

Elliott Laboratories Inc. 684 West Maude Avenue
 Elliott Laboratories Inc.
 684 West Maude Avenue
 408-245-7800 Phone

 www.elliottlabs.com
 Sunnyvale, CA 94086-3518
 408-245-3499 Fax

August 2, 2001

Chief, Equipment Authorization Branch, Authorization and Evaluation Division, Office of Engineering and Technology FEDERAL COMMUNICATIONS COMMISSION P.O. Box 358315 Pittsburgh, PA 15251-5315

Subject: FCC Part 15, Subpart E Specifications, CAWCB500

Gentlemen:

The enclosed documents constitute a formal submittal and application for a Grant of Equipment Authorization pursuant to Subpart E of Part 15 of FCC Rules (CFR 47) regarding intentional radiators. Data within this report demonstrates that the equipment tested complies with the FCC limits for intentional radiators.

Elliott Laboratories, as duly authorized agent prepared this submittal. A copy of the letter of our appointment as agent is enclosed.

If there are any questions or if further information is needed, please contact Elliott Laboratories for assistance.

Sincerely,

Mark Briggs

Mark Briggs Director of Engineering

MB/ pjp Enclosures: Agent Authorization Letter Emissions Test Report with Exhibits

www.elliottlabs.com

Elliott Laboratories Inc. 684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart E Specifications for **Unlicensed National Information Infrastructure Devices** on the CardAccess Model: CAWCB500

FCC ID:	MHI-CAWCB500
GRANTEE:	CardAccess 837 South 500 West, Suite 200 Bountiful, UT 84010
TEST SITE:	Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086
REPORT DATE:	July 26, 2001
FINAL TEST DATE:	July 23, 2001

AUTHORIZED SIGNATORY:

Mark Briggs

Mark Briggs **Director of Engineering**

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS	2
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	4
EMISSION TEST RESULTS	5
CONDUCTED INTERFERENCE VOLTAGE – AC POWER PORTS	5
OUTPUT POWER AND POWER SPECTRAL DENSITY - 15.407 (A)	
PEAK EXCURSION RATIO - 15.407 (A) (6)	
UNDESIRABLE EMISSIONS (SPURIOUS EMISSIONS) - 15.407 (B)	
AUTOMATIC DISCONTINUATION - 15.407 (C)	
ANTENNA REQUIREMENTS	
INTERFERENCE TO CO-CHANNEL MSS OPERATIONS - 15.407(E)	
RADIO FREQUENCY RADIATION EXPOSURE REQUIREMENTS - 15.407(F)	
FREQUENCY STABILITY – 15.407(G)	
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	0
GENERAL	
ENCLOSURE	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT INTERVACE FORTS	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	. 10
MEASUREMENT INSTRUMENTATION	11
RECEIVER SYSTEM	11
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
POWER METER.	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	12
INSTRUMENT CALIBRATION	
TEST PROCEDURES	13
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS CONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
OUTPUT POWER LIMITS, SECTION 15.407 (A)	
SPURIOUS RADIATED EMISSIONS LIMITS, SECTION 15.209	
SPURIOUS EMISSIONS SPECIFICATION LIMITS, SECTION 15.407 (B)	
AC POWER PORT CONDUCTED EMISSIONS LIMITS, SECTION 15.207	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	. 17

TABLE OF CONTENTS (Continued)

SAMPLE CALCULATIONS - RADIATED EMISSIONS	.18
EXHIBIT 1: Test Equipment Calibration Data	
EXHIBIT 2: Test Data Log Sheets	2
EXHIBIT 3: Emissions Test Configuration Photographs	3
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Construction Photographs	5
EXHIBIT 6: Operator's Manual	6
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams	8
EXHIBIT 9: Theory of Operation	9
EXHIBIT 10: SAR Report	10

SCOPE

An electromagnetic emissions test has been performed on the CardAccess model CAWCB500 pursuant to Subpart E of Part 15 of FCC Rules for Unlicensed National Information Infrastructure Devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the CardAccess model CAWCB500 and therefore apply only to the tested sample. The sample was selected and prepared by Quinn Kunz of CardAccess

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart E of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of CardAccess model CAWCB500 complied with the requirements of Subpart E of Part 15 of the FCC Rules for Unlicensed National Information Infrastructure Devices. Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product may result in increased emissions and should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

EMISSION TEST RESULTS

The following emissions tests were performed on the CardAccess model CAWCB500. The actual test results are contained in an exhibit of this report.

CONDUCTED INTERFERENCE VOLTAGE – AC POWER PORTS

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.207.

The following measurement was extracted from the data recorded and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

0.45 - 30 MHz						
Frequency	Level	Power	FCC 15	.209	Detector	Comments
MHz	dBuV	Lead	Limit	Margin	Function	
5.351	37.2	Neutral	48.0	-10.8	QP	

0 4 **7** 0 0 0 **1 1**

OUTPUT POWER AND POWER SPECTRAL DENSITY - 15.407 (a)

The EUT tested complied with the output power limits detailed in FCC Rules Part 15 Section 15.407 (a) (1) for intentional signals generated in the 5.15 - 5.25 GHz band. Given a minimum signal bandwidth of 27 MHz and a maximum antenna gain of 1.45 dBi the maximum permitted output power is 17 dBm (50 mW) and the maximum permitted power spectral density is 4dBm/MHz. The measured output power was 13.6 dBm (22.9 mW) and the measured power spectral density was -3.3dBm/MHz.

The EUT tested complied with the output power limits detailed in FCC Rules Part 15 Section 15.407 (a) (2) for intentional signals generated in the 5.25 - 5.35 GHz band. Given a minimum signal bandwidth of 27 MHz and a maximum antenna gain of 1.45 dBi the maximum permitted output power is 24 dBm (250 mW) and the maximum permitted power spectral density is 11dBm/MHz. The actual power measured was 12.5 dBm (17.8 mW) and the measured power spectral density was -3.4dBm/MHz.

PEAK EXCURSION RATIO - 15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope to the peak transmit power did not exceed the 13dB limit detailed in 15.407 (a) (6). The actual ratio measured was 9.8 dB.

UNDESIRABLE EMISSIONS (SPURIOUS EMISSIONS) - 15.407 (b)

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.407 (b) (1). For spurious emissions falling outside of restricted bands the eirp limit detailed and 15.407 (b) (1) was used. For emissions falling within the restricted bands defined in 15.205 the field strength limit of 15.209 was used.

Spurious emissions were initially measured directly via the antenna port. For signals close to the band edges of allocated UNII bands which fell into restricted bands the field strength was calculated by measuring the band edge signal levels relative to the fundamental signal level and then applying a correction factor to the measured peak and average values for the fundamental signal.

The following measurement was extracted from the data recorded and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

Frequency	Level	Pol	FCC S	ubpart E	Detector	Azimuth	Height	Comments
MHz	dBuV/m	v/h	Limit	Margin		degrees	meters	Comments
10480.0	65.2	v	68.3	-3.1	Note 3	241	1.4	Not in restricted band

Radiated Emissions 1 – 40 GHz

Spurious emissions in the 30MHz to 1GHz were measured while testing the digital device radiated emissions against the FCC Class B limits. The Digital device has been approved using the FCC's declaration of conformity procedure. The following measurement was extracted from the data recorded and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

Frequency	Level	Pol	FCC	Class B	Detector	Azimuth	Height	Comments
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments
959.995	41.9	v	46.0	-4.1	QP	50	4.7	Signal Sub

Radiated Emissions 30 - 1000 MHz

AUTOMATIC DISCONTINUATION - 15.407 (c)

Refer to the Theory of Operations for details as to how the device meets the requirements of 15.407(c) regarding automatically discontinuing transmission in case of either absence of information to transmit or operational failure.

ANTENNA REQUIREMENTS

As the device is intended to operate in the 15.15 - 15.35 GHz band an integral antenna as detailed in 15.407 (d) is required. The antenna for the device is an integral antenna that the end user cannot access. Further, the device is restricted to indoor-use only as detailed in the User's Manual and Theory of Operations, which are included with this application.

INTERFERENCE TO CO-CHANNEL MSS OPERATIONS - 15.407(e)

As the device is intended to operate in the 15.15 - 15.25 GHz band the requirements of 15.407(e) do not apply.

RADIO FREQUENCY RADIATION EXPOSURE REQUIREMENTS - 15.407(f)

Compliance with the rf exposure requirements have been demonstrated via an SAR evaluation. The SAR evaluation report has been included with this application.

FREQUENCY STABILITY – 15.407(g)

The Theory of Operations details the frequency stability and how it ensures that the intentional signals are maintained within the band of operation under all conditions of normal operation as specified in the users manual.

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)	
Conducted Emissions	0.15 to 30	± 2.4	
Radiated Emissions	30 to 1000	± 3.2	

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The CardAccess model CAWCB500 is a PC Card bus standard UNII Radio designed to operate from 5.18 GHz to 5.32 GHz. The system is intended for indoor use only. Normally, the EUT would be placed in a laptop PC during normal use. The EUT was, therefore, placed in a laptop PC and treated as table-top equipment during testing to simulate the end user environment.

The sample was received and tested on July 23, 2001. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Card Access	CAWCB500	PCMCIA Card	N/A	MHI-CAWCB500

ENCLOSURE

The EUT enclosure is primarily constructed of fabricated sheet steel. It measures approximately 7 cm wide by .5 cm deep by 10 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Dell	PP01L Laptop PC		TW-0791UH-12800-	DoC
Dell	TIOIL	Laptop I C	OB4-3546	DOC
Hewlett Packard	2225C ThinkJet	Parallel Printer	2636\$40326	DS16XU2225C
USRobotics		Palm Computing Platform	604719G68390	MQ90001

The PDA and printer were only used during the digital device emissions tests. To reduce absorption of the intentional signal form the system these were removed for measurements of the intentional signal and spurious signals above 1GHz.

EUT INTERFACE PORTS

			Cable(s)	
Port	Connected To	Description	Shielded or Unshielded	Length (m)
Laptop Serial	Palm Pilot	Serial	Shielded	2.0
Laptop Parallel	Printer	Parallel	Shielded	3.0

The I/O cabling configuration during emissions testing was as follows:

EUT OPERATION

During digital device emissions tests the EUT was transmitting at full power on the center channel (channel 12, 5240 MHz). The laptop was displaying a scrolling H pattern on its video screen and sending data to the printer.

