASUREMENT UNCERTAINTIES16MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA19APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	8.0 SIMULATED EQUIVALENT TISSUES	12
10.0 ROBOT SYSTEM SPECIFICATIONS1311.0 PROBE SPECIFICATION (ET3DV6)1412.0 SAM PHANTOM V4.0C1413.0 PLANAR PHANTOM1414.0 DEVICE HOLDER1415.0 TEST EQUIPMENT LIST1516.0 MEASUREMENT UNCERTAINTIES16MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA19APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	9.0 SAR SAFETY LIMITS	12
11.0 PROBE SPECIFICATION (ET3DV6)1412.0 SAM PHANTOM V4.0C1413.0 PLANAR PHANTOM1414.0 DEVICE HOLDER1415.0 TEST EQUIPMENT LIST1516.0 MEASUREMENT UNCERTAINTIES16MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA19APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	10.0 ROBOT SYSTEM SPECIFICATIONS	13
12.0 SAM PHANTOM V4.0C1413.0 PLANAR PHANTOM1414.0 DEVICE HOLDER1415.0 TEST EQUIPMENT LIST1516.0 MEASUREMENT UNCERTAINTIES16MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA19APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	11.0 PROBE SPECIFICATION (ET3DV6)	14
13.0 PLANAR PHANTOM1414.0 DEVICE HOLDER1415.0 TEST EQUIPMENT LIST1516.0 MEASUREMENT UNCERTAINTIES16MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA19APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	12.0 SAM PHANTOM V4.0C	14
14.0 DEVICE HOLDER1415.0 TEST EQUIPMENT LIST1516.0 MEASUREMENT UNCERTAINTIES16MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA19APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	13.0 PLANAR PHANTOM	14
15.0 TEST EQUIPMENT LIST1516.0 MEASUREMENT UNCERTAINTIES16MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA19APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	14.0 DEVICE HOLDER	14
16.0 MEASUREMENT UNCERTAINTIES16MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA19APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	15.0 TEST EQUIPMENT LIST	15
MEASUREMENT UNCERTAINTIES (Cont.)1717.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA19APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	16.0 MEASUREMENT UNCERTAINTIES	16
17.0 REFERENCES18APPENDIX A - SAR MEASUREMENT DATA19APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	MEASUREMENT UNCERTAINTIES (Cont.)	17
APPENDIX A - SAR MEASUREMENT DATA19APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	17.0 REFERENCES	18
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA54APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	APPENDIX A - SAR MEASUREMENT DATA	19
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS63APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	54
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS68APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	63
APPENDIX E - SYSTEM VALIDATION97APPENDIX F - PROBE CALIBRATION98APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	68
APPENDIX F - PROBE CALIBRATION98 APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY99	APPENDIX E - SYSTEM VALIDATION	97
APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY 99	APPENDIX F - PROBE CALIBRATION	98
	APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY	99
APPENDIX H - PLANAR PHANTOM CERTIFICATE OF CONFORMITY100	APPENDIX H - PLANAR PHANTOM CERTIFICATE OF CONFORMITY	100

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GS	entora		
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 2 of 100						2 of 100

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

1.0 INTRODUCTION

This measurement report demonstrates that the Enfora Model: GSM0110 Dual-Band PCS/Cellular GSM GPRS Compact Flash Card (with PCMCIA Adapter) FCC ID: MIVGSM0110 for Laptop PCs and PDAs complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) for the General Population environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [2]) were employed. A description of the product, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION of Device Under Test (DUT)

FCC Rule Part(s)	47 CFR §2.1093								
Test Procedure(s)		FCC OET Bulletin 65, Supplement C (01-01)							
Device Classification			PCS	Licensed T	ransn	nitter (PCB)			
Device Description	C	Dual-Band F	PCS/Cellular GSM	GPRS Cor	npact	Flash Card (with	PCMCIA	A Adapte	r)
FCC IDENTIFER				MIVGS	M011	10			
Compact Flash Card	Manufacturer	Er	nfora L.P.	Model	No.	GSM0110	Serial N	No. 0	110430410292
				Model N	ame	Orion		Ide	entical Prototype
PCMCIA Adapter	Manufacturer	Growell T	elecom Co., Ltd.	Mode	əl	Type II	Serial N	No	n/a
									Production
Modulation Scheme				G№	ISK				
Tx Frequency Range(s)		1850.2 - 19	909.8 MHz				PCS GS	SM	
		824.2 - 84	48.8 MHz			Cellular GSM			
RF Output Power Tested	28.0 dBi	m	PCL 0		Peak Conducted			CS GPRS	
	31.0 dBi	m	PCL 5			Peak Conducted	b	Cellular GPRS	
Antenna Type(s) Tested				Extern	al ¼	λ			
Dower Source(a) Tested		L	i-ion 3.7 V, 1000 r	nAh Extern	al Ba	ttery (Model: GW	BC100)		
Power Source(s) Tested	I	Host Laptop	AC Power		Host PDA Battery				
Host Device Tested	Manufacturer	/ Model	Serial No.			Power Supply	Slot	Туре	Slot-to-Base
	Dell Inspiron	i 3800	9D2SH01			AC Power	Dual P	PCMCIA	8 mm
Laptop PCs	Compaq Armada M300		AM3 P3500T1X12C6458		AC Power	Single I	PCMCIA	7 mm	
Sony VAIO PCG-955A		28318330	3628016		AC Power	Dual P	PCMCIA	7 mm	
	Casio Cassiope	eia E-125	J650EAU-2B	J650EAU-2BB12-074495		Li-ion Battery 3.7V, 1400mAh	Compa	act Flash	4 mm
PDAs	Casio Cassiope	eia E-200	JX710AAU-5AP	JX710AAU-5AP122-00008788		Li-ion Battery 3.7V, 950mAh	Compa	act Flash	1 mm
	HP iPAQ H220	0 Series	Series TWC338			Li-ion Battery 3.7V, 900mAh	Compa	act Flash	1 mm

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110 Freq. Range(s):		824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GS	entora		
2005 Celltech	abs Inc. This	Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 3 of 100				

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 SAR Measurement System with SAM Phantom

DASY4 SAR Measurement System with Planar Phantom

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GS	M GPRS Compact F	Flash Card (with PCMCIA Adapter)	entora
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 4 of 100						

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

4.0 MEASUREMENT SUMMARY

BOI	BODY SAR MEASUREMENT RESULTS - PCS GPRS MODE - DUT WITH PCMCIA ADAPTER & HOST LAPTOP PCs (x3)														
Freq. (MHz)	Ch.	Test Mode	Power Source	Host Laptop PC	PCMCIA Slot	Laptop Position to Planar Phantom	Antenna Position to Planar Phantom	Sep. Dist. from DUT to Planar Phantom (mm)	Cond Pov Bef Te	ucted wer fore est PCI	Me S (asured AR 1g W/kg)	SAR Drift During Test (dB)	S S/ (\	caled AR 1g N/kg)
1880.0	662	GPRS	Laptop PC AC Power	Sony VAIO	Bottom	Bottom Side	Perpendicular	6	28.0	0	P S	0.431 0.283	-0.0432	P S	0.435
1880.0	1880.0662GPRSExt. Li-ion DUT BatterySony VAIOBottom SidePerpendicular2028.000.7010.1620.701												.701		
1880.0	662	GPRS	Laptop PC AC Power	Compaq Armada	Single	Bottom Side	Perpendicular	5	28.0	0	().292	-0.0353	-0.0353 0.294	
1880.0	662	GPRS	Ext. Li-ion DUT Batt.	Compaq Armada	Single	Bottom Side	Perpendicular	17	28.0	0	().594	0.117	C).594
1880.0	662	GPRS	Laptop PC AC Power	Dell Inspiron	Bottom	Bottom Side	Perpendicular	6	28.0	0	().434	-0.0210	C).436
1880.0	662	GPRS	Ext. Li-ion DUT Batt.	Dell Inspiron	Bottom	Bottom Side	Perpendicular	18	28.0	0	().719	-0.190	C).751
	ANSI / IEEE C95.1 1999 - SAFETY LIMIT BODY: 1.6 W/kg (averaged over 1 gram) Spatial Peak - Uncontrolled Exposure / General Population														

Test Date(s)		March 09, 2	005	Ambient Temperature	23.6	°C
Measured Fluid Type	1880	1880 MHz		Fluid Temperature	22.5	°C
Dielectric Constant	IEEE Target		Measured	Atmospheric Pressure	102.8	kPa
ε _r	53.3	±5% 52.2 Relative Humidity		30	%	
Conductivity	IEEE 1		Measured	Fluid Depth	≥ 15	cm
σ (mho/m)	1.52	±5%	1.53	ρ (Kg/m³)	1000	

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the scaled SAR levels evaluated at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [2]).
- 3. Secondary peak SAR levels measured within 2 dB of the primary were reported (P = Primary, S = Secondary).
- 4. The power droops measured by the DASY4 system during the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the test data table above.
- 5. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the SAR evaluations using an HP 85070C Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C for printout of measured fluid dielectric parameters).
- 7. The SAR evaluations were performed within 24 hours of the system performance check.

