

Enabler ${ }^{\circ}$ IIIE-BGA FCC MPE Calculation

Revision 1.0

Confidential and Proprietary Information - © 2008 Enfora, Inc.
Do not duplicate without express permission from Enfora, Inc.

MPE Calculation for Enfora Enabler ${ }^{\bullet}$ IIIE-BGA - OET Bulletin 65

The FCC requires that the calculated MPE be equal to or less than a given limit dependent on frequency at a distance of 20 cm from a device to the body of a user.

The transmitter operation for the Enabler IIIE-BGA (EDGO408) radio module covers GSM850 and PCS1900 operating bands.

The MPE calculation as given in FCC OET Bulletin 65, page 19 is used to calculate the safe operating distance for the user.

$$
S=E \operatorname{RP} / 4 \pi R^{2}
$$

Where \quad| S $=$ Power density |
| :--- |
| EIRP $=$ Effective Isotropically Radiated Power $($ EIRP $=P \times G)$ |
| $P=$ Conducted Transmitter Power |
| |
| $G=$ Antenna Gain (relative to an isotropic radiator) |
| |
| $R=$ distance to the centre of radiation of the antenna |

Summary Conclusion

The required 20cm RF exposure limits for General Population / Uncontrolled Exposure FCC Rule Part 1.1310 will not be exceeded for the Enabler IIIE-BGA using antennas having a maximum gain of 1.4 dBi (850 MHz) and 7.0 dBi (1900MHz) respectively.

For the Enabler IIIE-BGA @ GSM850

Requirement: From table 1 (b) - Limits for General Population/ Uncontrolled Exposure of FCC Rule Part 1.1310 for GSM850

$$
S=f / 1500 \mathrm{~mW} / \mathrm{cm}^{2}(\mathrm{f}=\text { operating frequency })
$$

Transmitter frequency range $=824 \mathrm{MHz}$ to 849 MHz
Max. Transmitter Power $=33 \mathrm{dBm}(2.0 \mathrm{~W}) @$ antenna socket

$$
\mathrm{S}=824 / 1500=0.55 \mathrm{~mW} / \mathrm{cm}^{2} \text { (worst case) }
$$

Calculation to Determine Maximum Antenna Gain (G)

$$
\begin{aligned}
& \mathrm{S}=0.55 \mathrm{~mW} / \mathrm{cm}^{2} \\
& \mathrm{P}=2000 \mathrm{~mW} \\
& \mathrm{R}=20 \mathrm{~cm} \\
& \mathrm{~S}=\mathrm{PxG} / 4 \pi \mathrm{R}^{2} \\
& \mathrm{G}=\mathrm{S} \times\left(4 \pi \mathrm{R}^{2}\right) / \mathrm{P} \\
& \mathrm{G}=0.55 \times\left(12.56 \times 20^{2}\right) / 2000 \\
& \mathrm{G}=1.38(1.40 \mathrm{dBi})
\end{aligned}
$$

For the Enabler IIIE-BGA @ GSM1900

Requirement: From table 1 (b) - Limits for General Population/ Uncontrolled Exposure of FCC Rule Part 1.1310 for PCS1900

$$
\mathrm{S}=\mathrm{f} / 1500 \mathrm{~mW} / \mathrm{cm}^{2}(\mathrm{f}=\text { operating frequency })
$$

Transmitter frequency range $=1850 \mathrm{MHz}$ to 1910 MHz
Max. Transmitter Power $=30 \mathrm{dBm}(1.0 \mathrm{~W}) @$ antenna socket

$$
\mathrm{S}=1.0 \mathrm{~mW} / \mathrm{cm}^{2} \text { (worst case) }
$$

Calculation to determine maximum Antenns Gain (G)

$$
\begin{aligned}
& S=1.0 \mathrm{~mW} / \mathrm{cm}^{2} \\
& \mathrm{P}=1000 \mathrm{~mW} \\
& \mathrm{R}=20 \mathrm{~cm} \\
& \mathrm{~S}=\mathrm{P} \times \mathrm{G} /\left(4 \pi \mathrm{R}^{2}\right) \\
& \mathrm{G}=\mathrm{S} \times\left(4 \pi \mathrm{R}^{2}\right) / \mathbf{P} \\
& \mathrm{G}=1 \times\left(12.56 \times 20^{2}\right) / 1000 \\
& \mathrm{G}=5.02(7.0 \mathrm{dBi})
\end{aligned}
$$