During the spurious emissions measurements the EUT was transmitting at its highest output power on channel 6, 12 or 20 as detailed in the test data.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on July 23, 2001 at the Elliott Laboratories Open Area Test Site #4 and #1 located at 684 West Maude Avenue, Sunnyvale, California. The test sites contain separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and thermister mount are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table-mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth results in the highest emission maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \text{ microvolts per meter}$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

OUTPUT POWER LIMITS, SECTION 15.407 (a)

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

SPURIOUS RADIATED EMISSIONS LIMITS, SECTION 15.209

The table below shows the limits for unwanted (spurious) emissions falling in the restricted bands detailed in Part 15.205.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

SPURIOUS EMISSIONS SPECIFICATION LIMITS, SECTION 15.407 (b)

The table below shows the limits for unwanted (spurious) emissions outside of the allocated bands that do not fall in the restricted bands of 15.205.

Operating Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength At 3m (dBuV/m)
5150 - 5250	-27 dBm	68.3 dBuV/m
5250 - 5350	-27 dBm	68.3 dBuV/m
5725 - 5825	-27 dBm (note 1) -17 dBm (note 2)	68.3 dBuV/m 78.3 dBuV/m

Note 1: Applies to spurious signals separated by more than 10 MHz from the allocated band. Note 2: Applies to spurious signals within 10 MHz of the allocated band.

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

AC POWER PORT CONDUCTED EMISSIONS LIMITS, SECTION 15.207

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

- C = Corrected Reading in dBuV
- S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

<u>Manufacturer</u> Hewlett Packard	Description Microwave EMI test system (SA40, 30Hz - 40GHz)	<u>Model #</u> 84125C	<u>Assett #</u> 1149	Cal interval 12	Last Calibrated 2/5/2001	<u>Cal Due</u> 2/5/2002
Conducted and Ded	ated Emissions, 24-Jul-01 01:26 AM					
Engineer: Vishal	lated Emissions, 24-Jul-01 01:26 Aw					
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	773	12	2/15/2001	2/15/2002
Elliott Laboratories	FCC / CISPR LISN	LISN-3, OATS	304	12	6/12/2000	6/12/2001
Elliott Laboratories	Log Periodic Antenna 300-1000 MHz	EL300.1000	297	12	1/2/2001	1/2/2002
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372	12	6/13/2000	6/13/2001
Rohde &Schwarz	Test Receiver, 20-1300MHz	ESVP	213	12	11/10/2000	11/10/2007
Solar Electronics Co	LISN	8028-50-TS-24-BNC	904	12	5/18/2001	5/18/2002
Radiated Emissions	, 1 - 40 GHz, 25-Jul-01 08:28 AM					
Engineer: jmartinez						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz)	84125C	1149	12	2/5/2001	2/5/2002
Hewlett Packard	Preamplifier, 1-26.5 GHz	8449B	TY,84299	12	4/1/2001	4/1/2002
Hewlett Packard	Spectrum Analyzer, 9KHz - 22GHz	8593EM	1319	12	5/31/2001	5/31/2002
Emco	Horn Antenna, D. Ridge 1-18 GHz	3115	1242	12	9/28/2000	9/28/2001

Radio conducted antenna measurements, 23-Jul-01 05:28 PM

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T44187 34 Pages

Elli	ott

EMC Test Data

Client:	CardAccess	Job Number:	J44185
Model:	CAWCB500	T-Log Number:	T44187
		Proj Eng:	Mark Briggs
Contact:	Quinn		
Emissions Spec:	FCC Part 15 Subparts B and E	Class:	В
Immunity Spec:	N/A	Environment:	-

EMC Test Data

For The

CardAccess

Model

CAWCB500

E EI	10	t					EM	C Test Data
		CardAccess					Job Number:	
	Model:	CAWCB500				_	T-Log Number:	
	Contact:	Ouinn					Proj Eng:	Mark Briggs
		FCC Part 15 Sub	oparts B a	nd E			Class:	В
	ty Spec:		•				Environment:	-
			EU	T INI	FORMA	TIC	ON	
intended for in	door use	only. Normally,	II Radio w the EUT v ble-top equ	/hich is o vould be uipment	e placed in a during testin	operat laptoj ng to s	imulate the end user env	The EUT was, therefore,
Manufactu	rer	Model			ent Under Description	Tes	Serial Number	FCC ID
Card Access		CAWCB50	00		Bus UNII Rad	lio	N/A	MHI-CAWCB500
The EUT enclo 10 cm high.	osure is p	primarily construct		ricated s	Enclosur cheet steel.	lt mea	asures approximately 7 cr	n wide by .5 cm deep by
Mod. #		Test	Dat			<u>j</u>	Modification	
1								

Client:	t CardAccess		Job Number:	J44185
Model:	CAWCB500		T-Log Number:	T44187
			Proj Eng:	Mark Briggs
Contact:	Quinn FCC Part 15 Subparts B	and E	Class:	В
Immunity Spec:			Environment:	D
		st Configuratio		
Manufacturer	Lo	Description	nent Serial Number	FCC ID
Dell	PP01L	Laptop PC	TW-0791UH-12800-OB4- 3546	DoC
Hewlett Packard	2225C ThinkJet	Parallel Printer -ac	2636S40326	DS16XU2225C
USRobotics	Pilot 5000	Palm Computing Platform	604719G68390	MQ90001
Manufacturer None	and for conducted emissed emiss Model	mote Support Equip	ment Serial Number	FCC ID
Manufacturer	Re	mote Support Equip		FCC ID
Manufacturer	Re	mote Support Equip	Serial Number	FCC ID
Manufacturer None	Re	mote Support Equip Description Interface Ports	Serial Number Cable(s)	
Manufacturer	Model	mote Support Equip	Serial Number	
Manufacturer None Port	Rel Model Connected To	mote Support Equip Description Interface Ports Description	Cable(s) Shielded or Unshield	led Length(m

E	Ellio	ott			EM	IC Tes	t Data
Client:	CardAcce	ess		J	ob Number:	J44185	
Model:	CAWCB5	00		T-L	og Number:	T44187	
					Proj Eng:	Mark Briggs	
Contact:	Quinn						
Spec:	FCC Part	15 Subparts B and E			Class:	В	
Test Spe	ocifics	FCC Part	t 15 Subpart E	E Tests	i		
•		The objective of this test session specification listed above.	n is to perform final quali	fication test	ing of the E	UT with respe	ect to the
Test	Engineer:	7/23/2001 & 7/24/2001 Mark Briggs & Jmartinez Chamber #2 & SVOATS# 4	Config. Used: Config Change: Host Unit Voltage	Printer and		nnected	
The EUT	was locat	nfiguration red on the turntable for radiated s					
When me spectrum	easuring th n analyzer	ions testing the measurement ar ne conducted emissions from the or power meter via a suitable att corrected to allow for the extern	EUT's antenna port, the enuator to prevent overl	e antenna p oading the r	ort of the El	JT was conne	ected to the
Ambient	Conditi	ons: Temperature:	17°C				
	e en anti-	Rel. Humidity:					
Summar	y of Res						
Rur	า #	Test Performed	Limit	Result		ments	
1		Output Power	15.407(a) (1), (2)	Pass	permitted of	ow maximum output power	
2		Power Spectral Density (PSD)	15.407(a) (1), (2)	Pass		pelow the n permitted	
3		26dB Bandwidth	15.407	Pass			
4	ļ	Peak Excursion Envelope	15.407(a) (6)	Pass		ow maximum excursion of	

15.407(b)

15.407(b)(6)