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	824.2 - 848.8 / 1850.2 - 1909.8 MHz		
Model:	GSM0110	DUT Type:	Dual-Band GS	entora		
2005 Celltech	Labs Inc. This	s document is not	to be reproduced in v	whole or in part without t	he written permission of Celltech Labs Inc.	5 of 100

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

MEASUREMENT SUMMARY (Cont.)

BODY SAR MEASUREMENT RESULTS - PCS GPRS MODE - DUT WITH HOST PDAs (x3) - LAP-HELD CONFIGURATION Test Freq. Test Power Host PDA Position Antenna Position Sep. Dist. from DUT Power Conducted Power Measured Drift SAR Drift Scaled

Date	Freq. (MHz)	Ch.	Mode	Source	PDA	to Planar Phantom	to Planar Phantom	to Planar Phantom	Bef Te	ore st	SAR 1g (W/kg)	During Test	SAR 1g (W/kg)
						1 Harton	· · · · · · · · · · · · · · · · · · ·	(mm)	dBm	PCL		(dB)	
Mar 8	1880.0	662	GPRS	PDA Battery	Casio E-125	Bottom Side	Perpendicular	2	28.0	0	0.720	-0.130	0.742
Mar 8	1880.0	662	GPRS	Ext. Li-ion DUT Battery	Casio E-125	Bottom Side	Perpendicular	15	28.0	0	0.536	0.0605	0.536
Mar 8	1880.0	662	GPRS	PDA Battery	Casio E-200	Bottom Side	Perpendicular	0	28.0	0	0.799	0.0429	0.799
Mar 8	1850.2	512	GPRS	PDA Battery	Casio E-200	Bottom Side	Perpendicular	0	28.0	0	0.727	-0.0184	0.730
Mar 8	1909.8	810	GPRS	PDA Battery	Casio E-200	Bottom Side	Perpendicular	0	28.0	0	P 0.742 S 0.558	-0.206	P 0.778 S 0.585
Mar 8	1880.0	662	GPRS	Ext. Li-ion DUT Battery	Casio E-200	Bottom Side	Perpendicular	15	28.0	0	0.516	-0.0539	0.522
Mar 8	1880.0	662	GPRS	PDA Battery	HP iPAQ	Bottom Side	Perpendicular	0	28.0	0	0.879	-0.157	0.911
Mar 8	1850.2	512	GPRS	PDA Battery	HP iPAQ	Bottom Side	Perpendicular	0	28.0	0	0.853	-0.129	0.879
Mar 8	1909.8	810	GPRS	PDA Battery		Bottom Side	Perpendicular	0	28.0	0	P 0.820	-0.0170	P 0.823
					117102	Cide					5 0.769		5 0.772
Mar 9	1880.0	662	GPRS	Ext. Li-ion		Bottom Side	Perpendicular	15	28.0	0	0.719	0.0274	0.719

ANSI / IEEE C95.1 1999 - SAFETY LIMIT BODY: 1.6 W/kg (averaged over 1 gram) Spatial Peak - Uncontrolled Exposure / General Population

Test Date(s)	Ν	Aarch 08,	, 2005 March 09,			2005	Test Date(s)	Mar 8	Mar 9	Unit
	1880	MHz	Body	1880 MHz		Body	Ambient Temperature	24.9	23.6	°C
Dielectric Constant 8r	IEEE Target		Measured	d IEEE Target		Measured	Fluid Temperature	22.0	22.5	°C
	53.3	±5%	52.2	53.3	±5%	52.2	Atmospheric Pressure	102.4	102.8	kPa
	1880 MHz		Body	1880 MHz		Body	Relative Humidity	30	30	%
Conductivity σ (mho/m)	IEEE 1	Farget	Measured	IEEE "	Target	Measured Fluid Depth		≥ 15	≥ 15	cm
· · ·	1.52	±5%	1.53	1.52	±5%	1.53	ρ (Kg/m³)		1000	

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the scaled SAR levels evaluated at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [2]).
- 3. Secondary peak SAR levels measured within 2 dB of the primary were reported (P = Primary, S = Secondary).
- 4. The power droops measured by the DASY4 system during the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the test data table above.
- 5. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the SAR evaluations using an HP 85070C Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C for printout of measured fluid dielectric parameters).
- 7. The SAR evaluations were performed within 24 hours of the system performance check.

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	MIVGSM0110 Freq. Range(s): 824.2 - 848.8 / 1850.2 - 1909.8 MH						
Model:	GSM0110	DUT Type:	Dual-Band GS	entora						
2005 Celltech	Labs Inc. This	document is not	to be reproduced in v	whole or in part without t	he written permission of Celltech Labs Inc.	6 of 100				

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

MEASUREMENT SUMMARY (Cont.)

BODY SAR MEASUREMENT RESULTS - CELLULAR GPRS MODE - DUT WITH PCMCIA ADAPTER & HOST LAPTOP PCs (x3) Sep. Dist. Conducted SAR Laptop Antenna Host from DUT Meas. Drift Scaled Power **PCMCIA** Power Position Position Test Freq. Test Laptop SAR 1g Ch. SAR 1g Before to Planar During Date (MHz) Mode Source Slot to Planar to Planar PC (W/kg) Phantom Test Test (W/kg) Phantom Phantom (dB) (mm)dBm PCL Laptop PC Dell Bottom GPRS Mar 4 836.6 190 Bottom Perpendicular 6 31.0 5 0.462 -0.124 0.475 AC Power Inspiron Side Ext. Li-ion Dell Bottom GPRS 31.0 0 233 -0.0793 Mar 4 8366 190 Bottom Perpendicular 18 5 0.237 DUT Batt. Inspiron Side Laptop PC Sony Bottom Mar 7 836.6 190 GPRS Bottom Perpendicular 6 31.0 5 0.686 -0.0183 0.689 AC Power VAIO Side Ext. Li-ion Sony Bottom GPRS 190 20 31.0 5 Mar 7 836.6 Bottom Perpendicular 0.266 0.175 0.266 VAIÓ DUT Batt. Side Laptop PC Compaq Bottom GPRS 5 836.6 190 Single Perpendicular 5 31.0 0.580 -0.109 0.595 Mar 7 AC Power Armada Side Ext. Li-ion Bottom Compag Mar 7 836.6 190 GPRS Single Perpendicular 17 5 0.325 -0.0579 0.329 31.0 DUT Batt. Armada Side

ANSI / IEEE C95.1 1999 - SAFETY LIMIT BODY: 1.6 W/kg (averaged over 1 gram) Spatial Peak - Uncontrolled Exposure / General Population

Test Date(s)	Ν	March 04,	, 2005 March 07, 2005			005	Test Date(s)	Mar 4	Mar 7	Unit
	835 MHz IEEE Target		Body	835 MHz IEEE Target		Body	Ambient Temperature	25.0	24.1	°C
Dielectric Constant _{Er}			Measured			Measured	Fluid Temperature	21.3	23.2	°C
	55.2	±5%	52.6	55.2	±5%	54.0	Atmospheric Pressure	102.3	102.3	kPa
	835 MHz		Body	835 MHz		Body	Relative Humidity	30	30	%
Conductivity σ (mho/m)	IEEE 1	Farget	Measured	IEEE	E Target	Measured	Fluid Depth	≥ 15	≥ 15	cm
	0.97	±5%	0.98	0.97	±5%	1.01	ρ (Kg/m ³)		1000	

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the scaled SAR levels evaluated at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [2]).
- 3. The power droops measured by the DASY4 system during the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the test data table above.
- 4. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the SAR evaluations using an HP 85070C Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C for printout of measured fluid dielectric parameters).
- 6. The SAR evaluations were performed within 24 hours of the system performance check.

