Universal Electronics Inc.

TPMC-4XG

May 01, 2008

Report No. UEIC0002

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2008Northwest EMC, Inc

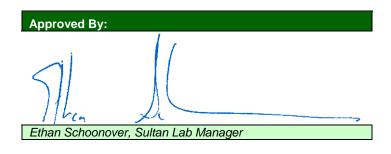
22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: May 01, 2008 Universal Electronics Inc. Model: TPMC-4XG

Emissions						
Test Description	Specification	Test Method	Pass/Fail			
Spurious Radiated Emissions	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass			
AC Power Line Conducted Emissions	FCC 15.209:2007	ANSI C63.4:2003	Pass			

Modifications made to the product
See the Modifications section of this report


Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 41 Tesla Ave. Irvine, CA 92618

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site Filing #2834B).

NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

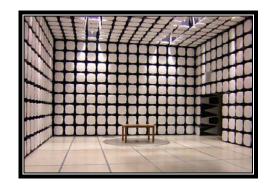
NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification


MIC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Rev 11/17/06

Party Requesting the Test

Company Name:	Universal Electronics Inc.
Address:	6101 Gateway Way
City, State, Zip:	Cypress, CA 90630
Test Requested By:	Graham Williams
Model:	TPMC-4XG
First Date of Test:	April 26, 2008
Last Date of Test:	April 28, 2008
Receipt Date of Samples:	April 26, 2008
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Universal controller for use in home theaters. Contains an 802.11b/g radio

Testing Objective:

Seeking TCB certification under 15.247.

Configurations

Revision 9/21/05

CONFIGURATION 1 UEIC0002

Software/Firmware Running during test			
Description	Version		
Windows CE	5.0		

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
EUT	Universal Electronics	TPMC-4XG	0000010	

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
USB	Yes	0.5m	No	Remote Control Unit #8	Unterminated	
PA = Cab	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 UEIC0002

Software/Firmware Running during test			
Description	Version		
Windows CE	5.0		

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
EUT	Universal Electronics	TPMC-4XG	0000010	

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Charging Dock	Crestron	TPMC-4XG-DS	None		
AC Power Adaptor	Crestron	SCP0501200P	None		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	No	1.9m	No	AC Power Adaptor	Charging Dock
USB	Yes	0.5m	No	Remote Control Unit #8	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Modifications

Revision 4/28/03

Equipment modifications						
Item	Date	Test	Modification	Note	Disposition of EUT	
1	4/26/2008	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.	
2	4/28/2008	AC Power Line Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.	