Pass

Pass

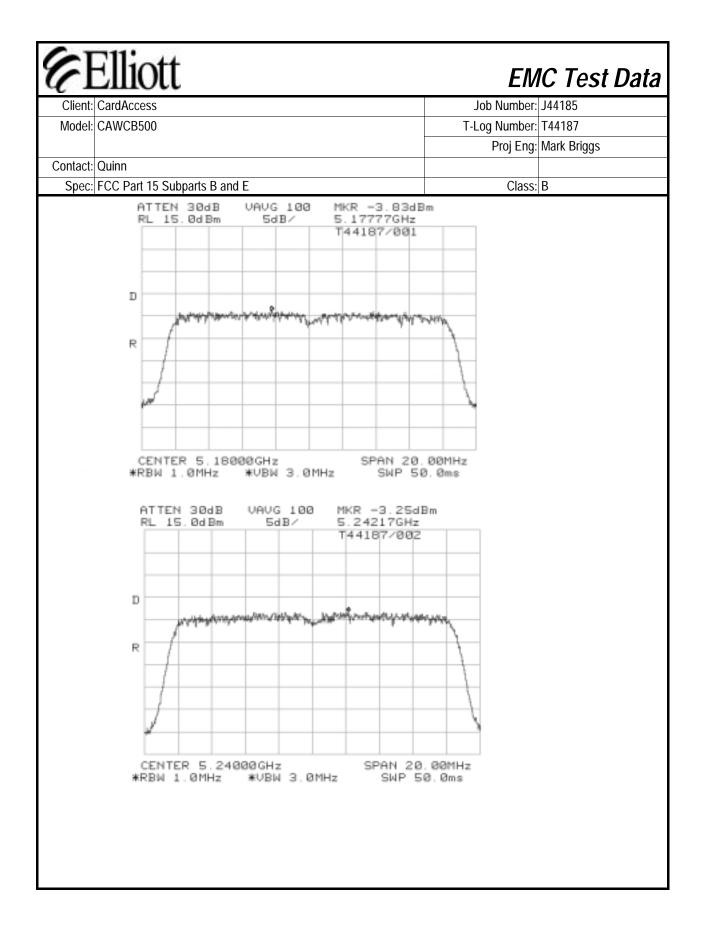
Antenna Conducted - Out of

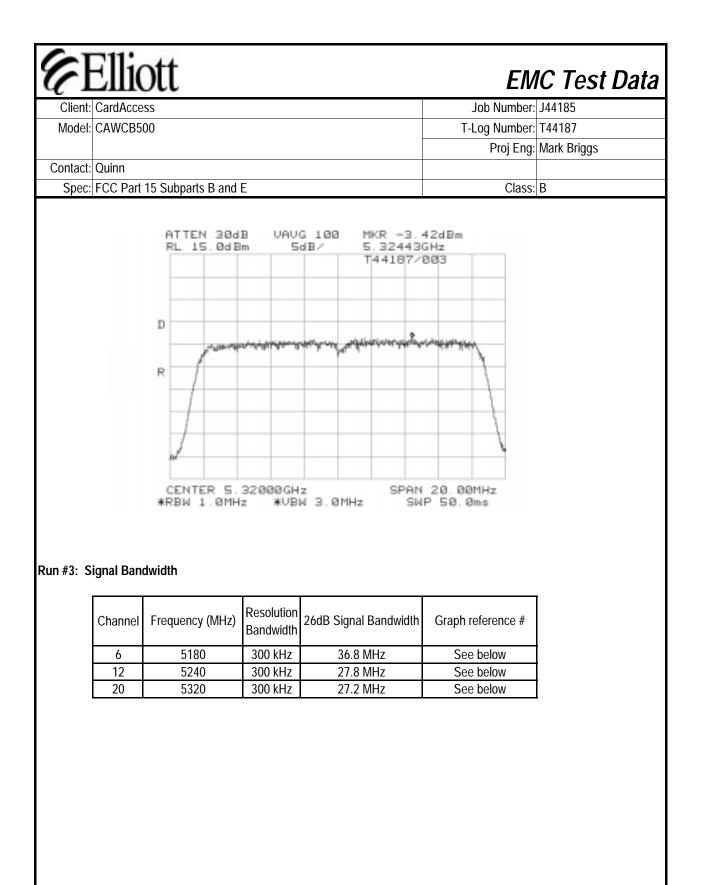
Band Spurious RE, 1000 - 40000 MHz -

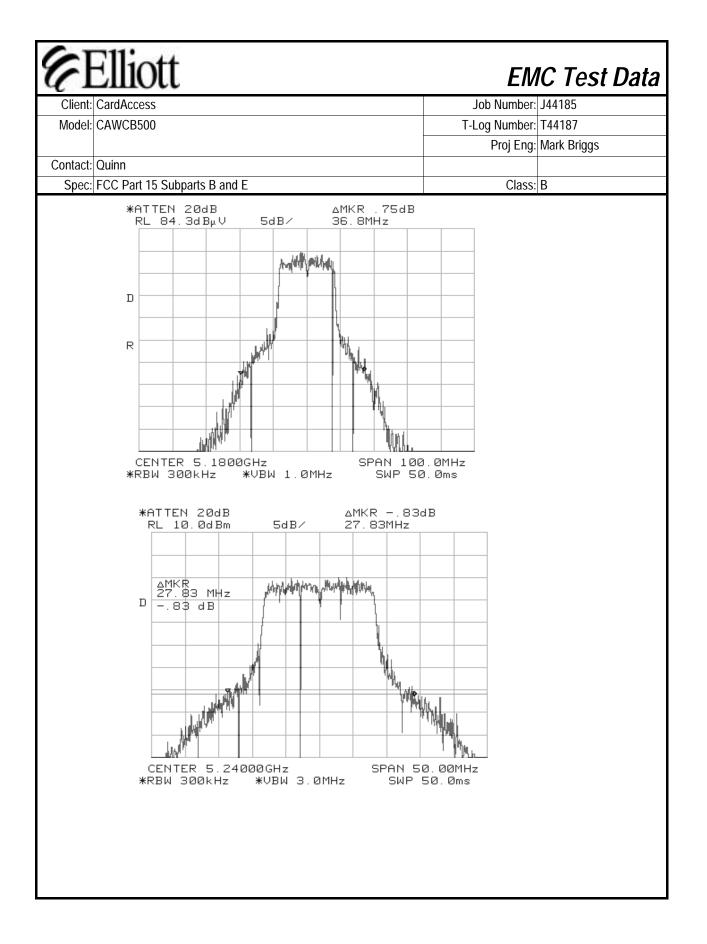
Spurious Emissions

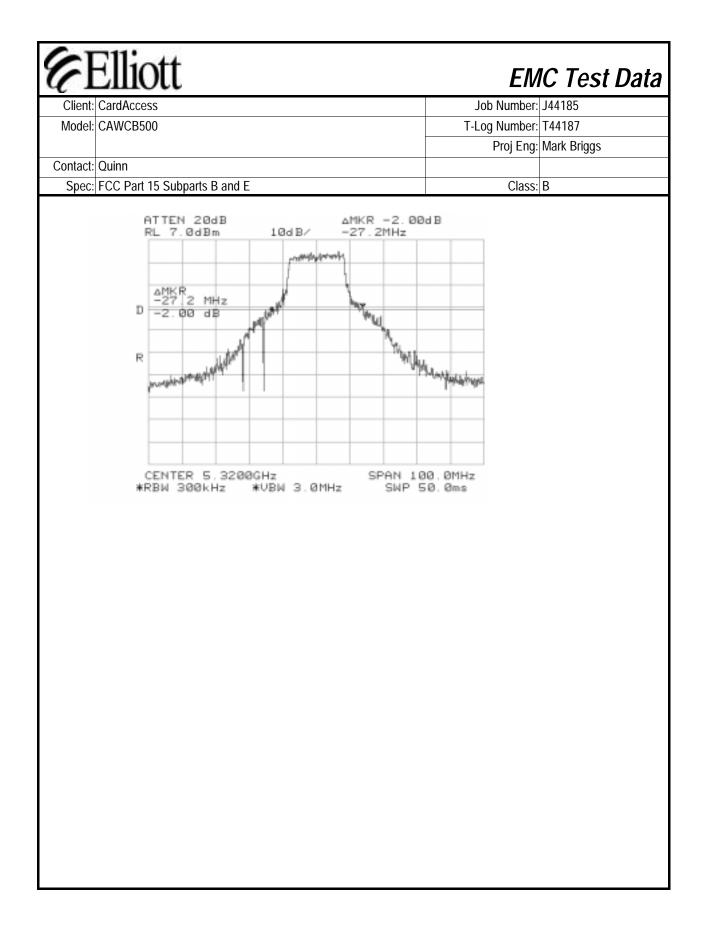
5

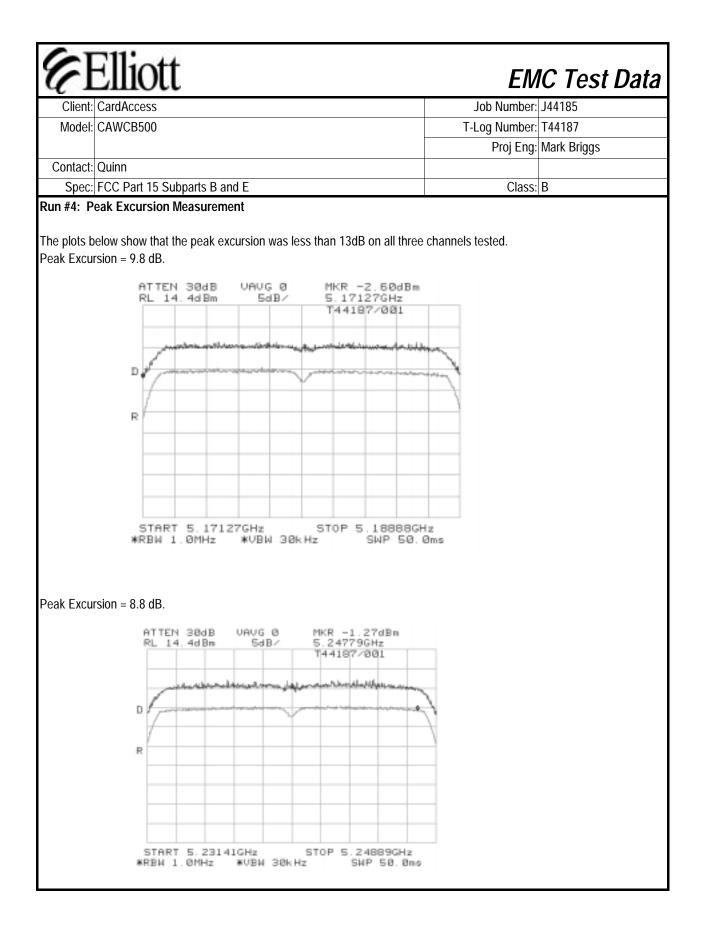
6

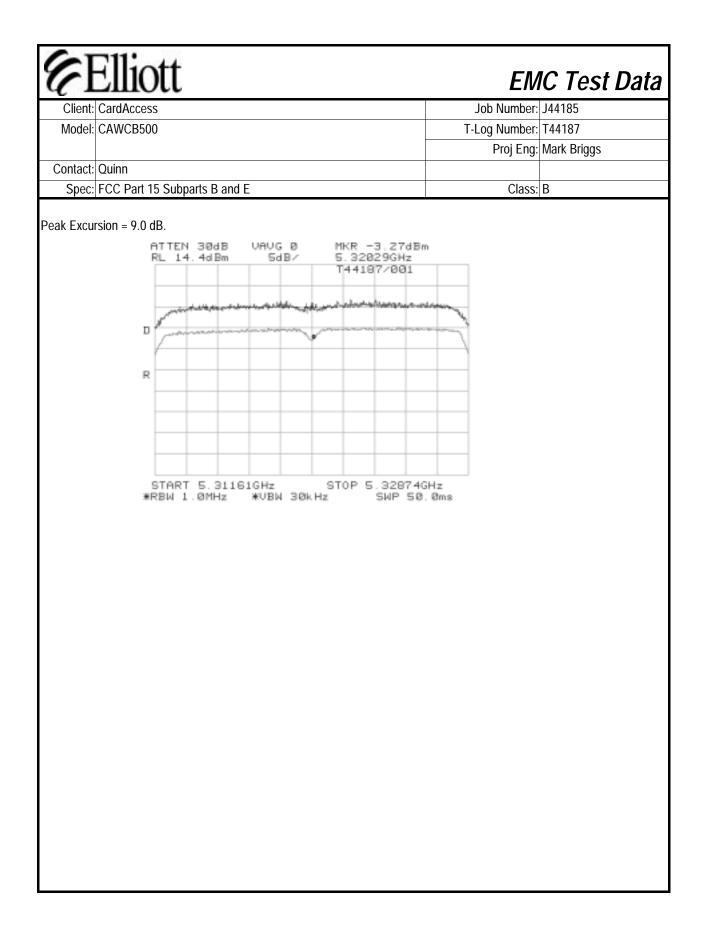

13dB.