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz)
Model:	GSM0110	DUT Type:	Dual-Band GS	entora		
2005 Celltech	7 of 100					

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

MEASUREMENT SUMMARY (Cont.)

BODY	BODY SAR MEASUREMENT RESULTS - CELLULAR GPRS MODE - DUT WITH HOST PDAs (x3) - LAP-HELD CONFIGURATION														
Freq. (MHz)	Ch.	Test Mode	Power Source	Host PDA	PDA Position to Planar Phantom	Antenna Position to Planar Phantom	Sep. Dist. from DUT to Planar Phantom (mm)	Co Po Bef Te dBm	nd. wer ore est PCL	Measured SAR 1g (W/kg)	SAR Drift During Test (dB)	SAR Drift Sc During SA Test (M (dB)			
836.6	190	GPRS	PDA Battery	HP iPAQ	Bottom Side	Perpendicular	0	31.0	5	0.543	0.0228	0).543		
836.6	190	GPRS	Ext. Li-ion DUT Battery	HP iPAQ	Bottom Side	Perpendicular	15	31.0	5	0.341	0.096	0).341		
836.6	190	GPRS	PDA Battery	Casio E-200	Bottom Side	Perpendicular	0	31.0	5	0.668	0.244	0.668			
836.6	190	GPRS	Ext. Li-ion DUT Battery	Casio E-200	Bottom Side	Perpendicular	15	31.0	5	0.280	0.133	0	0.280		
836.6	190	GPRS	PDA Battery	Casio E-125	Bottom Side	Perpendicular	2	31.0	5	0.583	0.00189	0).583		
836.6	190	GPRS	Ext. Li-ion DUT Battery	Casio E-125	Bottom Side	Perpendicular	15	31.0	5	P 0.221 S 0.221	-0.0334	P S	0.223 0.223		
	ANSI / IEEE C95.1 1999 - SAFETY LIMIT														

ANSI / IEEE C95.1 1999 - SAFETY LIMIT BODY: 1.6 W/kg (averaged over 1 gram) Spatial Peak - Uncontrolled Exposure / General Population

Test Date(s)	March 08, 2005			Ambient Temperature	23.6	°C
Measured Fluid Type	835 MHz		835 MHz Body Fluid Temperature		22.5	°C
Dielectric Constant	IEEE Target Measured		Measured	Atmospheric Pressure	102.8	kPa
٤r	55.2	±5%	53.4	Relative Humidity	30	%
Conductivity	IEEE '	Target	Measured	Fluid Depth	≥ 15	cm
σ (mho/m)	0.97	±5%	0.99	ρ (Kg/m³)	1000	

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the scaled SAR levels evaluated at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional (per FCC OET Bulletin 65, Supplement C, Edition 01-01 see reference [2]).
- 3. Secondary peak SAR levels measured within 2 dB of the primary were reported (P = Primary, S = Secondary).
- 4. The power droops measured by the DASY4 system during the SAR evaluations were added to the measured SAR levels to report scaled SAR results as shown in the test data table above.
- 5. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluations using an HP 85070C Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C for printout of measured fluid dielectric parameters).
- 7. The SAR evaluations were performed within 24 hours of the system performance check.

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model: GSM0110 DUT Type:		DUT Type:	Dual-Band GS	entora		
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					8 of 100	

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

5.0 DETAILS OF SAR EVALUATION

The Enfora Model: GSM0110 Dual-Band PCS/Cellular GSM GPRS Compact Flash Card (with PCMCIA Adapter) FCC ID: MIVGSM0110 for Laptop PCs and PDAs was compliant for localized Specific Absorption Rate (SAR) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix D.

- The DUT was tested for body SAR (lap-held) with the bottom side of the Sony VAIO Laptop PC placed parallel to, and touching, the outer surface of the planar phantom. The DUT was connected to the PCMCIA adapter and evaluated in the bottom PCMCIA card slot of the Laptop PC. The DUT was powered from the Laptop PC. The separation distance from the bottom of the DUT to the outer surface of the planar phantom was 6 mm.
- 2. The DUT was tested for body SAR (lap-held) with the bottom side of the Sony VAIO Laptop PC placed parallel to the outer surface of the planar phantom. The DUT was connected to the PCMCIA adapter and evaluated in the bottom PCMCIA card slot of the Laptop PC. The DUT was powered from the external battery. The external battery was folded underneath the bottom of the Laptop PC (intended normal operating position) and provided a 13 mm separation distance from the bottom of the Laptop PC to the outer surface of the planar phantom. The external battery provided a 20 mm separation distance from the bottom of the bottom of the DUT to the outer surface of the planar phantom.
- 3. The DUT was tested for body SAR (lap-held) with the bottom side of the Compaq Armada Laptop PC placed parallel to, and touching, the outer surface of the planar phantom. The DUT was connected to the PCMCIA adapter and evaluated in the single PCMCIA card slot of the Laptop PC. The DUT was powered from the Laptop PC. The separation distance from the bottom of the DUT to the outer surface of the planar phantom was 5 mm.
- 4. The DUT was tested for body SAR (lap-held) with the bottom side of the Compaq Armada Laptop PC placed parallel to the outer surface of the planar phantom. The DUT was connected to the PCMCIA adapter and evaluated in the single PCMCIA card slot of the Laptop PC. The DUT was powered from the external battery. The external battery was folded underneath the bottom of the Laptop PC (intended normal operating position) and provided a 13 mm separation distance from the bottom of the Laptop PC to the outer surface of the planar phantom. The external battery provided a 17 mm separation distance from the bottom of the bottom of the DUT to the outer surface of the planar phantom.
- 5. The DUT was tested for body SAR (lap-held) with the bottom side of the Dell Inspiron Laptop PC placed parallel to, and touching, the outer surface of the planar phantom. The DUT was connected to the PCMCIA adapter and evaluated in the bottom PCMCIA card slot of the Laptop PC. The DUT was powered from the Laptop PC. The separation distance from the bottom of the DUT to the outer surface of the planar phantom was 6 mm.
- 6. The DUT was tested for body SAR (lap-held) with the bottom side of the Dell Inspiron Laptop PC placed parallel to the outer surface of the planar phantom. The DUT was connected to the PCMCIA adapter and evaluated in the bottom PCMCIA card slot of the Laptop PC. The DUT was powered from the external battery. The external battery was folded underneath the bottom of the Laptop PC (intended normal operating position) and provided a 13 mm separation distance from the bottom of the Laptop PC to the outer surface of the planar phantom. The external battery provided an 18 mm separation distance from the bottom of the DUT to the outer surface of the planar phantom.
- 7. The DUT was tested for body SAR (lap-held) with the bottom side of the Casio E-125 placed parallel to, and touching, the outer surface of the planar phantom. The DUT was evaluated in the Compact Flash card slot and powered from the PDA. The separation distance from the bottom of the DUT to the outer surface of the planar phantom was 2 mm.
- 8. The DUT was tested for body SAR (lap-held) with the bottom side of the Casio E-125 placed parallel to the outer surface of the planar phantom. The DUT was evaluated in the Compact Flash card slot of the PDA and powered from the external battery connected to the DUT. The external battery was folded underneath the bottom of the PDA (intended normal operating position) and provided a 13 mm separation distance from the bottom of the PDA to the outer surface of the planar phantom. The external battery provided a 15 mm separation distance from the bottom of the DUT to the outer surface of the planar phantom.
- 9. The DUT was tested for body SAR (lap-held) with the bottom side of the HP iPAQ Pocket PC placed parallel to, and touching, the outer surface of the planar phantom. The DUT was evaluated in the Compact Flash card slot and powered from the PDA. The bottom of the DUT was touching the outer surface of the planar phantom.
- 10. The DUT was tested for body SAR (lap-held) with the bottom side of the HP iPAQ Pocket PC placed parallel to the outer surface of the planar phantom. The DUT was evaluated in the Compact Flash card slot of the PDA and powered from the external battery connected to the DUT. The external battery was folded underneath the bottom of the PDA (intended normal operating position) and provided a 13 mm separation distance from the bottom of the PDA to the outer surface of the planar phantom. The external battery provided a 15 mm separation distance from the bottom of the DUT to the outer surface of the planar phantom.
- 11. The DUT was tested for body SAR (lap-held) with the bottom side of the Casio E-200 Pocket PC placed parallel to, and touching, the outer surface of the planar phantom. The DUT was evaluated in the Compact Flash card slot and powered from the PDA. The bottom of the DUT was touching the outer surface of the planar phantom.