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Continuous Tx, High channel

Continuous Tx, Mid channel

Continuous Tx. Low channel

POWER SETTINGS INVESTIGATED

Internal Battery

120V/60Hz to Charging Dock

CONFIGURATIONS INVESTIGATED

UEIC0002 - 1

UEIC0002 - 2

DATA RATES INVESTIGATED

1 MBpS

6 MBpS

11 MBpS 36 MBpS

54 MBpS

FREQUENCY RANGE INVESTIGATED

Start Frequency 30MHz Stop Frequency 26000MHz

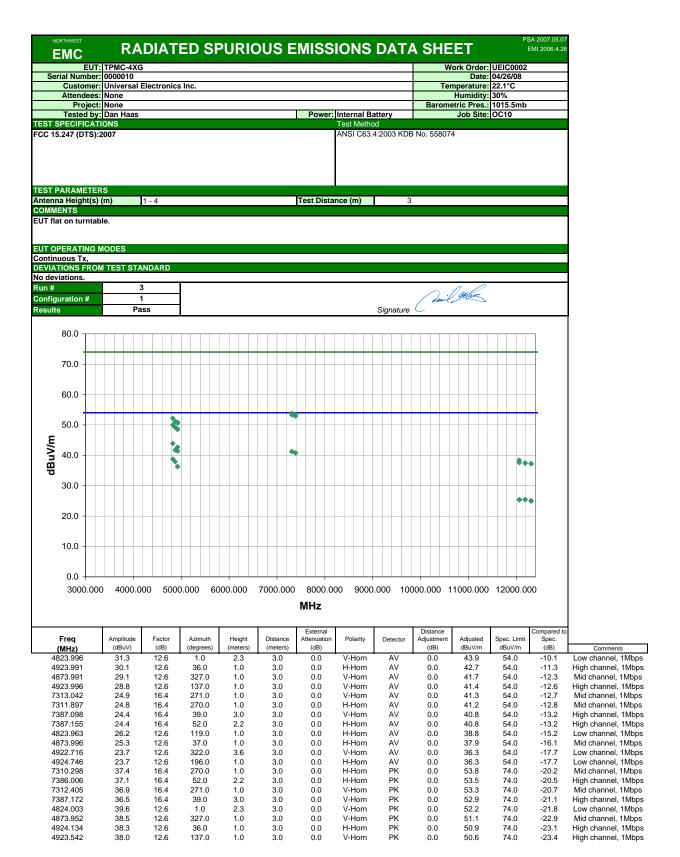
CLOCKS AND OSCILLATORS

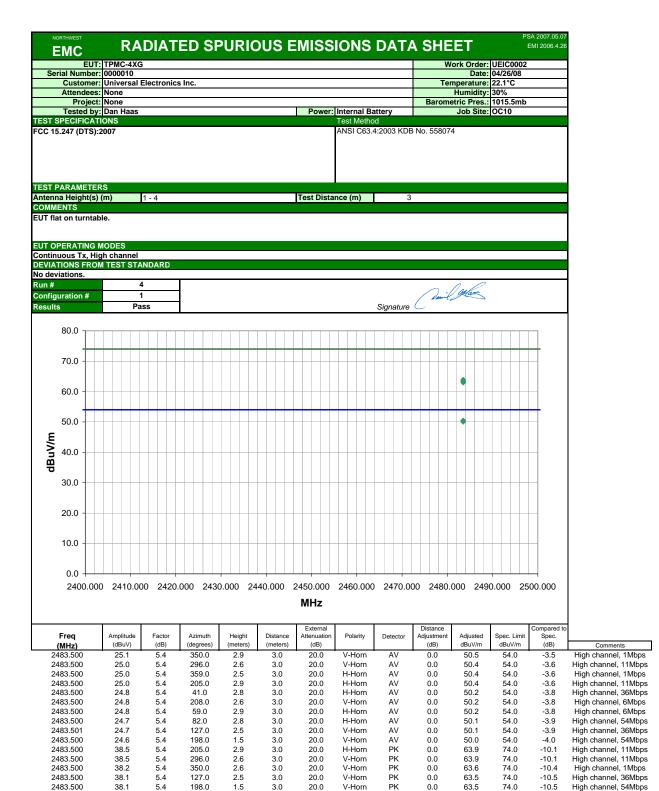
2.4GHz Radio

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAQ	12/14/2007	13
High Pass Filter	Micro-Tronics	HPM50111	HFM	1/7/2008	13
OC10 SMA cable for 18026 GHz			OCK	3/3/2008	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	3/3/2008	13
Antenna, Horn	EMCO	3160-09	AHN	NCR	0
OC 10 Cables a, b, c, I Cables			000	2/2/2008	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AOF	10/13/2006	24
Antenna, Horn	ETS	3160-08	AHT	NCR	0
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOE	10/13/2006	24
Antenna, Horn	ETS	3160-07	AHR	NCR	0
OC10 cables a,b,c,e,f Horn Cables			OCJ	2/2/2008	13
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	2/2/2008	13
Antenna, Horn	ETS	3117	AHQ	6/29/2006	24
OC10 cables a,b,c,d Bilog			OCH	1/7/2008	13
Pre-Amplifier	Miteq	AM-1616-1000	AOM	1/7/2008	13
Antenna, Biconilog	EMCO	3142	AXJ	2/25/2008	24


MEASUREMEN [®]	T BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
	Measurements were made us	sing the bandwidths and deter	ctors specified No video filte	r was used


MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

2483.500

2483.500

2483.500

2483.500

2483.500

2483.500

38.1

37.8

37.7

37.7

37.6

37.5

5.4

5.4

5.4

198.0

208.0

359.0

41.0

82.0

59.0

2.6

2.5

2.8

2.8

2.9

3.0

3.0

3.0

3.0

3.0

20.0

20.0

20.0

20.0

20.0

V-Horn

H-Horn

H-Horn

H-Horn

H-Horn

PΚ

PK

PK

PK

PK

0.0

0.0

0.0

0.0

0.0

0.0

63.5

63.2

63.1

63.1

63.0

62.9

74.0

74.0 74.0

74.0

74.0

74.0

-10.5

-10.8

-10.9

-10.9

-11.1

High channel, 54Mbps

High channel, 6Mbps

High channel, 1Mbps

High channel, 36Mbps

High channel, 54Mbps

High channel, 6Mbps

NORTHWEST RADIATED SPURIOUS EMISSIONS DATA SHEET EMI 2006.4.26 **EMC** EUT: TPMC-4XG Work Order: UEIC0002 Serial Number: 0000010 Date: 04/26/08 Customer: Universal Electronics Inc. Temperature: 22.1°C Attendees: None Humidity: 30% Project: None Barometric Pres.: 1015.5mb Tested by: Dan Haas Power: Internal Battery Job Site: OC10 FCC 15.247 (DTS):2007 ANSI C63.4:2003 KDB No. 558074 TEST PARAMETERS Antenna Height(s) (m) 1 - 4 Test Distance (m) 3 COMMENTS EUT flat on turntable. EUT OPERATING MODES Continuous Tx, High channel, 1Mbps **DEVIATIONS FROM TEST STANDARD** No deviations. and getan Run# Configuration # 1 Results Pass Signature 80.0 70.0 60.0 50.0 dBuV/m 40.0 • 30.0 44 20.0 10.0 0.0 10.000 100.000 1000.000 MHz External Distance Compared to Amplitude Factor Azimuth Heiaht Distance Polarity Adjusted Spec. Limit Frea Attenuation Detector Adjustmen Spec. (dBuV) (dB) (degrees) (meters) (meters) (dB) (dB) dBuV/m dBuV/m (dB) (MHz) H-Bilog QP 37.2 31.217 34.2 3.0 344.0 1.4 3.0 0.0 0.0 40.0 -2.8 QP 31.217 34.1 3.0 359.0 1.5 3.0 0.0 H-Bilog 0.0 37.1 40.0 -2.9 37.483 35.5 -0.7 304.0 1.0 3.0 0.0 V-Bilog PΚ 0.0 34.8 40.0 -5.2 36.407 32.6 -0.1 308.0 1.0 3.0 0.0 H-Bilog QP 0.0 32.5 40.0 -7.5 45.514 -4.5 73.0 H-Bilog PK 40.0 -8.3 36.2 1.0 3.0 0.0 0.0 31.7 V-Bilog 30.793 QΡ 26.8 3.2 177.0 1.0 3.0 0.0 0.0 30.0 40.0 -10.0 V-Bilog 127.0 QP 30.813 26.8 3.2 1.0 3.0 0.0 0.0 30.0 40.0 -10.0 QΡ V-Bilog 40.0 38.208 30.0 -1.2 304.0 1.0 3.0 0.0 0.0 28.8 -11.2 QP 36.477 28.6 -0.2 133.0 3.5 3.0 0.0 V-Bilog 0.0 28.4 40.0 -11.6 714.804 23.1 10.3 325.0 1.0 3.0 0.0 V-Bilog PΚ 0.0 33.4 46.0 -12.6