-


-

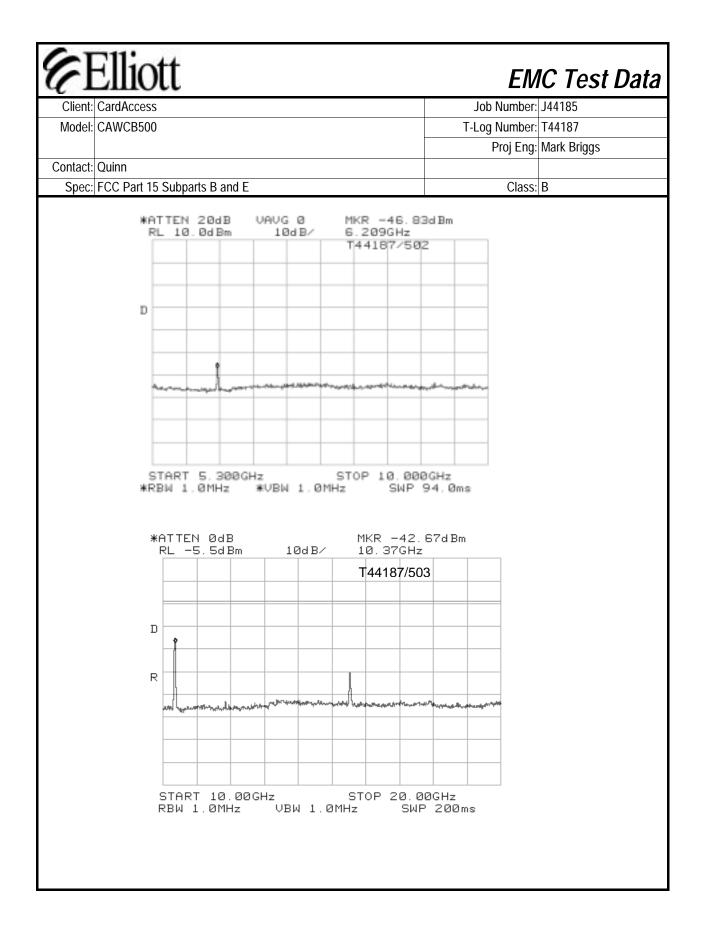

E	Ellio	ott					EN	IC Tes	t Data
	CardAcce					J	Job Number:	J44185	
Model:	CAWCB5	00				T-L	og Number:	T44187	
							÷	Mark Briggs	
Contact:	Quinn					+			
Spec:	FCC Part	15 Subparts B and E	E				Class:	В	
No modif	fications w	ade During Testi Pere made to the EUT The Standard	-	ng					
Run #1: 0	output Pov	e made from the requ ver integral antenna with Maximum Ant	n a gain of ap	proximtaley	/ 1.45 dBi.				
	Channel	Frequency (MHz)	99.7% Signal BW	Output	t Power		(dBm) (note 2)	Com	nments
	Low	5180	36.8 MHz	13	3.0	1	7.0	Note 2	
	Low	5180	36.8 MHz		3.6		7.0	Note 1	
	Center	5240	27.8 MHz	12	2.5	1	7.0	Note 2	
	Center	5240	27.8 MHz	11	1.3	1	7.0	Note 1	
	High	5320	27.2 MHz	12	2.5	2	4.0	Note 2	
	High	5320	27.2 MHz	11	1.2	2	4.0	Note 1	
Note 1: Note 2:	Measured	d using spectrum ana d using a Boonton Po	ower Meter w	vith an avera	age (thermal	l/diode) sen	sor	: 30kHz)	
Note 2:	RSS 210	limit is 23dBm in the	5.15 to 5.25	GHz bana,	6dB higner	than the FC	C limit.		
Run #2: P	ower Spe	ctral Density							
	Channel		Power S Density (dE		FCC Lim	nit (dBm)	Graph F	Reference	
	Low	5180	-3.8		4.	.0	T44187/00	1	See note
	Center	5240	-3.3	3	4.	.0	T44187/00	2	See note
	High	5320	-3.4	4	11	.0	T44187/00	3	See note
Note: The	above me	asurements were ma	ade using RB	SW = 1MHz,	, VBW = 3MI	Hz, video av	veraging on.	To demons	tarte

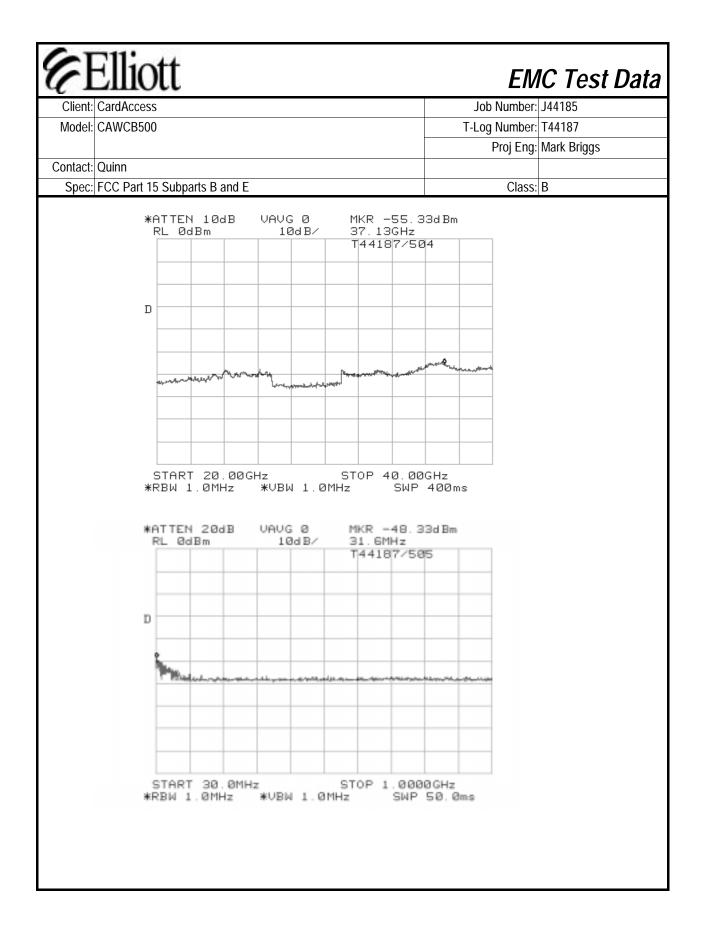

Note: The above measurements were made using RBW = 1MHz, VBW = 3MHz, video averaging on. To demonstarte compliance with RSS 210, the peak PSD was also measured using RBW= VBW=1MHz, video averaging off during the peak excursion measurements (run #4). The peak PSD of 6.7dBm did not exceed the maximum permitted average PSD of 10dBm (5.15 to 5.25 GHz band) or 11dBm (5.25-5.35GHz band) so no restriction is placed on the output power or average PSD with respect to RSS 210.

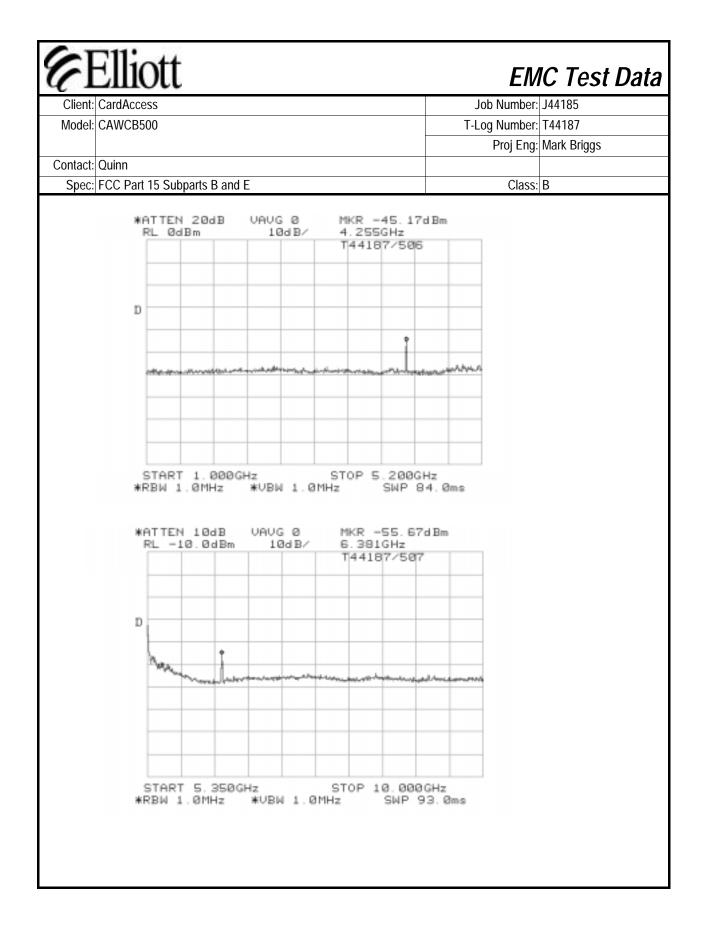


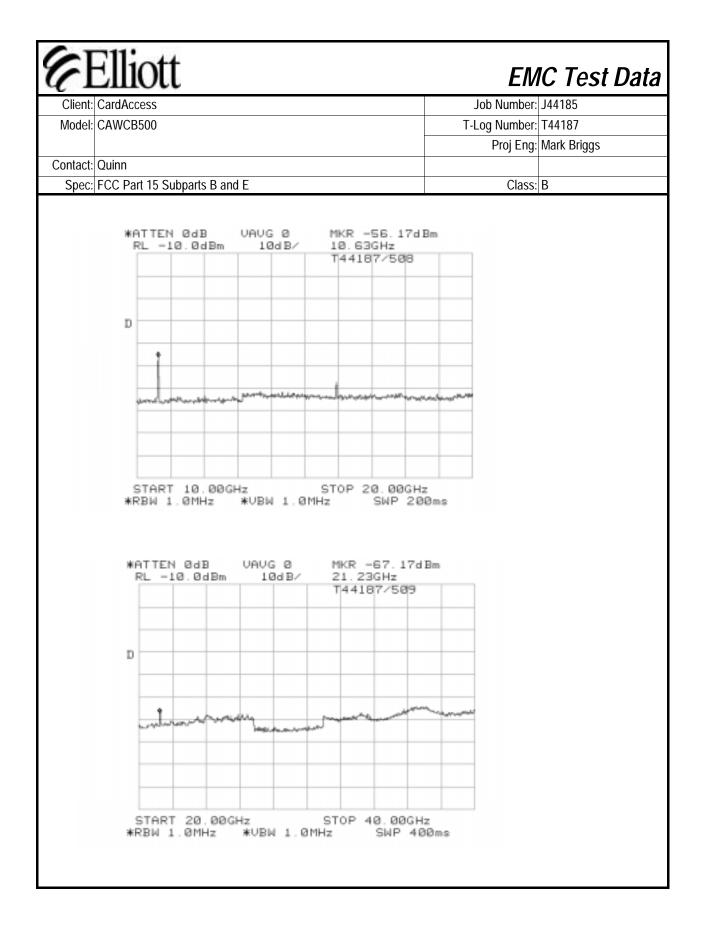
6	Elliott	El	MC Test Data
Client:	CardAccess	Job Numbe	r: J44185
Model:	CAWCB500	T-Log Numbe	r: T44187
		Proj En	g: Mark Briggs
Contact:	Quinn		