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model: GSM0110 DU		DUT Type:	Dual-Band GS	entora		
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					9 of 100	

Test Report S/N:	030205MIV-T621-S24G		
Test Date(s):	March 04, 07-09, 2005		
Test Type:	FCC SAR Evaluation		

DETAILS OF SAR EVALUATION (Cont.)

- 12. The DUT was tested for body SAR (lap-held) with the bottom side of the Casio E-200 Pocket PC placed parallel to the outer surface of the planar phantom. The DUT was evaluated in the Compact Flash card slot of the PDA and powered from the external battery connected to the DUT. The external battery was folded underneath the bottom of the PDA (intended normal operating position) and provided a 13 mm separation distance from the bottom of the PDA to the outer surface of the planar phantom. The external battery provided a 15 mm separation distance from the bottom of the DUT to the outer surface of the planar phantom.
- 13. For all SAR evaluations the antenna was in the vertical upright position (normal operating position) perpendicular to the planar phantom.
- 14. The power levels were set prior to the SAR evaluations using the PCTM software program provided by the manufacturer. The PCS band (1900 MHz) was set to the maximum power level (PL0). The cellular band (850 MHz) was set to the maximum power level (PL5).
- 15. The power droops measured by the DASY4 system during the SAR evaluations were subsequently added to the measured SAR levels to report scaled SAR results as shown in the test data tables (pages 5-8).
- 16. The DUT was evaluated in GPRS data mode at maximum power in 1 time slot (crest factor: 8.3).
- 17. The DUT was tested with a fully charged external battery, and a fully charged battery in the host PDA (test configurations without external DUT battery). The host Laptop PCs were powered by AC power supply.
- 18. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluations using an HP 85070C Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C for printout of measured fluid dielectric parameters.
- 20. The SAR evaluations with the DUT were performed using the Barski planar phantom.
- 21. The SAR evaluations were performed within 24 hours of the daily system performance check.

6.0 EVALUATION PROCEDURES

a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.

(ii) For Body and face-held devices a planar phantom was used.

b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.

An area scan was determined as follows:

- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.

A 1g and 10g spatial peak SAR was determined as follows:

- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away form the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix D). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	Enfora, L.I	P. FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model: GSM0110 DUT Ty		DUT Type:	Dual-Band GS	entora		
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.				10 of 100		

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a daily system check was performed using the planar section of the SAM phantom with a 1900MHz dipole and an 835MHz dipole (see Appendix E for system validation procedures). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance checks using an HP 85070C Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C for printout of measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ (see Appendix B for system performance check test plots).

SYSTEM PERFORMANCE CHECK													
Test	Brain Mixture	SAF (W	R 1g /kg)	$\begin{array}{c c} \text{Dielectric Constant} & \text{Conductivity} \\ \hline \epsilon_r & \sigma \ (\text{mho}/\text{m}) \end{array}$		ρ	Amb.	Fluid	Fluid	Humid.	Barom.		
Date	Freq.	IEEE Target	Measured	IEEE Target	Measured	IEEE Target	Measured	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
03/04/05	835	2.38 (±10%)	2.60 (+9.2%)	41.5 ±5%	41.2	0.90 ±5%	0.91	1000	23.4	22.3	≥ 15	30	102.4
03/07/05	835	2.38 (±10%)	2.44 (+2.5%)	41.5 ±5%	41.7	0.90 ±5%	0.93	1000	23.3	22.2	≥ 15	30	102.3
03/08/05	835	2.38 (±10%)	2.53 (+6.3%)	41.5 ±5%	40.4	0.90 ±5%	0.90	1000	23.0	22.5	≥ 15	30	102.8
03/08/05	1900	9.93 (±10%)	10.1 (+1.7%)	40.0 ±5%	38.1	1.40 ±5%	1.38	1000	24.7	22.4	≥ 15	30	102.5

Note(s):

1. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures listed in the above table were consistent for all measurement periods.

1900MHz Dipole Setup

835MHz Dipole Setup

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model: GSM0110 DUT Type:		Dual-Band GS	entora			
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					11 of 100	

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

8.0 SIMULATED EQUIVALENT TISSUES

The 1880MHz and 1900MHz simulated tissue mixtures consist of Glycol-monobutyl, water, and salt. The 835MHz simulated tissue mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide was added and visual inspection was made to ensure air bubbles were not trapped during the mixing process. The fluids were prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

1880/1900 MHz SIMULATED EQUIVALENT TISSUE MIXTURES						
	1900 MHz Brain	1880 MHz Body				
INGREDIENT	System Performance Check	DUT Evaluation				
Water	55.85 %	69.85 %				
Glycol Monobutyl	44.00 %	29.89 %				
Salt	0.15%	0.26 %				

835 MHz SIMULATED EQUIVALENT TISSUE MIXTURES						
INGREDIENT	835 MHz Brain	835 MHz Body				
	System Performance Check	DUT Evaluation				
Water	40.71 %	53.79 %				
Sugar	56.63 %	45.13 %				
Salt	1.48 %	0.98 %				
HEC	0.99 %					
Bactericide	0.19 %	0.10 %				

9.0 SAR SAFETY LIMITS

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

Notes:

1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

2. Controlled environments are defined as locations where there is potential exposure of individuals

who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)		entora	
2005 Celltech	2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 12 of 100			12 of 100		

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

POSITIONER:	Stäubli Unimation Corp. Robot Model: RX60L
Repeatability:	0.02 mm
No. of axis:	6

Data Acquisition Electronic (DAE) System

Cell Controller	
Processor:	AMD Athlon XP 2400+
Clock Speed:	2.0 GHz
Operating System:	Windows XP Professional

Data Converter

Features:	Signal Amplifier, multiplexer, A/D converter, and control logic
Software:	DASY4 software
Connecting Lines:	Optical downlink for data and status info. Optical uplink for commands and clock

DASY4 Measurement Server

Function:	Real-time data evaluation for field measurements and surface detection
Hardware:	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM
Connections:	COM1, COM2, DAE, Robot, Ethernet, Service Interface

E-Field Probe

Model:	ET3DV6
Serial No.:	1590
Construction:	Triangular core fiber optic detection system
Frequency:	10 MHz to 6 GHz
Linearity:	±0.2 dB (30 MHz to 3 GHz)

Phantom(s)

Type 1:	SAM V4.0C
Shell Material:	Fiberglass
Thickness:	2.0 ±0.1 mm
Volume:	Approx. 25 liters

Type 2: Shell Material:	Planar Phantom Fiberglass
Thickness:	2.0 ±0.1 mm
Volume:	Approx. 72 liters

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz)
Model:	GSM0110	DUT Type:	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)		entora	
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 13 of 100			13 of 100			

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

11.0 PROBE SPECIFICATION (ET3DV6)

Construction:	Symmetrical design with triangular core	
	Built-in shielding against static charges	
Calibration:	In air from 10 MHz to 2.5 GHz	
Calibration.	In brain simulating tissue at frequencies of 900 MHz	
	and 1.8 GHz (accuracy $\pm 8\%$)	
Frequency:	10 MHz to >6 GHz Linearity: ± 0.2 dB	
r roquonoj.	(30 MHz to 3 GHz)	
Directivity:	± 0.2 dB in brain tissue (rotation around probe axis)	
	±0.4 dB in brain tissue (rotation normal to probe axis)	9
Dynamic Range:	5 μ W/g to >100 mW/g; Linearity: ±0.2 dB	
Surface Detection:	±0.2 mm repeatability in air and clear liquids over	
	diffuse reflecting surfaces	11
Dimensions:	Overall length: 330 mm	
	Tip length: 16 mm	// //
	Body diameter: 12 mm	//
	Tip diameter: 6.8 mm	
	Distance from probe tip to dipole centers: 2.7 mm	
Application:	General dosimetry up to 3 GHz	
	Compliance tests of mobile phone	ET2D

ET3DV6 E-Field Probe

12.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a Fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the Fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix F for specifications of the SAM phantom V4.0C).