918.177

22.2

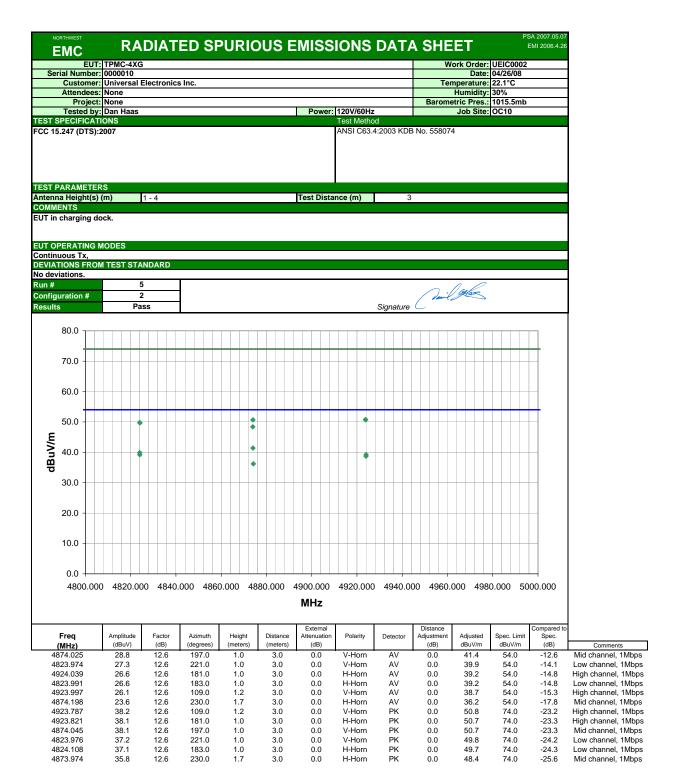
10.6

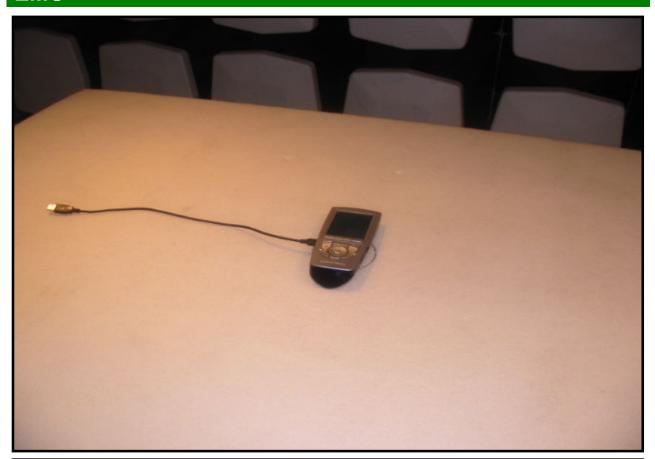
66.0

1.0

3.0

H-Bilog

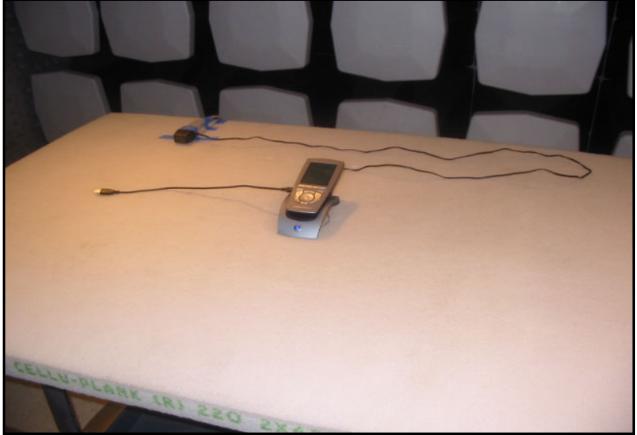

PK

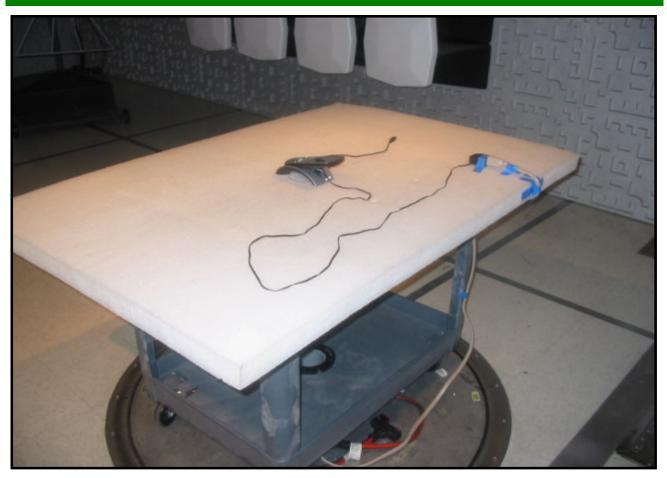

0.0

32.8

46.0

-13.2





CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Continuous Tx, High channel
Continuous Tx, Mid channel
Continuous Tx, Low channel