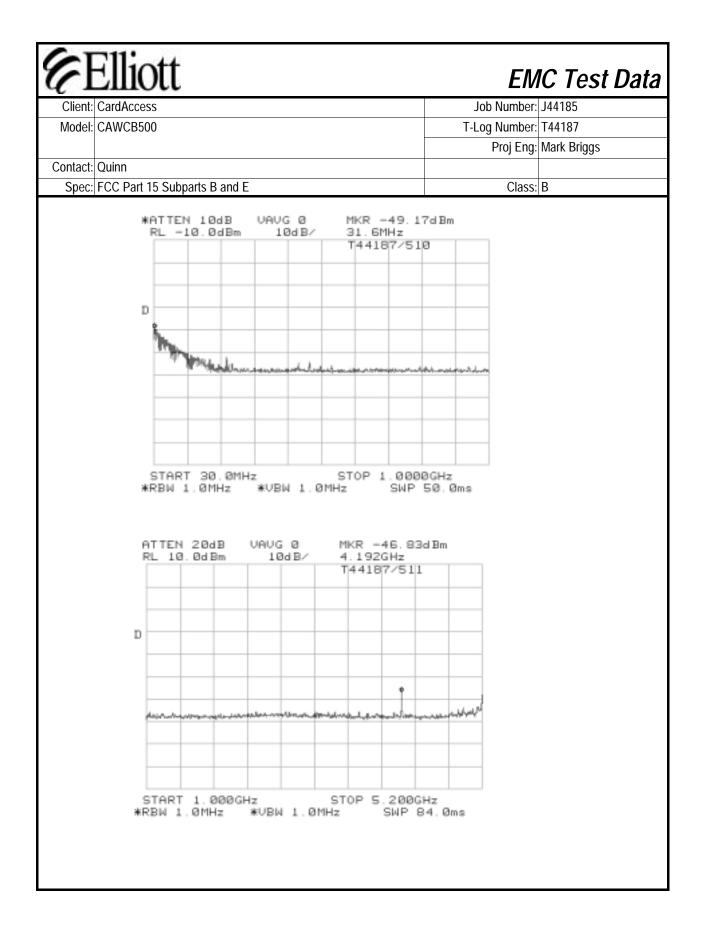
Spec: FCC Part 15 Subparts B and E

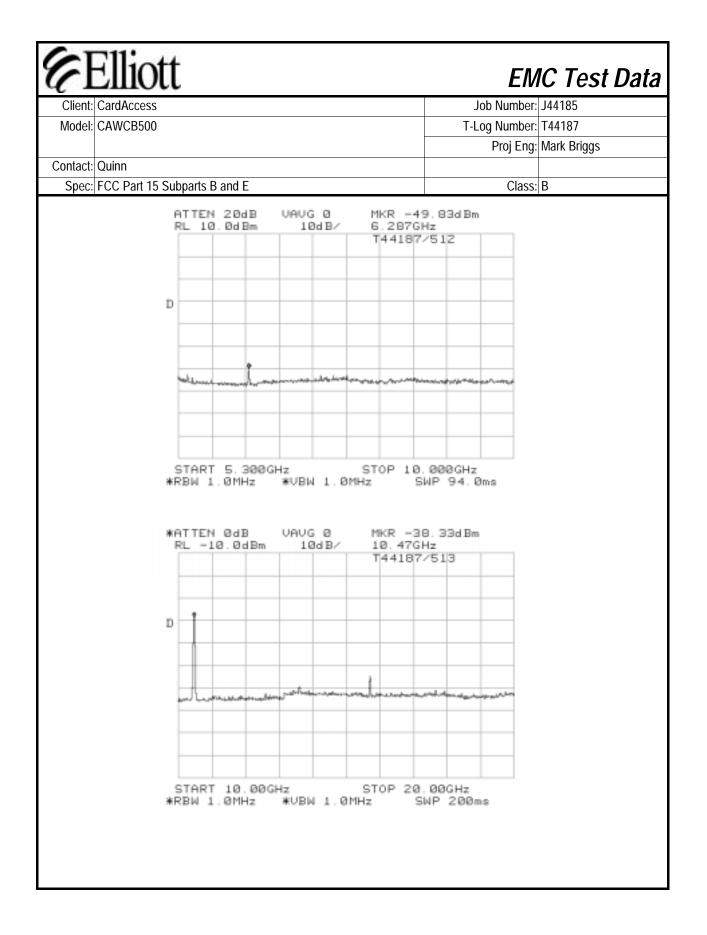

Run #5: Out Of Band Spurious Emissions - Antenna Conducted

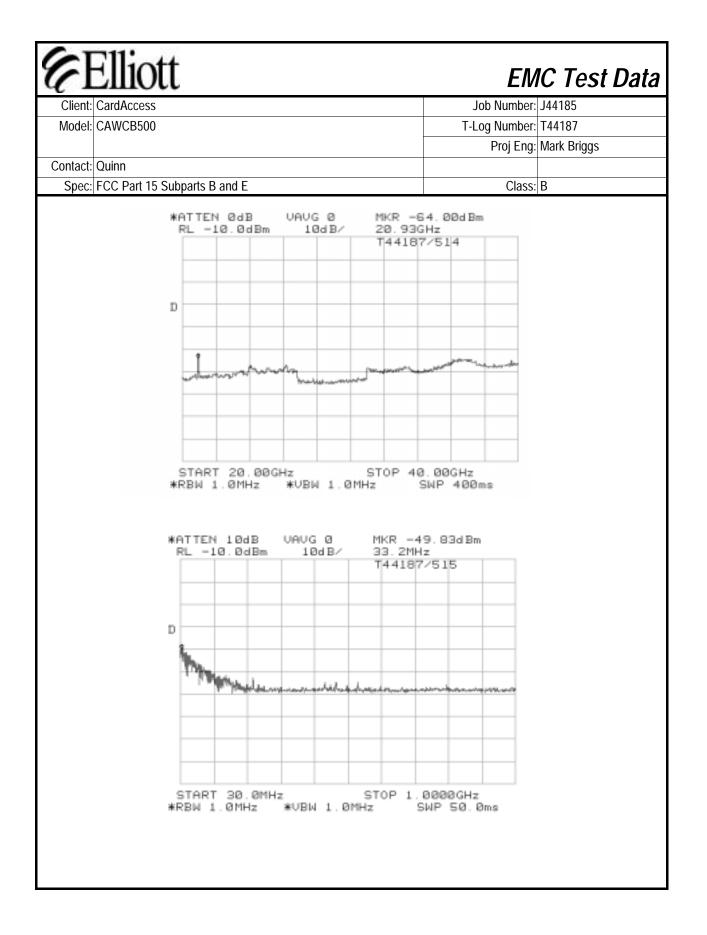

The antenna gain of the radios integral antenna is 1.45dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -28.5 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 1.45 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.