SAM Phantom

13.0 PLANAR PHANTOM

The planar phantom is a Fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area such as Laptop PCs. The planar phantom is integrated in a wooden table (see Appendix H for dimensions and specifications of the planar phantom).

Planar Phantom

14.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GSM GPRS Compact Flash		Flash Card (with PCMCIA Adapter)	entora
2005 Celltech	Labs Inc. This	document is not	to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 14 of 100			

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

15.0 TEST EQUIPMENT LIST

TEST EQUIPMENT	SERIAL NO.	DATE CALIBRATED	CALIBRATION DUE DATE
Schmid & Partner DASY4 System	-	-	-
-DASY4 Measurement Server	1078	N/A	N/A
-Robot	599396-01	N/A	N/A
-DAE3	353	July 2004	July 2005
-DAE3	370	January 2005	January 2006
-ET3DV6 E-Field Probe	1387	March 2005	March 2006
-ET3DV6 E-Field Probe	1590	May 2004	May 2005
-EX3DV4 E-Field Probe	3547	January 2005	January 2006
-300MHz Validation Dipole	135	October 2004	October 2005
-450MHz Validation Dipole	136	November 2004	November 2005
825MU = Validation Dinala	444	March 2004	March 2005
-835MHZ Validation Dipole	411	March 2005	March 2006
-900MHz Validation Dipole	054	June 2004	June 2005
-1800MHz Validation Dipole	247	June 2004	June 2005
-1900MHz Validation Dipole	151	June 2004	June 2005
-2450MHz Validation Dipole	150	September 2004	September 2005
-5000MHz Validation Dipole	1031	January 2005	January 2006
-SAM Phantom V4.0C	1033	N/A	N/A
-Barski Planar Phantom	03-01	N/A	N/A
-Plexiglas Planar Phantom	161	N/A	N/A
-Validation Planar Phantom	137	N/A	N/A
HP 85070C Dielectric Probe Kit	N/A	N/A	N/A
Gigatronics 8651A Power Meter	8650137	April 2004	April 2005
Gigatronics 8652A Power Meter	1835267	April 2004	April 2005
Gigatronics 80701A Power Sensor	1833535	April 2004	April 2005
Gigatronics 80701A Power Sensor	1833542	April 2004	April 2005
Gigatronics 80701A Power Sensor	1834350	April 2004	April 2005
HP 8594E Spectrum Analyzer	3543A02721	April 2004	April 2005
HP 8753ET Network Analyzer	US39170292	February 2005	February 2006
HP 8648D Signal Generator	3847A00611	April 2004	April 2005
Amplifier Research 5S1G4 Power Amplifier	26235	N/A	N/A

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110 Freq. Range(s):		824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)			entora
2005 Celltech	_abs Inc. This	document is not	to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 15 of 100			

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

16.0 MEASUREMENT UNCERTAINTIES

UN	UNCERTAINTY BUDGET FOR DEVICE EVALUATION					
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	Vi Or V _{eff}
Measurement System						
Probe calibration (835 MHz)	± 5.95	Normal	1	1	± 5.95	8
Probe calibration (1900 MHz)	± 4.85	Normal	1	1	± 4.85	8
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	8
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	8
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	8
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	∞
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	8
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	8
Readout electronics	± 1.0	Normal	1	1	± 1.0	8
Response time	± 0.8	Rectangular	√3	1	± 0.5	8
Integration time	± 1.4	Rectangular	√3	1	± 0.8	×
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	8
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	8
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	8
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	8
Test Sample Related						
Device positioning	± 6.0	Normal	√3	1	± 6.7	12
Device holder uncertainty	± 5.0	Normal	√3	1	± 5.9	8
Power drift	± 5.0	Rectangular	√3		± 2.9	8
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	8
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Combined Standard Uncertainty						
835 MHz					± 13.76	
1900 MHz					± 13.32	
Expanded Uncertainty (k=2)						
835 MHz					± 27.51	
1900 MHz					± 26.64	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [3])

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GSM GPRS Compact F		Flash Card (with PCMCIA Adapter)	entora
2005 Celltech	Labs Inc. This	document is not	to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 16 of 100			

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

MEASUREMENT UNCERTAINTIES (Cont.)

UN	UNCERTAINTY BUDGET FOR SYSTEM VALIDATION					
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	Vi Or V _{eff}
Measurement System						
Probe calibration (835 MHz)	± 5.95	Normal	1	1	± 5.95	8
Probe calibration (1900 MHz)	± 4.85	Normal	1	1	± 4.85	8
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	8
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	×
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	8
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	8
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	8
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	8
Readout electronics	± 1.0	Normal	1	1	± 1.0	×
Response time	± 0.8	Rectangular	√3	1	± 0.5	8
Integration time	± 1.4	Rectangular	√3	1	± 0.8	8
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	8
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	×
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	8
Extrapolation & integration	\pm 3.9	Rectangular	√3	1	± 2.3	8
Dipole						
Dipole Axis to Liquid Distance	± 2.0	Rectangular	√3	1	± 1.2	8
Input Power	± 4.7	Rectangular	√3	1	± 2.7	8
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	8
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Combined Standard Uncertainty						
835 MHz					± 10.54	
1900 MHz					± 9.97	
Expanded Uncertainty (k=2)						
835 MHz					± 21.09	
1900 MHz					± 19.93	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [3])

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz)
Model:	GSM0110	DUT Type:	Dual-Band GSM GPRS Compact F		Flash Card (with PCMCIA Adapter)	entora
2005 Celltech	Labs Inc. This	document is not	to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 17 of 10			

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

17.0 REFERENCES

[1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.

[2] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.

[3] IEEE Std 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)		entora	
2005 Celltech	Labs Inc. This	document is not	to be reproduced in v	18 of 100		

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz		
Model:	GSM0110	DUT Type:	Dual-Band GS	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)			
2005 Celltech	Labs Inc. This	document is not	to be reproduced in v	54 of 100			

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

Date Tested: 03/04/05

System Performance Check - 835 MHz Dipole

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411; Calibrated: 03/16/2004

Ambient Temp: 23.4 °C; Fluid Temp: 22.3 °C; Barometric Pressure: 102.4 kPa; Humidity: 30%

 $\begin{array}{l} \mbox{Communication System: CW} \\ \mbox{Forward Conducted Power: 250 mW} \\ \mbox{Frequency: 835 MHz; Duty Cycle: 1:1} \\ \mbox{Medium: HSL835 } (\sigma = 0.91 \mbox{ mho/m; } \epsilon_r = 41.2; \mbox{ρ} = 1000 \mbox{ kg/m}^3) \end{array}$

- Probe: ET3DV6 - SN1590; ConvF(6.71, 6.71, 6.71); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

835 MHz Dipole - System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

835 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.7 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 3.93 W/kg

SAR(1 g) = 2.60 mW/g; SAR(10 g) = 1.69 mW/g

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)			entora
2005 Celltech	Labs Inc. This	locument is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.				55 of 100

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

Z-Axis Scan

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GS	entora		
2005 Celltech	Labs Inc. This	document is not	to be reproduced in v	56 of 100		

 Test Report S/N:
 030205MIV-T621-S24G

 Test Date(s):
 March 04, 07-09, 2005

 Test Type:
 FCC SAR Evaluation

Date Tested: 03/07/05

System Performance Check - 835 MHz Dipole

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411; Calibrated: 03/16/2004

Ambient Temp: 23.3 °C; Fluid Temp: 22.2 °C; Barometric Pressure: 102.3 kPa; Humidity: 30%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 835 MHz; Duty Cycle: 1:1 Medium: (σ = 0.93 mho/m; ϵ_r = 41.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(6.71, 6.71, 6.71); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

835 MHz Dipole - System Performance Check/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

835 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.3 V/m; Power Drift = 0.0008 dB Peak SAR (extrapolated) = 3.62 W/kg SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GS	entora		
2005 Celltech I	_abs Inc. This	document is not	s not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.			