POWER SETTINGS INVESTIGATED

120V/60Hz

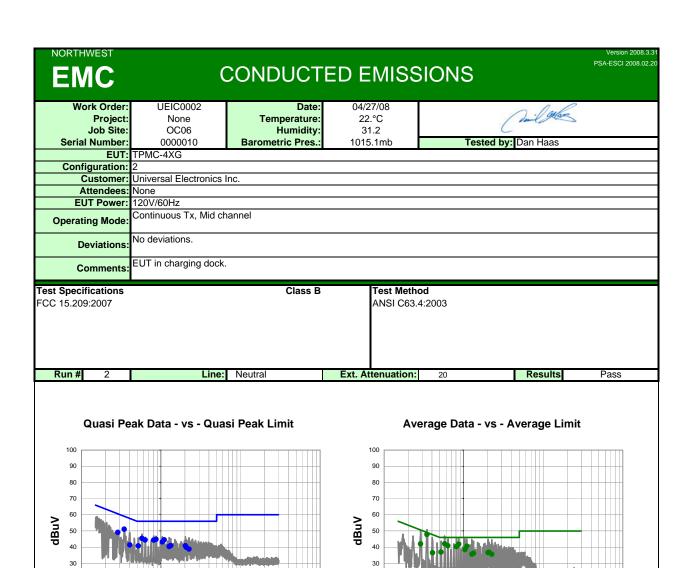
CONFIGURATIONS INVESTIGATED

UEIC0002 - 2

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwartz	ESCI	ARF	12/14/2007	13 mo
OC06 Cables B and C			OCM	1/10/2008	13 mo
Attenuator	Pasternack	6N10W-20	AWC	1/10/2008	13 mo
LISN	Solar	9252-50-R-24-BNC	LIC	2/6/2008	13 mo


Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.

Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit

100.00

10.00

MHz

20 10

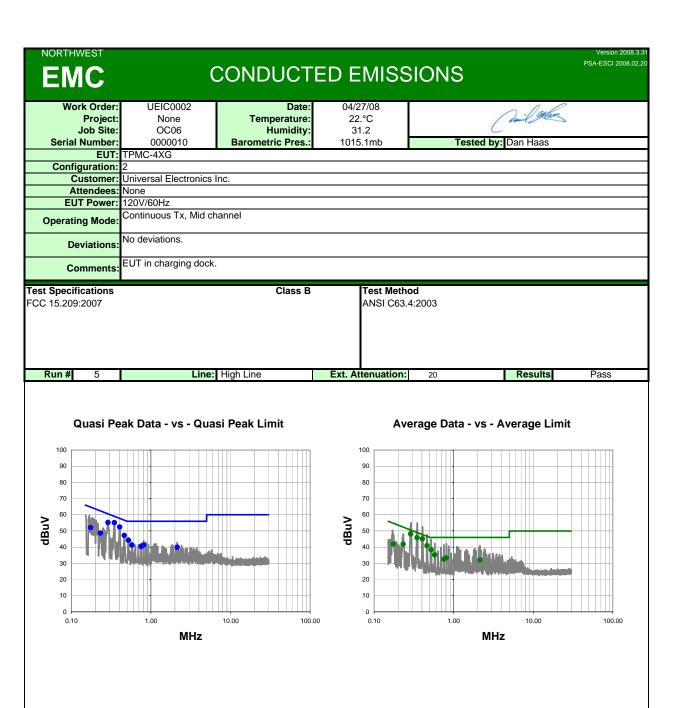
0.10

1.00

MHz

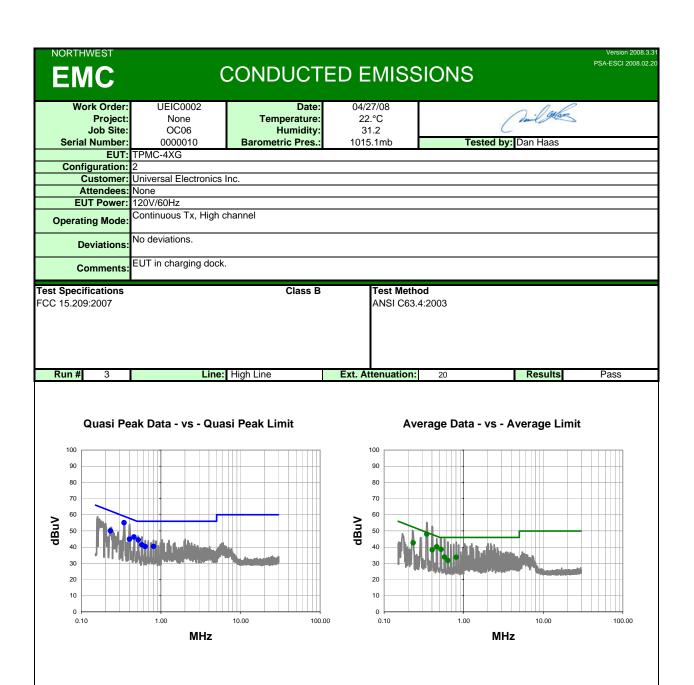
10.00

100.00


20

10

0.10


1.00

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)
0.346	30.0	21.1	51.1	59.1	-8.0	•	0.346	26.7	21.1	47.8	49.1	-1.3
0.577	24.5	20.9	45.4	56.0	-10.6		0.577	21.2	20.9	42.1	46.0	-3.9
0.867	24.2	20.6	44.8	56.0	-11.2		0.867	21.2	20.6	41.8	46.0	-4.2
1.100	24.0	20.5	44.5	56.0	-11.5		0.634	20.0	20.8	40.8	46.0	-5.2
0.288	27.9	21.1	49.0	60.6	-11.6		1.100	20.1	20.5	40.6	46.0	-5.4
0.634	23.6	20.8	44.4	56.0	-11.6		0.811	19.6	20.7	40.3	46.0	-5.7
0.811	23.6	20.7	44.3	56.0	-11.7		1.040	18.0	20.5	38.5	46.0	-7.5
1.040	22.7	20.5	43.2	56.0	-12.8		0.288	20.8	21.1	41.9	50.6	-8.7
1.328	20.4	20.5	40.9	56.0	-15.1		0.519	16.1	20.8	36.9	46.0	-9.1
2.024	20.2	20.6	40.8	56.0	-15.2		2.080	16.2	20.6	36.8	46.0	-9.2
0.519	19.9	20.8	40.7	56.0	-15.3		2.024	16.0	20.6	36.6	46.0	-9.4
1.272	19.9	20.5	40.4	56.0	-15.6		1.328	15.7	20.5	36.2	46.0	-9.8
2.080	19.3	20.6	39.9	56.0	-16.1		2.252	15.0	20.6	35.6	46.0	-10.4
0.406	20.3	21.0	41.3	57.7	-16.4		1.272	15.1	20.5	35.6	46.0	-10.4
2.252	18.2	20.6	38.8	56.0	-17.2		0.406	15.5	21.0	36.5	47.7	-11.2

Quasi Peak Data - vs - Quasi Peak Limit Average Data - vs - Average Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)
0.347	34.0	21.1	55.1	59.0	-4.0	_	0.289	27.0	21.1	48.1	50.6	-2.4
0.405	31.4	21.0	52.4	57.8	-5.3		0.405	24.1	21.0	45.1	47.8	-2.6
0.289	34.1	21.1	55.2	60.6	-5.3		0.347	24.7	21.1	45.8	49.0	-3.3
0.463	26.2	21.0	47.2	56.6	-9.5		0.463	19.9	21.0	40.9	46.6	-5.8
0.521	23.4	20.8	44.2	56.0	-11.8		0.521	17.5	20.8	38.3	46.0	-7.7
0.174	29.9	22.1	52.0	64.8	-12.7		0.232	20.6	21.2	41.8	52.4	-10.6
0.232	27.5	21.2	48.7	62.4	-13.7		0.578	14.3	20.9	35.2	46.0	-10.8
0.578	20.4	20.9	41.3	56.0	-14.7		0.812	12.7	20.7	33.4	46.0	-12.6
0.812	20.6	20.7	41.3	56.0	-14.7		0.174	19.7	22.1	41.8	54.8	-12.9
0.752	19.6	20.7	40.3	56.0	-15.7		0.752	11.8	20.7	32.5	46.0	-13.5
2.140	19.2	20.6	39.8	56.0	-16.2		2.140	11.4	20.6	32.0	46.0	-14.0