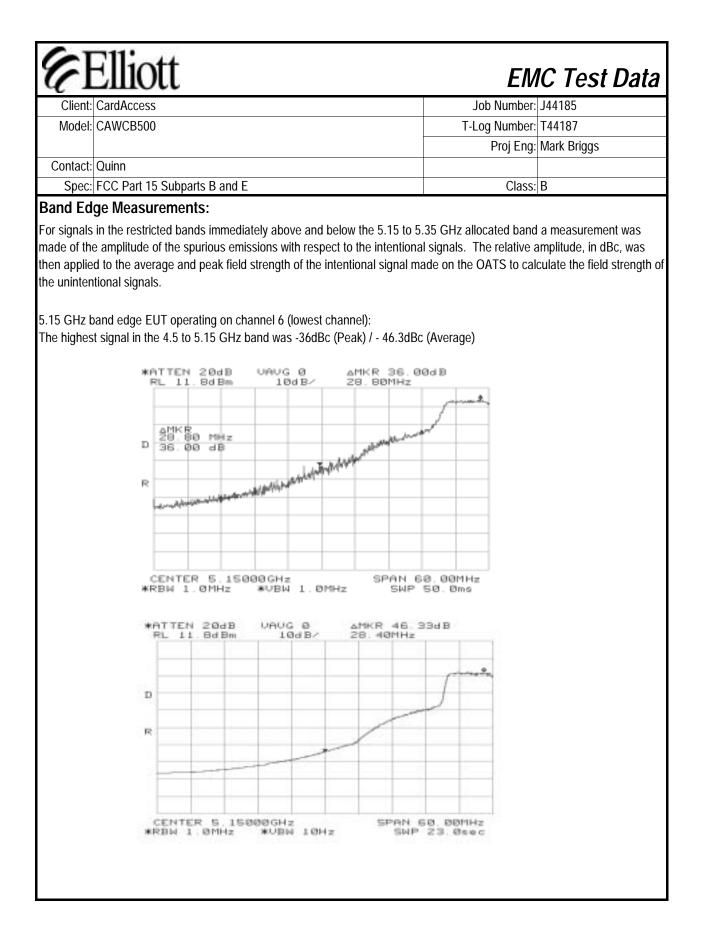

Class: B

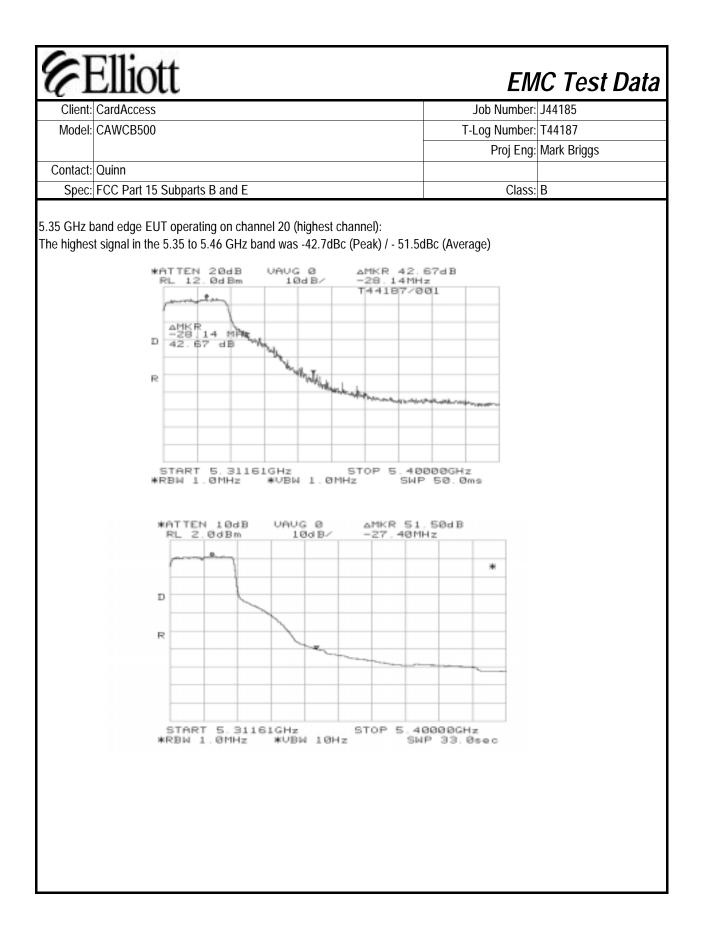

Channel	Frequency (MHz)	Frequency Range	Highest Spurious Signal	Graph reference #
		1 to 5.2 GHz	-51.5dBm @ 4143 MHz (Note 1)	T44187/501
		5.3 to 10 GHz	-46.8dBm @ 6216 MHz (Note 2)	T44187/502
6	5180	10 GHz to 20 GHz	-42 dBm @ 10.36 GHz (Note 3)	T44187/503
		20 GHz to 40 GHz	No significant signals observed	T44187/504
		30 MHz to 1 GHz	Note 4	T44187/505
	1 to 5.2 GHz	-45.2 dBm @ 4255 MHz (Note 1)	T44187/506	
	5320	5.3 to 10 GHz	-55.7 dBm @ 6381 MHz (Note 2)	T44187/507
20		10 GHz to 20 GHz	-56.2dBm @ 10.6GHz; - 66dBm @15.9GHz (Note 2)	T44187/508
		20 GHz to 40 GHz	-67.2dBm @ 21.2GHz (Note 2)	T44187/509
		30 MHz to 1 GHz	Note 4	T44187/510
		1 to 5.2 GHz	-46.8 dBm @ 4.19GHz (Note 1)	T44187/511
		5.3 to 10 GHz	-49.8dBm @ 6.29GHz (Note 2)	T44187/512
12 5240	10 GHz to 20 GHz	-38.3dBm @ 10.5GHz (Note 2); -65dBm @15.7GHz (Note 1)	T44187/513	
		20 GHz to 40 GHz	-66.8dBm @ 20.9GHz (Note 1)	T44187/514
		30 MHz to 1 GHz	Note 4	T44187/515


E l	Elliott	EMC Test Data
	CardAccess	Job Number: J44185
Model:	CAWCB500	T-Log Number: T44187
		Proj Eng: Mark Briggs
Contact:		
-	FCC Part 15 Subparts B and E	Class: B
Note 1:	Signal is in a restricted band. Refer to run #6 for field strength me	
Note 2:	Signal is not in restricted band. Limit is -27dBm eirp. As the signa field strength measurements required.	I strength is significantly lower than -27dBm no
Note 3:	Signal is not in restricted band. Limit is -27dBm eirp (approx 68dB	uV/m). Refer to run #5 for field strength
Note 4:	measurement.	atad amissions tast
Note 4: Signals in this frequency band measured during digital device radiated emissions test.		
	*ATTEN 20dB VAUG 0 MKR -51.50d) RL 10.0dBm 10dB/ 4.143GHz	Bm
	T44187/501	
		*
		*
	p	
		-
	hadadharan an ann an ann ann ann ann ann ann a	Pangle Reserve
START 1.000GHz STOP 5.200GHz *RBW 1.0MHz *VBW 1.0MHz SWP 84.0ms		
#RBW 1.0002 #VBW 1.0002 SWF 64.0005		

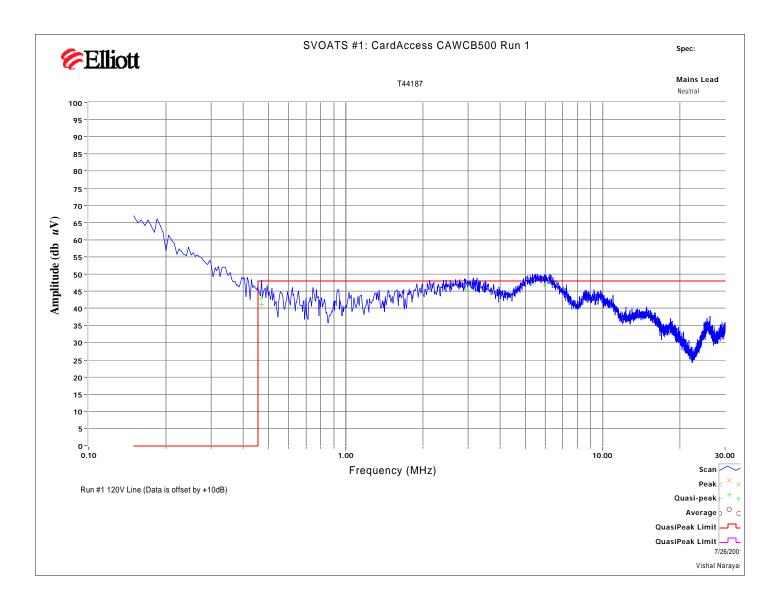


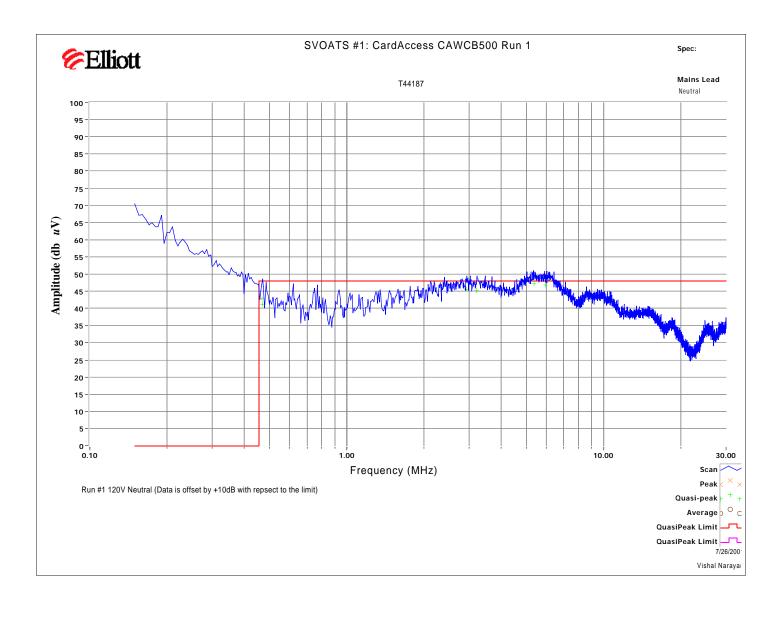






	Ellic							ob Number:	C Test Data
wodel:	CAWCB50	00				-	I-L(og Number:	
								Proj Eng:	Mark Briggs
Contact:									
			oarts B and					Class:	В
			Emissions						
			1000 MHz v C Class B lii		ired while pe	rforming emis	sions meas	surements o	f the digital device. Th
11115510115		Ine FC		IIII.					
	l imit fo	r emissi	ons in restri	ted bands:	54dBuV/n	n (Average)	74dBuV/	m (Peak)	
Limit			ide of restric			7dBm/MHz	. 142417	in (i ouily	
undamer	tal signal	measur	ements (to	calculate t	he band ed	ge field stren	igths):	-	
requency		Pol		/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5180.0		V	-	-	Pk	208		$RBW = VB^{\prime}$	
5180.0		V	-	-	Avg	208			Hz, VBW = 10Hz
5180.0		h	-	-	Pk	143		RBW = VBV	
5180.0	90.0	h	-	-	Avg	143			Hz, VBW = 10Hz
5320.0		V	-	-	Pk	224 224		RBW = VB'	
5320.0 5320.0		v h	-	-	Avg Pk	168		RBW = IW RBW = VB	Hz, VBW = 10Hz
5320.0		 h	-	-	Avg	168			Hz, VBW = 10Hz
5520.0	07.5	11	I -	_	Avy	100	1.0		
Band Edge	e Field Stre	e nath C	alculations	:measuren	nents (to ca	Iculate the ba	and edae fi	ield strenat	hs):
requency		Pol	1	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5150.0	70.4	V	74.0	-3.6	Pk	208	2.0	Note 1	
5150.0	50.0	V	54.0	-4.0	Avg	208	2.0	Note 1	
5150.0	64.9	h	74.0	-9.1	Pk	143	1.7	Note 1	
5150.0	43.7	h	54.0	-10.3	Avg	143	1.7	Note 1	
5350.0		V	74.0	-10.9	Pk	224		Note 2	
5350.0		V	54.0	-11.2	Avg	224		Note 2	
5350.0		h	74.0	-16.3	Pk	168		Note 2	
5350.0	38.0	h	54.0	-16.1	Avg	168	1.6	Note 2	
					N				
									easurements in run #5
lote 1:				tor average	e) applied to	the highest pe	eak and ave	erage tield s	trength measurements
			ignal level.	<u></u>	N				
	-	-		-	-		-		measurements in run
lote 2:	(-42.7dBc	tor peak	< and -51.5d	IBc for aver	age) applied	to the highes	st peak and	average fie	ld strength measureme