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

Z-Axis Scan

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)		entora	
2005 Celltech	Labs Inc. This	document is not	to be reproduced in v	58 of 100		

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

Date Tested: 03/08/05

System Performance Check - 835 MHz Dipole

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411; Calibrated: 03/16/2004

Ambient Temp: 23.0 °C; Fluid Temp: 22.5 °C; Barometric Pressure: 102.8 kPa; Humidity: 30%

- Probe: ET3DV6 - SN1590; ConvF(6.71, 6.71, 6.71); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 25/01/2005

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

835 MHz Dipole - System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

835 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.2 V/m; Power Drift = 0.0 dB Peak SAR (extrapolated) = 3.74 W/kg SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.66 mW/g

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)			entora
2005 Celltech	Labs Inc. Thi	s document is not	to be reproduced in v	59 of 100		

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

_

Z-Axis Scan

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)		entora	
2005 Celltech	Labs Inc. This	document is not	to be reproduced in whole or in part without the written permission of Celltech Labs Inc.			60 of 100

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

Date Tested: 03/08/05

System Performance Check - 1900 MHz Dipole

DUT: Dipole 1900 MHz; Model: D1900V2; Type: System Performance Check; Serial: 151; Calibrated: 06/18/2004

Ambient Temp: 24.7 °C; Fluid Temp: 22.4 °C; Barometric Pressure: 102.5 kPa; Humidity: 30%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL1900 (σ = 1.38 mho/m; ϵ_r = 38.1; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(5.03, 5.03, 5.03); Calibrated: 24/05/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 25/01/2005

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

1900 MHz Dipole - System Performance Check/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

1900 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96 V/m; Power Drift = -0.001 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.31 mW/g

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GS	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)		entora
2005 Celltech	Labs Inc. This	document is not	b be reproduced in whole or in part without the written permission of Celltech Labs Inc.			61 of 100

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

Z-Axis Scan

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)		entora	
2005 Celltech	Labs Inc. This	document is not	be reproduced in whole or in part without the written permission of Celltech Labs Inc.			62 of 100

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)		entora	
2005 Celltech	Labs Inc. This	document is not	be reproduced in whole or in part without the written permission of Celltech Labs Inc.			63 of 100

Celltech
Testing and Engineering Services Lab

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

Measured Fluid Dielectric Parameters (Muscle)

March 04, 2005

Frequency	e'	e"
735.000000 MHz	53.6218	21.5981
745.000000 MHz	53.5365	21.4975
755.000000 MHz	53.4494	21.4528
765.000000 MHz	53.3648	21.3846
775.000000 MHz	53.2824	21.2588
785.000000 MHz	53.2297	21.2462
795.000000 MHz	53.0473	21.2094
805.000000 MHz	52.9515	21.1446
815.000000 MHz	52.8450	21.1017
825.000000 MHz	52.6195	21.1019
835.000000 MHz	52.5563	<mark>21.1066</mark>
845.000000 MHz	52.4221	21.0388
855.000000 MHz	52.3404	20.9700
865.000000 MHz	52.2896	20.9767
875.000000 MHz	52.2446	20.9172
885.000000 MHz	52.1439	20.8425
895.000000 MHz	52.1296	20.7940
905.000000 MHz	51.9977	20.7027
915.000000 MHz	51.8738	20.7029
925.000000 MHz	51.7615	20.6689
935.000000 MHz	51.6111	20.6307

835 MHz System Performance Check

Measured Fluid Dielectric Parameters (Brain) March 04, 2005

Frequency	e'	e"
735.000000 MHz	42.4564	20.0828
745.000000 MHz	42.3893	20.0200
755.000000 MHz	42.1642	19.9763
765.000000 MHz	42.0636	19.8858
775.000000 MHz	41.9045	19.8802
785.000000 MHz	41.7719	19.8078
795.000000 MHz	41.7220	19.8251
805.000000 MHz	41.6099	19.7610
815.000000 MHz	41.4248	19.7509
825.000000 MHz	41.3291	19.7177
835.000000 MHz	<mark>41.1874</mark>	<mark>19.6772</mark>
845.000000 MHz	41.0796	19.6498
855.000000 MHz	40.9652	19.6046
865.000000 MHz	40.8464	19.5315
875.000000 MHz	40.6902	19.5117
885.000000 MHz	40.5966	19.4500
895.000000 MHz	40.5097	19.4527
905.000000 MHz	40.3576	19.3910
915.000000 MHz	40.2494	19.3820
925.000000 MHz	40.1791	19.3915
935.000000 MHz	40.0383	19.3166

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GS	d GSM GPRS Compact Flash Card (with PCMCIA Adapter)		entora
2005 Celltech	5 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.		64 of 100			

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

Measured Fluid Dielectric Parameters (Muscle)

March 07, 2005

Frequency	e'	e"
735.000000 MHz	55.0425	22.3618
745.000000 MHz	54.9375	22.2852
755.000000 MHz	54.9087	22.1727
765.000000 MHz	54.7465	22.1661
775.000000 MHz	54.6669	22.0737
785.000000 MHz	54.5186	22.0068
795.000000 MHz	54.4134	21.9499
805.000000 MHz	54.3155	21.8690
815.000000 MHz	54.2176	21.8406
825.000000 MHz	54.1101	21.8500
835.000000 MHz	54.0159	<mark>21.7606</mark>
845.000000 MHz	53.9328	21.7513
855.000000 MHz	53.8023	21.7055
865.000000 MHz	53.7431	21.6506
875.000000 MHz	53.6033	21.6004
885.000000 MHz	53.5438	21.5264
895.000000 MHz	53.4204	21.5520
905.000000 MHz	53.3057	21.5067
915.000000 MHz	53.2264	21.4228
925.000000 MHz	53.0968	21.4634
935.000000 MHz	52.9996	21.3687

835 MHz System Performance Check

Measured Fluid Dielectric Parameters (Brain)

March 07, 2005

Frequency	e'	e"
735.000000 MHz	43.0048	20.4425
745.000000 MHz	42.8546	20.3880
755.000000 MHz	42.7892	20.3537
765.000000 MHz	42.6131	20.2754
775.000000 MHz	42.5009	20.2279
785.000000 MHz	42.3762	20.2020
795.000000 MHz	42.2297	20.1611
805.000000 MHz	42.0880	20.1206
815.000000 MHz	41.9763	20.0951
825.000000 MHz	41.8850	20.0330
835.000000 MHz	<mark>41.7186</mark>	<mark>19.9935</mark>
845.000000 MHz	41.6061	19.9616
855.000000 MHz	41.4658	19.8922
865.000000 MHz	41.3601	19.8765
875.000000 MHz	41.1896	19.8704
885.000000 MHz	41.1407	19.8502
895.000000 MHz	40.9796	19.7636
905.000000 MHz	40.9144	19.7699
915.000000 MHz	40.7819	19.7228
925.000000 MHz	40.6291	19.6933
935.000000 MHz	40.5414	19.6745

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GS	I GPRS Compact Flash Card (with PCMCIA Adapter)		entora
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.		65 of 100				