Quasi Peak Data - vs - Quasi Peak Limit

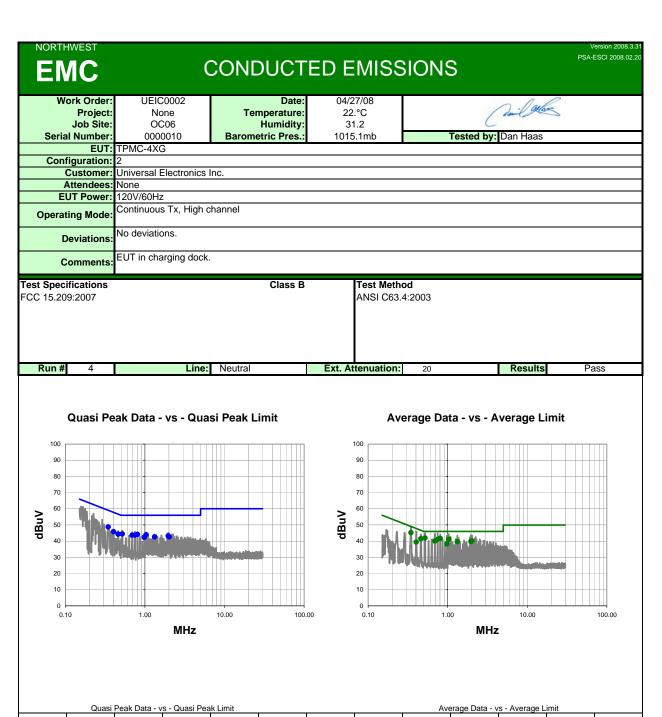
Freq

(MHz) 0.344

0.459

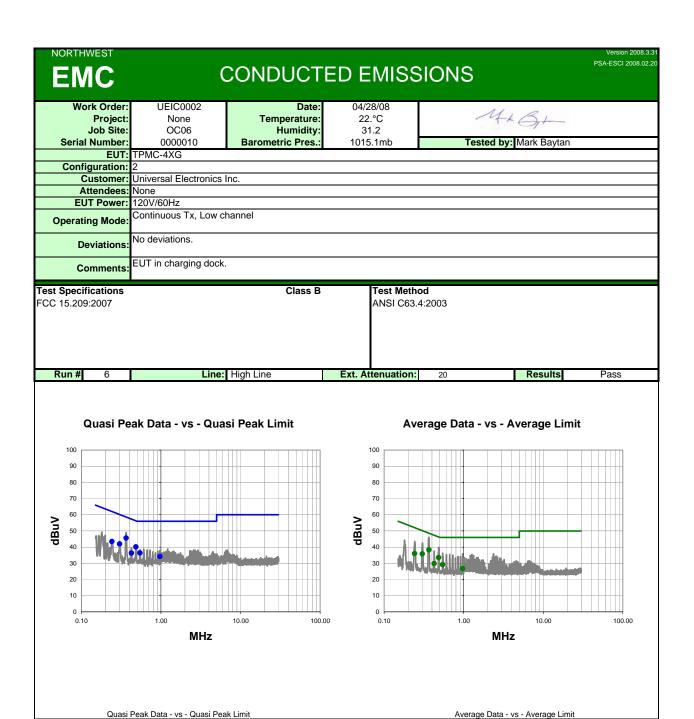
0.519

0.232

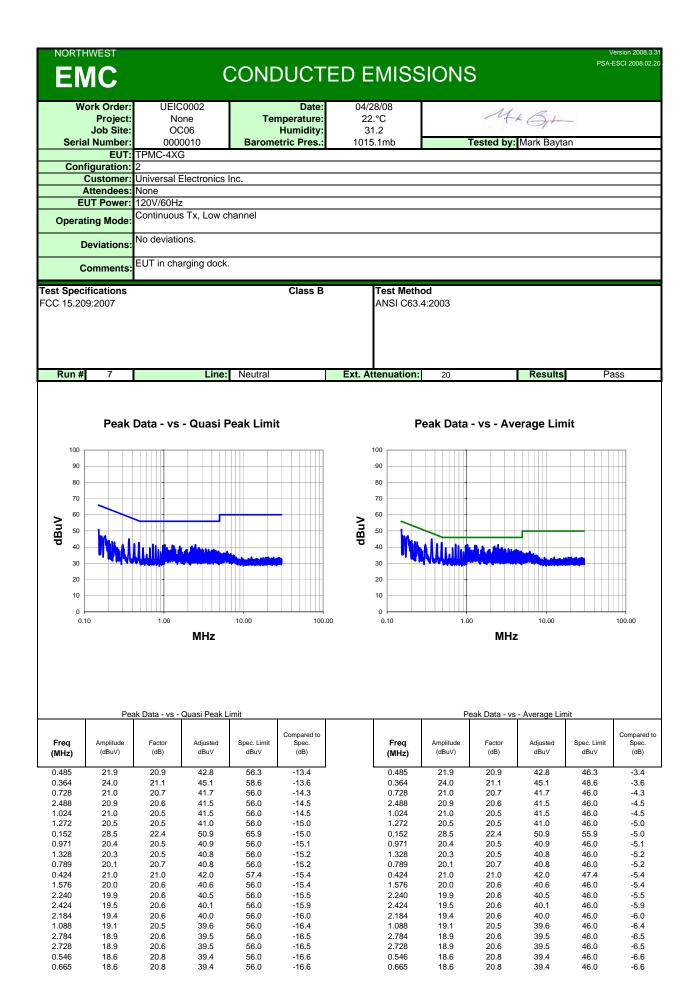

0.402 0.575

0.806

0.635


Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)
34.0	21.1	55.1	59.1	-4.0	0.344	26.9	21.1	48.0	49.1	-1.1
25.3	21.0	46.3	56.7	-10.4	0.459	19.2	21.0	40.2	46.7	-6.5
23.6	20.8	44.4	56.0	-11.6	0.519	17.8	20.8	38.6	46.0	-7.4
28.8	21.2	50.0	62.4	-12.4	0.402	17.3	21.0	38.3	47.8	-9.5
23.9	21.0	44.9	57.8	-12.9	0.232	21.4	21.2	42.6	52.4	-9.8
20.6	20.9	41.5	56.0	-14.5	0.575	13.0	20.9	33.9	46.0	-12.1
19.8	20.7	40.5	56.0	-15.5	0.806	13.1	20.7	33.8	46.0	-12.2
19.5	20.8	40.3	56.0	-15.7	0.635	10.9	20.8	31.7	46.0	-14.3

Average Data - vs - Average Limit


≀uası Pea	ak Data - v:	s - Quasi Pea	ık Limit		Ave	erage Data - v	s - Average L	ımıt

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)		Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)
0.346	27.7	21.1	48.8	59.1	-10.3	•	0.346	24.1	21.1	45.2	49.1	-3.9
0.519	23.6	20.8	44.4	56.0	-11.6		0.519	21.1	20.8	41.9	46.0	-4.1
0.806	23.4	20.7	44.1	56.0	-11.9		0.806	21.0	20.7	41.7	46.0	-4.3