Client:	CardAcces	SS					J	ob Number:	J44185
Model:	CAWCB50)0					T-Lo	og Number:	T44187
						-		U	Mark Briggs
Contact:	Quinn							, ,	
Spec:	FCC Part	15 Subp	arts B and I	E				Class:	В
			EUT On Ch		.18 GHz)				
Frequency		Pol		/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
15540.0	50.0	V	54.0	-4.0	Avg	186	1.5	Note 2, Ana	alyzer Noise floor
15540.0	49.8	h	54.0	-4.2	Avg	185			alyzer Noise floor
10360.0	64.0	V	68.3	-4.3	Note 3	156	1.4	Not in restr	icted band
4144.0	42.7	V	54.0	-11.3	Avg	142	1.5	Note 2	
15540.0	62.6	h	74.0	-11.4	Pk	185	1.6	Note 2, Ana	alyzer Noise floor
15540.0	62.2	V	74.0	-11.8	Pk	186			alyzer Noise floor
10360.0	55.9	h	68.3	-12.4	Note 3	185	1.3	Not in restr	icted band
4144.0	40.5	h	54.0	-13.5	Avg	162	1.6	Note 2	
4144.0	50.2	V	74.0	-23.8	Pk	142	1.5	Note 2	
4144.0	49.3	h	74.0	-24.7	Pk	162	1.6	Note 2	
Frequency MHz 10480.0	Level dBµV/m	Pol v/h	EUT On Ch 15.209 Limit 68.3	/ 15.407 Margin	Detector Pk/QP/Avg Note 3	Azimuth degrees 241	Height meters	Comments Not in restr	icted band
10480.0		V	68.3 68.3	-3.1 -3.5	Note 3	241		Not in restr	
15720.0	49.6	h h	54.0	-3.5	Avg	209		Note 2	
15720.0	49.0	V	54.0	-4.4	Avg	247		Note 2	
20960.0	45.6	V	54.0	-4.7	Avg	190		Note 2	
4192.0	43.5	V	54.0	-10.5	Avg	170		Note 2	
4192.0	43.1	h	54.0	-10.9	Avg	227		Note 2	
20960.0	42.7	h	54.0	-11.3	Avg	259		Note 2	
15720.0		v	74.0	-12.1	Pk	207		Note 2	
15720.0		h	74.0	-12.5	Pk	200		Note 2	
20960.0		v	74.0	-14.3	Pk	190		Note 2	
20960.0	56.0	h	74.0	-18.0	Pk	259		Note 2	
4192.0		V	74.0	-21.9	Pk	185		Note 2	
4192.0		h	74.0	-24.2	Pk	227		Note 2	
Note 1:	emissions	the limit	is EIRP < -			n 15.205 the g field strength			apply. For all other
	Signal is ir								
Note 2:		Dand D	eak Measur	ements: Re	solution and	Video BW: 1	MHz, Rest	ricted Band	Average Measureme


Client:	CardAcce	SS					J	b Number:	J44185
Model:	CAWCB5	00					T-Lo	og Number:	T44187
								Proj Eng:	Mark Briggs
Contact:									
			oarts B and I					Class:	В
			EUT On Ch					<u> </u>	
Frequency		Pol		/ 15.407	Detector	Azimuth	Height	Comments	
MHz 15960.0	dBµV/m 49.7	v/h	Limit 54.0	Margin -4.3	Pk/QP/Avg	degrees 203	meters	Noto 2 An	aluzar Naica flaar
15960.0		v h	54.0 54.0	-4.3 -4.9	Avg Avg	203			alyzer Noise floor alyzer Noise floor
4256.0	49.0	V	54.0	-4.7	Avg	340		Note 2, And	
4256.0		h	54.0	-5.6	Avg	178		Note 2	
10640.0		V	54.0	-7.8	Avg	190		Note 2	
21280.0		٧	54.0	-8.7	Avg	230		Note 2	
10640.0	44.0	h	54.0	-10.0	Avg	223	1.5	Note 2	
21280.0	43.2	h	54.0	-10.8	Avg	252	1.1	Note 2	
15960.0		V	74.0	-11.3	Pk	203			alyzer Noise floor
10640.0		V	74.0	-11.7	Pk	190		Note 2	
15960.0		h	74.0	-11.9	Pk	283			alyzer Noise floor
21280.0		V	74.0	-15.1	Pk	230		Note 2	
21280.0 10640.0	58.2 57.0	h h	74.0 74.0	-15.8 -17.0	Pk Pk	252 223		Note 2 Note 2	
4256.0		V	74.0	-17.0	PK Pk	340		Note 2	
4256.0	52.8	h	74.0	-20.7	Pk	178		Note 2	
					• •	•			apply. For all other
Note 1:	emissions	the limit	t is EIRP < -			field strength			
lote 2:	v		icted band	_					
Note 3:									Average Measurement /BW = 3MHz, video
NOIC J.	averaging					measuremen	113, 110		U D V = J V I I L, V U C U

	ott				IC Test Dat
Client: CardAcce				ob Number:	
Model: CAWCB50	00		T-L	og Number:	
				Proj Eng:	Mark Briggs
Contact: Quinn					_
Spec: FCC Part	15 Subparts B and E			Class:	В
	Conducted E	missions - Po	ower P	orts	
Test Specifics					
•	The objective of this test session specification listed above.	is to perform final quali	fication test	ing of the El	UT with respect to the
Date of Test:	7/23/2001	Config. Used:	1		
Test Engineer:		Config Change:			
Test Location:	SVOATS #1	EUT Voltage:	120V/60Hz		
		70.0			
	Rel. Humidity: 7				
Ambient Condition	Rel. Humidity: 7	2%	Posult	M	aroin
Summary of Res Run # 1	Rel. Humidity: 7		Result Pass		argin 2 5.351MHz

Client:	CardAcce						Job Number:	1//195
	CAWCB5							
wodel:	CAWCBO	00					T-Log Number:	
							Proj Eng:	Mark Briggs
Contact:								
Spec:	FCC Part	15 Subp	arts B and	E			Class:	В
Frequency	Level	Power	FCC-B	FCC-B	Detector	120V/60Hz Comments		
MHz	dBuV	Lead	Limit	Margin	Function	Comments		
5.351	37.2	Neutral	48.0	-10.8	QP			
5.963	36.9	Neutral	48.0	-10.0	OP OP			
		Neutrai	40.0					
		line 1	48.0	-11 7	OP			
5.903 5.511 2.671	36.3 35.8	Line 1 Line 1	48.0 48.0	-11.7 -12.2	QP QP			
5.511	36.3							
5.511 2.671	36.3 35.8	Line 1	48.0	-12.2	QP			
5.511 2.671 2.916	36.3 35.8 35.7	Line 1 Neutral	48.0 48.0	-12.2 -12.3	QP QP			
5.511 2.671 2.916 6.326	36.3 35.8 35.7 35.6	Line 1 Neutral Line 1	48.0 48.0 48.0	-12.2 -12.3 -12.4	QP QP QP			
5.511 2.671 2.916 6.326 2.719	36.3 35.8 35.7 35.6 35.5	Line 1 Neutral Line 1 Line 1	48.0 48.0 48.0 48.0	-12.2 -12.3 -12.4 -12.5	QP QP QP QP			
5.511 2.671 2.916 6.326 2.719 3.215	36.3 35.8 35.7 35.6 35.5 35.3	Line 1 Neutral Line 1 Line 1 Neutral	48.0 48.0 48.0 48.0 48.0 48.0	-12.2 -12.3 -12.4 -12.5 -12.7	QP QP QP QP QP			
5.511 2.671 2.916 6.326 2.719 3.215 3.144	36.3 35.8 35.7 35.6 35.5 35.3 35.3 35.1	Line 1 Neutral Line 1 Line 1 Neutral Line 1	48.0 48.0 48.0 48.0 48.0 48.0 48.0	-12.2 -12.3 -12.4 -12.5 -12.7 -12.7 -12.9	QP QP QP QP QP QP QP			

Note: The graphical plots are offset by +10dB.

RE, Preliminary Scan 30 -		
1000 MHz (Chamber)	FCC Class B	Eval
RE, Preliminary Scan 30 -	FCC Class B	Pass
1000 MHz (OATS)	FUU UIASS D	Pass
RE, 30 - 1000MHz -	FCC Class B	Daca
Maximized Emissions	FUU UIASS D	Pass
ade During Testing: ere made to the EUT during test The Standard e made from the requirements of	Ŭ	

General Test Configuration
The FLIT and all local support eq

Date of Test: 7/23/2001

Client: CardAccess

Model: CAWCB500

Spec: FCC Part 15 Subparts B and E

specification listed above.

Test Engineer: Mark Briggs & Vishal Narayan Test Location: Chamber #2 & SVOATS #1

Contact: Quinn

Test Specifics

support equipment were located on the turntable for radiated emissions testing.

On the OATS, the measurement antenna was located 3 meters from the EUT for the measurement range 30 - 1000 MHz. Preliminary measurements in the anechoic chamber were made at a test distance of 4m and the data was extrapolated to 3m.

Radiated Emissions

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

Config. Used: #1 Config Change: None

Host Unit Voltage 120V/60Hz

Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions:	Temperature: 17°C

Rel. Humidity: 72%

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, Preliminary Scan 30 - 1000 MHz (Chamber)	FCC Class B	Eval	Refer to individual runs
2	RE, Preliminary Scan 30 - 1000 MHz (OATS)	FCC Class B	Pass	-4.1dB @ 959.995MHz
3	RE, 30 - 1000MHz - Maximized Emissions	FCC Class B	Pass	-4.1dB @ 959.995MHz