Measured Fluid Dielectric Parameters (Muscle) March 08, 2005

Frequency	e'	e"
735.000000 MHz	54.3602	21.9316
745.000000 MHz	54.2383	21.8460
755.000000 MHz	54.1230	21.7484
765.000000 MHz	54.0424	21.6886
775.000000 MHz	53.9259	21.7178
785.000000 MHz	53.8224	21.6327
795.000000 MHz	53.6897	21.6167
805.000000 MHz	53.6146	21.4909
815.000000 MHz	53.5017	21.5043
825.000000 MHz	53.4129	21.4146
835.000000 MHz	<mark>53.3585</mark>	<mark>21.3804</mark>
845.000000 MHz	53.2130	21.3416
855.000000 MHz	53.1117	21.2772
865.000000 MHz	53.0018	21.2658
875.000000 MHz	52.8651	21.2279
885.000000 MHz	52.8339	21.1779
895.000000 MHz	52.6921	21.1602
905.000000 MHz	52.6547	21.1449
915.000000 MHz	52.5624	21.0736
925.000000 MHz	52.3953	21.0640
935.000000 MHz	52.2841	21.0032

835 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain)

March 08, 2005

e'	e"
41.5858	19.8027
41.4510	19.7822
41.3062	19.7027
41.1899	19.6297
41.1146	19.5930
40.9623	19.5882
40.8301	19.5572
40.7422	19.4727
40.5363	19.5179
40.4754	19.4082
40.3699	<mark>19.4177</mark>
40.1574	19.3633
40.0970	19.3004
39.9677	19.2936
39.8226	19.2518
39.7496	19.2213
39.6360	19.2130
39.5335	19.1287
39.4207	19.1176
39.2998	19.1000
39.1658	19.0586
	e' 41.5858 41.4510 41.3062 41.1899 41.1146 40.9623 40.8301 40.7422 40.5363 40.4754 40.3699 40.1574 40.0970 39.9677 39.8226 39.7496 39.6360 39.5335 39.4207 39.2998 39.1658

Applicant:	Enfora, L.P	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GS	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)		entora
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.			66 of 100			

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

Measured Fluid Dielectric Parameters (Muscle) March (06, 2015

Frequency	e'	e"
1.780000000 GHz	52.6168	14.3678
1.790000000 GHz	52.5689	14.3786
1.800000000 GHz	52.5187	14.4570
1.810000000 GHz	52.4845	14.4495
1.820000000 GHz	52.4443	14.4584
1.830000000 GHz	52.3735	14.5050
1.840000000 GHz	52.3440	14.5343
1.850000000 GHz	52.3208	14.5728
1.860000000 GHz	52.2784	14.5994
1.870000000 GHz	52.2254	14.6322
1.880000000 GHz	<mark>52.1789</mark>	14.6417
1.890000000 GHz	52.1799	14.7065
1.900000000 GHz	52.1197	14.6966
1.910000000 GHz	52.1139	14.7174
1.920000000 GHz	52.0471	14.7325
1.930000000 GHz	52.0528	14.7934
1.940000000 GHz	52.0403	14.7776
1.950000000 GHz	51.9537	14.8161
1.960000000 GHz	51.9529	14.8366
1.970000000 GHz	51.9128	14.8977
1.980000000 GHz	51.9108	14.9054

1900 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain)

March 08, 2005

e'	e"
38.5410	12.8257
38.5102	12.8530
38.4758	12.8823
38.4196	12.9277
38.3627	12.9350
38.3160	12.9867
38.2940	13.0235
38.2431	13.0396
38.2295	13.1005
38.1650	13.0667
<mark>38.1189</mark>	<mark>13.1182</mark>
38.0961	13.1583
38.0463	13.1949
38.0003	13.2030
37.9536	13.2177
37.9231	13.2425
37.8932	13.2987
37.8359	13.3004
37.8030	13.3299
37.7421	13.3631
37.6962	13.3955
	e' 38.5410 38.5102 38.4758 38.4196 38.3627 38.3160 38.2940 38.2431 38.2295 38.1650 38.1650 38.1489 38.0961 38.0463 38.0003 37.9536 37.9231 37.8932 37.8932 37.8359 37.8030 37.7421 37.6962

Applicant:	Enfora, L.F	P. FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GS	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)		entora
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.			67 of 100			

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

APPENDIX E - SYSTEM VALIDATION

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GSM GPRS Compact Flash Card (with PCMCIA Adapter)		entora	
2005 Celltech	Labs Inc. This	document is not	to be reproduced in whole or in part without the written permission of Celltech Labs Inc.			97 of 100

835 MHz SYSTEM VALIDATION DIPOLE

Туре:	835 MHz Validation Dipole
Serial Number:	411
Place of Calibration:	Celltech Labs Inc.
Date of Calibration:	March 16, 2004

Celltech Labs Inc. hereby certifies that this device has been calibrated on the date indicated above.

Calibrated by:

Spencer Watton

Approved by:

Jussell W. Pupe

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 835MHz	Re{Z} = 48.654Ω
	lm{Z} = -1.9707Ω

Return Loss at 835MHz

-32.739dB

Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

2. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness:	2.0 ± 0.1 mm
Filling Volume:	Approx. 20 liters
Dimensions:	50 cm (W) x 100 cm (L)

835 MHz System Validation Setup

835 MHz System Validation Setup

3. Measurement Conditions

The SAM phantom was filled with 835 MHz brain simulating tissue.

Relative Permittivity:	42.6
Conductivity:	0.94 mho/m
Ambient Temperature:	24.6 °C
Fluid Temperature:	21.9 °C
Fluid Depth:	\geq 15.0 cm
Barometric Pressure:	101.6 kPa
Humidity:	31%

The 835 MHz simulating tissue consists of the following ingredients:

Ingredient	Percentage by weight	
Water	40.71%	
Sugar	56.63%	
Salt	1.48%	
HEC	0.99%	
Dowicil 75	0.19%	
Target Dielectric Parameters at 22 °C	ε _r = 41.5 σ = 0.90 S/m	

Measurements were taken in the flat section of the SAM phantom using a dosimetric E-field probe ET3DV6 (s/n: 1590, conversion factor 7.0).

4. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	2.46	9.84	1.61	6.44	3.56
Test 2	2.45	9.80	1.60	6.40	3.56
Test 3	2.45	9.80	1.61	6.44	3.56
Test 4	2.44	9.76	1.60	6.40	3.55
Test 5	2.43	9.72	1.60	6.40	3.53
Test 6	2.44	9.76	1.60	6.40	3.53
Test 7	2.44	9.76	1.60	6.40	3.55
Test 8	2.44	9.76	1.60	6.40	3.54
Test 9	2.47	9.88	1.62	6.48	3.58
Test10	2.47	9.88	1.62	6.48	3.62
Average Value	2.45	9.80	1.61	6.42	3.56

Validation Dipole SAR Test Results

The results have been normalized to 1W (forward power) into the dipole.

Averaged over 1cm (1g) of tissue: 9.80 mW/g

Averaged over 10cm (10g) of tissue: 6.42 mW/g

835 MHz System Validation - March 16, 2004

DUT: Dipole 835 MHz; Type: D835V2; Serial: 411 Ambient Temp: 24.6°C; Fluid Temp: 21.9°C; Barometric Pressure: 101.6 kPa; Humidity: 31%

Communication System: CW Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL835 (σ = 0.94 mho/m; ϵ_r = 42.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1590; ConvF(7, 7, 7); Calibrated: 15/05/2003

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn353; Calibrated: 19/12/2003

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033

- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

835 MHz System Validation/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB

835 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.61 mW/g

835 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.61 mW/g

835 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.55 W/kg **SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g**

835 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.55 W/kg SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.54 W/kg SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 11 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

835 MHz System Validation/Zoom Scan 12 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.2 V/m; Power Drift = -0.1 dB Peak SAR (extrapolated) = 3.62 W/kg SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

1 g average of 10 measurements: 2.449 mW/g 10 g average of 10 measurements: 1.606 mW/g

835 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) March 16, 2004

Frequency	e'	e"
735.000000 MHz	43.8577	20.6938
745.000000 MHz	43.6899	20.6481
755.000000 MHz	43.5341	20.5840
765.000000 MHz	43.4161	20.5576
775.000000 MHz	43.3026	20.5312
785.000000 MHz	43.2065	20.5122
795.000000 MHz	43.1067	20.5061
805.000000 MHz	43.0154	20.4762
815.000000 MHz	42.8927	20.4182
825.000000 MHz	42.7420	20.3806
<mark>835.000000 MHz</mark>	<mark>42.6206</mark>	<mark>20.2993</mark>
845.000000 MHz	42.4357	20.2595
855.000000 MHz	42.2984	20.1872
865.000000 MHz	42.1422	20.1432
875.000000 MHz	42.0082	20.1253
885.000000 MHz	41.8996	20.1110
895.000000 MHz	41.8514	20.0192
905.000000 MHz	41.7550	20.0083
915.000000 MHz	41.6535	19.9701
925.000000 MHz	41.5521	19.9380
935.000000 MHz	41.4477	19.9175

1900 MHz SYSTEM VALIDATION DIPOLE

Celltech Labs Inc. hereby certifies that this device has been calibrated on the date indicated above.