0.402	24.8	21.0	45.8	57.8	-12.0		1.036	20.6	20.5	41.1	46.0	-4.9
1.036	23.4	20.5	43.9	56.0	-12.1		0.750	20.3	20.7	41.0	46.0	-5.0
0.750	23.0	20.7	43.7	56.0	-12.3		0.461	20.5	21.0	41.5	46.7	-5.2
0.692	22.9	20.8	43.7	56.0	-12.3		2.016	19.6	20.6	40.2	46.0	-5.8
0.461	23.3	21.0	44.3	56.7	-12.4		0.692	19.3	20.8	40.1	46.0	-5.9
1.960	22.6	20.6	43.2	56.0	-12.8		1.960	19.2	20.6	39.8	46.0	-6.2
2.016	22.0	20.6	42.6	56.0	-13.4		1.324	19.2	20.5	39.7	46.0	-6.3
1.324	22.1	20.5	42.6	56.0	-13.4		0.980	17.8	20.5	38.3	46.0	-7.7
0.980	21.8	20.5	42.3	56.0	-13.7		0.402	18.3	21.0	39.3	47.8	-8.5

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted dBuV	Spec. Limit dBuV	Compared to Spec. (dB)
0.366	24.5	21.1	45.6	58.6	-13.0	0.366	17.2	21.1	38.3	48.6	-10.3
0.485	19.2	20.9	40.1	56.3	-16.1	0.485	12.6	20.9	33.5	46.3	-12.7
0.303	20.8	21.1	41.9	60.2	-18.3	0.303	14.7	21.1	35.8	50.2	-14.4
0.242	22.3	21.2	43.5	62.0	-18.6	0.242	14.8	21.2	36.0	52.0	-16.1
0.544	15.6	20.8	36.4	56.0	-19.6	0.544	8.3	20.8	29.1	46.0	-16.9
0.425	15.3	21.0	36.3	57.3	-21.0	0.425	8.8	21.0	29.8	47.3	-17.5
0.969	13.7	20.5	34.2	56.0	-21.8	0.969	6.2	20.5	26.7	46.0	-19.3