Modifications Ma

No modifications w

Deviations From No deviations were

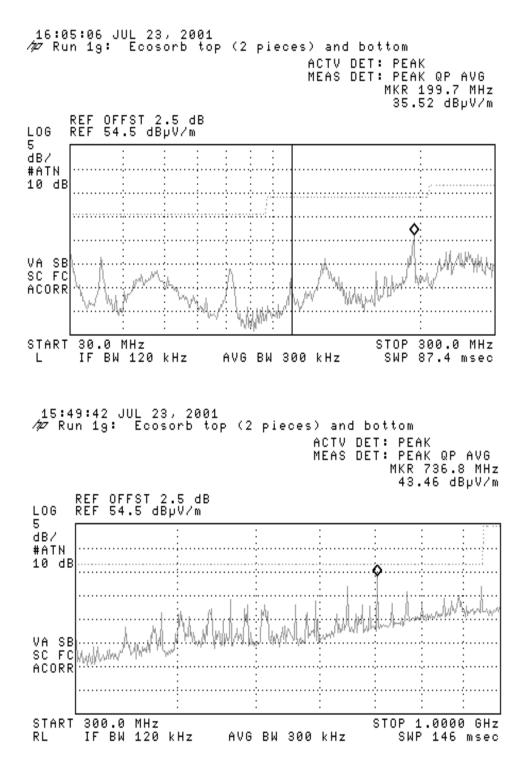
T44187 - Card Access.xls

EMC Test Data

Job Number: J44185

T-Log Number: T44187

Class: B


Proj Eng: Mark Briggs

Æ	Ellic	ott						EM	IC Test Data
Client:	CardAcce	SS					J	lob Number:	J44185
Model:	CAWCB50	00					T-L	og Number:	T44187
								Proj Eng:	Mark Briggs
Contact:	Ouinn							, ,	
		15 Subn	arts B and	C				Class:	R
•					00 MU - /0	ahaia Ohan		0035.	D
•		5			00 MHz (An e n top and one		•		
Frequency	Level	Pol		C B	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	COMINCIAS	
735.990	43.5	-	46.0	-2.5	Pk	0-360	1.7		
959.995	41.2	-	46.0	-4.8	Pk	0-360	1.7		
675.235	41.1	-	46.0	-4.9	Pk	0-360	1.7		
671.995	41.1	-	46.0	-4.9	Pk	0-360	1.7		
799.995	40.1	-	46.0	-5.9	Pk	0-360	1.7		
911.110	39.3	-	46.0	-6.7	Pk	0-360	1.7	B/B	
880.190	38.8	-	46.0	-7.2	Pk	0-360	1.7		
479.990	38.5	-	46.0	-7.5	Pk	0-360	1.7		
603.235	38.3	-	46.0	-7.7	Pk	0-360	1.7		
200.130	35.5	V/H	43.5	-8.0	Pk	0-360	1.7	Spread Sp	ectrum Clock
768.000	37.7	-	46.0	-8.3	Pk	0-360	1.7		
832.100	37.7	-	46.0	-8.3	Pk	0-360	1.7		
559.985	37.5	-	46.0	-8.5	Pk	0-360	1.7		
499.460	37.3	-	46.0	-8.7	Pk	0-360	1.7	B/B	
522.215	37.3	-	46.0	-8.7	Pk	0-360	1.7		
704.005	37.3	-	46.0	-8.7	Pk	0-360	1.7		
30.000	31.3	V/H	40.0	-8.7	Pk	0-360	1.7	B/B	
37.010	30.7	V/H	40.0	-9.3	Pk	0-360	1.7		
74.690	28.3	V/H	40.0	-11.7	Pk	0-360	1.7	B/B	
122.890	30.5	V/H	43.5	-13.0	Pk	0-360	1.7	B/B	
242.970	32.2	V/H	46.0	-13.8	Pk	0-360	1.7	B/B	
267.750	32.0	V/H	46.0	-14.0	Pk	0-360	1.7	B/B	
	s selected		n the result	s of run #1.) MHz (OATS	S Final Data)		
requency	Level	Pol	FC	СВ	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
959.995	41.9	V	46.0	-4.1	QP	50	4.7	Signal Sub	
799.995	40.4	V	46.0	-5.6	QP	50	1.0		
559.985	40.0	V	46.0	-6.0	QP	70	1.0		
832.100	39.0	٧	46.0	-7.0	QP	50	1.0		
880.005	38.9	٧	46.0	-7.1	QP	90	1.0		
736.005	38.8	V	46.0	-7.2	QP	20	1.4		

Client:	CardAcce	ess						Job Number:	J44185
Model:	CAWCB5	00					T-	Log Number:	T44187
								5	Mark Briggs
Contact:	Ouinn							- J - J	55
		15 Subr	arts B and I	E				Class:	B
•	on of Run							01033.	D
959.995	38.0	+∠ h	46.0	-8.0	QP	2	3.0	Signal Plus	Amhient
479.990	38.0	h	46.0	-8.0	QP	140	1.5		Ambient
911.110	37.0	V	46.0	-9.0	QP	100	1.5	BB	
768.000	36.5	v	46.0	-9.5	QP	80	1.0	00	
200.130	34.0	h	43.5	-9.5	QP	250	1.5	Signal Plus	Ambient
704.005	36.0	V	46.0	-10.0	QP	80	1.3		
735.990	36.0	h	46.0	-10.0	QP	170	1.6		
671.995	35.2	V	46.0	-10.8	QP	60	1.0	Signal Plus	Ambient
243.014	33.0	V	46.0	-13.0	QP	110	1.0		
37.010	26.0	V	40.0	-14.0	QP	50	1.0		
559.985	32.0	h	46.0	-14.0	QP	70	1.1	Signal Plus	Ambient
122.890	29.0	V	43.5	-14.5	QP	0	1.0		
122.890	29.0	h	43.5	-14.5	QP	150	1.3		
480.000	31.1	V	46.0	-14.9	QP	100	1.6	Signal Sub	
30.000	25.0	v	40.0	-15.0	QP	360	1.0		
267.750	31.0	h	46.0	-15.0	QP	120	1.5		
768.000	30.0	h	46.0	-16.0	QP	90	1.6		
832.100	30.0	h	46.0	-16.0	QP	130	1.6		
704.005	30.0	h	46.0	-16.0	QP	160	1.0	Signal Plus	Ambient
522.215	29.2	V	46.0	-16.8	QP	90	1.0		
74.690	23.0	V	40.0	-17.0	QP	360	1.0	BB	
267.750	29.0	V	46.0	-17.0	QP	110	1.0		
499.460	28.5	V	46.0	-17.5	QP	60	1.0		
911.110	28.5	h	46.0	-17.5	QP	100	1.3		
242.970		h	46.0	-18.0	QP	40	1.3		
37.010		h	40.0	-18.5	QP	80	1.3	+	
30.000		h	40.0	-19.0	QP	70	1.3		
74.690		h	40.0	-20.0	QP	30	1.4		
200.130		V	43.5	-20.5	QP	0	1.3	Cianal Dive	Ambiant
671.995		h	46.0	-20.7	QP OP	60	1.3	Signal Plus	Ampient
499.460		h	46.0	-22.0	QP OP	60	1.2		
522.215	23.5	h	46.0	-22.5	QP	340	1.0		

Model: CAWCB500 T-Log Number Contact: Quinn Proj Engl Spec: FCC Part 15 Subparts B and E Class Run #3: Maximized Readings From Run #2 Class Frequency Level Pol FCC B Detector Azimuth Height Comment MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 959.995 41.9 v 46.0 -4.1 QP 50 4.7 Signal Su 799.995 40.4 v 46.0 -5.6 QP 50 1.0 6832.100 39.0 v 46.0 -7.0 QP 50 1.0 6832.100 38.8 v 46.0 -7.1 QP 90 1.0 736.005 38.8 v 46.0 -7.2 QP 20 1.4 46.0	: Mark Briggs : B s
Proj Englist Contact: Quinn Spec: FCC Part 15 Subparts B and E Class Rum #2 Rum #2 Rum #2 requency Level Pol FCC B Detector Azimuth Height Commen MHz dB μ V/m v/h Limit Margin Pk/QP/Avg degrees meters 959.995 41.9 v 46.0 -4.1 QP 50 4.7 Signal Su 799.995 40.4 v 46.0 -5.6 QP 50 1.0 632.100 39.0 v 46.0 -7.0 QP 50 1.0 632.100 38.9 v 46.0 -7.1 QP 90 1.0 6332.100 1.0 6332.100 1.0 6332.100 1.0 6332.100 1.0 6332.100 1.0 6332.100 1.0 6332.100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 </td <td>: Mark Briggs : B s</td>	: Mark Briggs : B s
Contact: Quinn Class Spec: FCC Part 15 Subparts B and E Class un #3: Maximized Readings From Run #2 requency Level Pol FCC B Detector Azimuth Height Comment MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 0 959.995 41.9 v 46.0 -4.1 QP 50 4.7 Signal Su 799.995 40.4 v 46.0 -5.6 QP 50 1.0 0 832.100 39.0 v 46.0 -7.0 QP 50 1.0 0 880.005 38.9 v 46.0 -7.1 QP 90 1.0 0	: B
un #3: Maximized Readings From Run #2 requency Level Pol FCC B Detector Azimuth Height Comment MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 959.995 41.9 v 46.0 -4.1 QP 50 4.7 Signal Su 799.995 40.4 v 46.0 -5.6 QP 50 1.0 1	ŝ
un #3: Maximized Readings From Run #2 requency Level Pol FCC B Detector Azimuth Height Comment MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 959.995 41.9 v 46.0 -4.1 QP 50 4.7 Signal Su 799.995 40.4 v 46.0 -5.6 QP 50 1.0 1	ŝ
requency Level Pol FCC B Detector Azimuth Height Comment MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 959.995 41.9 v 46.0 -4.1 QP 50 4.7 Signal Su 799.995 40.4 v 46.0 -5.6 QP 50 1.0 559.985 40.0 v 46.0 -6.0 QP 70 1.0 832.100 39.0 v 46.0 -7.0 QP 50 1.0 880.005 38.9 v 46.0 -7.1 QP 90 1.0	
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 959.995 41.9 v 46.0 -4.1 QP 50 4.7 Signal Su 799.995 40.4 v 46.0 -5.6 QP 50 1.0 559.985 40.0 v 46.0 -6.0 QP 70 1.0 832.100 39.0 v 46.0 -7.0 QP 50 1.0 880.005 38.9 v 46.0 -7.1 QP 90 1.0	
959.995 41.9 v 46.0 -4.1 QP 50 4.7 Signal Su 799.995 40.4 v 46.0 -5.6 QP 50 1.0 559.985 40.0 v 46.0 -6.0 QP 70 1.0 832.100 39.0 v 46.0 -7.0 QP 50 1.0 880.005 38.9 v 46.0 -7.1 QP 90 1.0)
799.995 40.4 v 46.0 -5.6 QP 50 1.0 559.985 40.0 v 46.0 -6.0 QP 70 1.0 832.100 39.0 v 46.0 -7.0 QP 50 1.0 880.005 38.9 v 46.0 -7.1 QP 90 1.0	0
559.985 40.0 v 46.0 -6.0 QP 70 1.0 832.100 39.0 v 46.0 -7.0 QP 50 1.0 880.005 38.9 v 46.0 -7.1 QP 90 1.0	
832.100 39.0 v 46.0 -7.0 QP 50 1.0 880.005 38.9 v 46.0 -7.1 QP 90 1.0	
880.005 38.9 v 46.0 -7.1 QP 90 1.0	
736.005 38.8 v 46.0 -7.2 QP 20 1.4	

PLOTS OF TEST SESSION 7/23/01

EXHIBIT 3: Emissions Test Configuration Photographs

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Construction Photographs CardAccess Model CAWCB500 5.8 GHz UNII Band

EXHIBIT 6: Operator's Manual CardAccess Model CAWCB500 5.8 GHz UNII Band

EXHIBIT 7: Block Diagram CardAccess Model CAWCB500 5.8 GHz UNII Band

EXHIBIT 8: Schematic Diagrams CardAccess Model CAWCB500 5.8 GHz UNII Band

EXHIBIT 9: Theory of Operation CardAccess Model CAWCB500 5.8 GHz UNII Band

EXHIBIT 10: SAR Report CardAccess Model CAWCB500 5.8 GHz UNII Band