Calibrated by:

Spencer Water

Approved by:

Kussell W. Pupe

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 1900MHz	Re{Z} = 50.115Ω
	Im{Z} = 6.2070Ω

Return Loss at 1900MHz

-24.205dB

Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

2. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness:	2.0 ± 0.1 mm		
Filling Volume:	Approx. 20 liters		
Dimensions:	50 cm (W) x 100 cm (L)		

1900 MHz System Validation Setup

1900 MHz System Validation Setup

3. Measurement Conditions

The SAM phantom was filled with 1900 MHz brain simulating tissue.

Relative Permittivity:	38.3
Conductivity:	1.43 mho/m
Ambient Temperature:	24.0 °C
Fluid Temperature:	22.6 °C
Fluid Depth:	\geq 15.0 cm
Barometric Pressure:	103.0 kPa
Humidity:	37%

The 1900 MHz tissue simulant consists of the following ingredients:

Ingredient	Percentage by weight
Water	55.85%
Glycol	44.00%
Salt	0.15%
Target Dielectric Parameters at 22 °C	ε _r = 40.0 σ = 1.40 S/m

4. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 50dB below the forward power.

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	10.1	40.40	5.30	21.20	17.4
Test 2	9.93	39.72	5.21	20.84	17.2
Test 3	9.98	39.92	5.23	20.92	17.3
Test 4	9.99	39.96	5.21	20.84	17.4
Test 5	9.97	39.88	5.22	20.88	17.4
Test 6	9.90	39.60	5.20	20.80	17.1
Test 7	9.93	39.72	5.21	20.84	17.2
Test 8	9.96	39.84	5.20	20.80	17.3
Test 9	9.94	39.76	5.20	20.80	17.2
Test 10	9.96	39.84	5.21	20.84	17.2
Average	9.966	39.864	5.219	20.876	17.27

Validation Dipole SAR Test Results

The results have been normalized to 1W (forward power) into the dipole.

1g/10g Averaged	Average Measured SAR @ 1W Input	IEEE Target SAR @ 1W Input	Deviation (%)
1 gram	39.864	39.7	+ 0.413
10 gram	20.876	20.5	+ 1.835

1900 MHz System Validation - June 18, 2004

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 151 Ambient Temp: 24.0°C; Fluid Temp: 22.6°C; Barometric Pressure: 103.0 kPa; Humidity: 37% Communication System: CW Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL1900 (σ = 1.43 mho/m; ϵ_r = 38.3; ρ = 1000 kg/m³)

- Probe: ET3DV6 - SN1387; ConvF(5.25, 5.25, 5.25); Calibrated: 18/03/2004

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn370; Calibrated: 14/05/2004

- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

1900 MHz System Validation/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 96.9 V/m; Power Drift = 0.1 dB 1900 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.9 V/m; Power Drift = 0.1 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.3 mW/g1900 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dv=5mm, dz=5mm Reference Value = 94.8 V/m; Power Drift = 0.0 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.21 mW/g 1900 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.2 V/m; Power Drift = 0.009 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.98 mW/g; SAR(10 g) = 5.23 mW/g 1900 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.9 V/m; Power Drift = 0.001 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 9.99 mW/g; SAR(10 g) = 5.21 mW/g1900 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.2 V/m; Power Drift = -0.003 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 9.97 mW/g; SAR(10 g) = 5.22 mW/g 1900 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.8 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 9.9 mW/g; SAR(10 g) = 5.2 mW/g1900 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dv=5mm, dz=5mm Reference Value = 94.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.21 mW/g 1900 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.1 V/m; Power Drift = -0.007 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.96 mW/g; SAR(10 g) = 5.2 mW/g 1900 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.7 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.94 mW/g; SAR(10 g) = 5.2 mW/g 1900 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.1 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.96 mW/g; SAR(10 g) = 5.21 mW/g

1 g average of 10 measurements: 9.966 mW/g 10 g average of 10 measurements: 5.219 mW/g

1900 MHz System Validation Measured Fluid Dielectric Parameters (Brain) June 18, 2004

Frequency	e'	e"
1.800000000 GHz	38.7685	13.2945
1.81000000 GHz	38.7232	13.3253
1.820000000 GHz	38.6647	13.3519
1.830000000 GHz	38.6047	13.3737
1.840000000 GHz	38.5593	13.4078
1.850000000 GHz	38.5136	13.4244
1.860000000 GHz	38.4736	13.4289
1.870000000 GHz	38.4328	13.4399
1.880000000 GHz	38.3934	13.4856
1.890000000 GHz	38.3637	13.4872
1.900000000 GHz	<mark>38.3205</mark>	<mark>13.5178</mark>
1.910000000 GHz	38.2981	13.5327
1.920000000 GHz	38.2590	13.5755
1.930000000 GHz	38.2344	13.5976
1.940000000 GHz	38.2172	13.6297
1.950000000 GHz	38.1838	13.6574
1.960000000 GHz	38.1575	13.6807
1.970000000 GHz	38.1070	13.6962
1.980000000 GHz	38.0516	13.7296
1.990000000 GHz	38.0093	13.7634
2.000000000 GHz	37.9485	13.7978

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GS	M GPRS Compact F	Flash Card (with PCMCIA Adapter)	entora
2005 Celltech	Labs Inc. This	document is not	to be reproduced in v	99 of 100		

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0			
Туре No	QD 000 P40 BA			
Series No	TP-1002 and higher			
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland			

Tests

The series production process used allows the limitation to test of first articles.

Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date 18.11.2001 Schmid & Partner Fin Bruholt : lā Signature / Stame Engineering AG Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79

Test Report S/N:	030205MIV-T621-S24G
Test Date(s):	March 04, 07-09, 2005
Test Type:	FCC SAR Evaluation

APPENDIX H - PLANAR PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	Enfora, L.P.	FCC ID:	MIVGSM0110	Freq. Range(s):	824.2 - 848.8 / 1850.2 - 1909.8 MHz	
Model:	GSM0110	DUT Type:	Dual-Band GS	M GPRS Compact F	Flash Card (with PCMCIA Adapter)	entora
2005 Celltech	Labs Inc. This	document is not	to be reproduced in v	be reproduced in whole or in part without the written permission of Celltech Labs Inc.		

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2

Ph. # 250-769-6848 Fax # 250-769-6334 E-mail: <u>barskiind@shaw.ca</u> Web: www.bcfiberglass.com

FIBERGLASS FABRICATORS

Certificate of Conformity

Item : Flat Planar Phantom Unit # 03-01 Date: June 16, 2003 Manufacturer: Barski Industries (1985 Ltd)

Test	Requirement	Details
Shape	Compliance to geometry according to drawing	Supplied CAD drawing
Material Thickness	Compliant with the requirements	2mm +/- 0.2mm in measurement area
Material Parameters	Dielectric parameters for required frequencies Based on Dow Chemical technical data	100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05

Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

Signature:

Daniel Chailler

Fiberglass Planar Phantom - Top View

Fiberglass Planar Phantom - Front View

Fiberglass Planar Phantom - Back View

Fiberglass Planar Phantom - Bottom View

Dimensions of Fiberglass Planar Phantom

(Manufactured by Barski Industries Ltd. - Unit# 03-01)

