

Certification Exhibit

Licensed Radio Transmitter

FCC ID: MIVGSM0108 IC: 4160A-GSM0108

FCC Rule Part: 22, 24E IC Radio Standards Specification: RSS-132, RSS-133

ACS Report Number 07-0274

Manufacturer: Enfora L.P. Model(s): GSM0108

RF Exposure

General Information:

Applicant:	Enfora L.P.
ACS Project:	07-0274
FCC ID:	MIVGSM0108
Device Category:	Mobile
Environment:	General Population/Uncontrolled Exposure
Exposure Conditions:	Greater than 20 centimeters
Simultaneous Tx:	Yes

Technical Information:

Radio	900 MHz LAN FCC ID: SK9AMI-2A IC:864G-AMI2A	2.4GHz Zigbee (Register PCB) FCC ID: SK9AMI-2A IC:864G-AMI2A	2.4GHz Zigbee (Cell Relay PCB) FCC ID: SK9AMI-2A IC:864G-AMI2A	Enfora GPRS Modem Module
Antenna Type	single-band patch	half wavelength slot	single-band slot	dual-band patch
Antenna Gain	3dBi	1dBi 4dBi		GSM850: 0dBi GSM1900: 3dBi
Conducted Power	21.92dBm	18.71dBm	-13.99dBm	GSM850: 32.4dBm GSM1900: 29.8dBm
Maximum EIRP	0.310W	0.094W	0.10mW	GSM850: 1.738W GSM1900: 1.905W
Maximum ERP	0.189W	0.057W	0.06mW	GSM850: 1.059W GSM1900: 1.161W

MPE Calculation:

Calculated Conducted Power (15.249) – Host 2.4GHz Zigbee Radio

For the purpose of determining Power Density for the 2.4GHz Zigbee radio in the host device (FCC ID: SK9AMI-2A, IC:864G-AMI2A), the conducted RF power must first be calculated.

The power was calculated using the following equation:

$$P = \frac{(E * d)^2}{30 * G}$$

Where: G = Numeric Gain of the transmitting antenna with reference to an isotropic radiator

d = The distance in meters from which the field strength was measured

E = The measured maximum fundamental field strength in V/m

Table 1: Maximum Fundamental Field Strength

Frequency (MHz)	Uncorrected Reading (dBµV/m)	Antenna Polarity (H/V)	Total Correction Factor (dB)	Corrected Reading (dBµV/m)
2480	84.71	Н	0.53	85.24

Table 2: Peak Output Power

Frequency	Numeric Gain	Distance	Max. Fund. Field	Output Power
(MHz)		(m)	Strength (V/m)	(dBm)
2480	2.51	3	0.02	-14

Power Density

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

MPE Calculator for Mobile Equipment Limits for General Population/Uncontrolled Exposure*							
Transmit Frequency	Radio Power	Power Density Limit	Radio Power	Antenna Gain	Antenna Gain (mW	Distance	Power Density
(MHz)	(dBm)	(mW/Cm2)	(mW)	(dBi)	eq.)	(cm)	(mW/cm^2)
902.25	21.92	0.60	155.60	3	1.995	20	0.062
2405	18.71	1.00	74.30	1	1.259	20	0.019
2480	-14	1.00	0.04	4	2.512	20	0.000
824	32.4	0.55	1737.80	0	1.000	20	0.346
1850	30	1.00	1000.00	3	1.995	20	0.397

Summation of Power Densities – Simultaneous Transmissions

This application for equipment authorization involves multiple transmitters which can operate simultaneously and therefore the maximum RF exposure is determined by the summation of power densities. The host 900 MHz LAN and host high power Zigbee radio can not operate simultaneously there it is not appropriate to include both of those power density values in the same summation of power densities. For the sake of providing the worst case data, the highest power density from those two transmitters (900 MHz LAN) will be applied for the calculations.

The maximum power density as calculated by a summation of power densities for each simultaneous transmission combination as follows:

GPRS Modem Operating in the 800MHz Cellular Band:

900MHz LAN:	0.062 (mW/cm^2)
2.4GHz Zigbee:	0.000 (mW/cm^2)
GSM 850 (GPRS):	0.346 (mW/cm^2)
TOTAL:	0.408 (mW/cm^2)

 GPRS Modem Operating in the 1900MHz PCS Band:

 900MHz LAN:
 0.062 (mW/cm^2)

 2.4GHz Zigbee:
 0.000 (mW/cm^2)

 GSM 1900 (GPRS):
 0.397 (mW/cm^2)

 TOTAL:
 0.459 (mW/cm^2)

Installation Guidelines:

The installation manual shall contain text similar to the following advising how to install the equipment to maintain compliance with the FCC RF exposure requirements:

"RF Exposure (Intentional Radiators Only)

In accordance with FCC requirements of human exposure to radiofrequency fields, the radiating element shall be installed such that a minimum separation distance of 20cm is maintained from the general population."

Conclusion:

This device complies with the MPE requirements by providing adequate separation between the device, any radiating structure and the general population.