

TEST REPORT

APPLICANT	:	Universal Electronics Inc
-----------	---	---------------------------

- PRODUCT NAME : Wi-Fi Dongle
- MODEL NAME : UEI2236B
- BRAND NAME : UNIVERSAL ELECTRONICS INC
- FCC ID : MG3-2236B
- STANDARD(S) : 47 CFR Part 15 Subpart C
- **TEST DATE** : 2018-03-16 to 2018-05-12
- **ISSUE DATE** : 2018-05-14

Tested by:

Su Hang (Test Engineer)

Approved by:

Andy Yĕh (Technical Director)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. T	echnical Information
1.1.	Manufacturer and Factory Information 4
1.2.	Equipment Under Test (EUT) Description 4
1.3.	Test Standards and Results 6
1.4.	Environmental Conditions 6
2. 4	7 CFR Part 15C Requirements 7
2.1.	Antenna requirement7
2.2.	Peak Output Power 8
2.3.	Bandwidth ······12
2.4.	Conducted Spurious Emissions and Band Edge21
2.5.	Power spectral density (PSD)
2.6.	Restricted Frequency Bands51
2.7.	Conducted Emission
2.8.	Radiated Emission66
Ann	ex A Test Uncertainty82
Ann	ex B Testing Laboratory Information83

	Change History					
Issue	Date	Reason for change				
1.0	2018-05-14	First edition				

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Universal Electronics Inc
Applicant Address:	201 East Sandpointe Ave, 8th Floor, Santa Ana, CA, United
	States
Manufacturer:	ITON Technology Corp.
Manufacturer Address:	Room 1302, Block A, Building 4, Tianan Cyber Park, Huangge
	Road, Longgang District, Shenzhen, China

1.2. Equipment Under Test (EUT) Description

Product Name:	Wi-Fi Dongle
Serial No:	(N/A, marked #1 by test site)
Hardware Version:	V1.1
Software Version:	V1.0
Modulation Type:	DSSS, OFDM
Modulation Mode:	802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)
Operating Frequency Range:	802.11b/g/n-20MHz: 2.412GHz - 2.462GHz
Operating Frequency Range.	802.11n-40MHz: 2.422GHz - 2.452GHz
Channel Number:	802.11b/g/n-20MHz: 11
	802.11n-40MHz: 7
Modulation Type:	DSSS, OFDM
Antenna Type:	PCB Antenna
Antenna Gain:	Ant0: 1.5 dBi; Ant1: 1.5 dBi _{Note6}
Directional Gain:	4.51 dBi _{Note 3}

Note 1: The EUT is operating at 2.4GHz ISM; it supports 802.11b, 802.11g, 802.11n and they are all tested in this report.

For 802.11b/g/n HT20, the frequencies allocated is F (MHz) =2412+5*(n-1) (1<=n<=11). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 1 (2412MHz), 6 (2437MHz) and 11 (2462MHz).

For 802.11n HT40, the frequencies allocated is F (MHz) = $2412+5^{*}(n-1)$ (3<=n<=9). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 3 (2422MHz), 6 (2437MHz) and 9 (2452MHz).

Modulation Mode:	TX Function	Relationship between the two output signals
802.11b	1TX	Uncorrelated
802.11g	1TX	Uncorrelated
802.11n	2TX	Correlated

Note 2: The EUT has two antennas, only 802.11n modulation mode supports a MIMO function.

Note 3: According to KDB 662911 D01, the directional gain = G_{ANT} +10log(N_{ANT}) dBi, where G_{ANT} is the antenna gain in dBi, N_{ANT} is the number of outputs.

Note 4: For conducted test item Peak Power and Power spectral density of each modulation mode, we recorded the test result of two antennas separately, for other conducted test items both of the two antennas were tested separately, we only recorded the worst test result(ANT1) in this report.

Note 5: All radiation test items for 802.11n modulation mode operate at MIMO mode during the test. Other modulation mode operate at SISO mode, both of the two antennas were tested separately, we only recorded the worst test result(ANT1) in this report.

Note 6: The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT continuous transmission.

Note 7: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No	Identity		Docι	Document Title					
1	47 CFR Pa	rt 15 (10-1-15 Edition)	Radio	Radio Frequency Devices					
Test detailed items/section required by FCC rules and results are as below:									
No. Section Description Test Date Test Engineer Result									
1	15.203	Antenna Requirement		N/A	N/A	PASS			
2	15.247(b)	Peak Output Power	May 12, 2018	Su Hang	PASS				
3	15.247(a)	Bandwidth	Mar 24, 2018	Su Hang	PASS				
4	15.247(d)	Conducted Spurious Emission and Band Edge		Mar 31, 2018	Su Hang	PASS			
5	15.247(e)	Power spectral density		Mar 31, 2018	Su Hang	PASS			
6	15.247(d)	Restricted Frequency Band	ds	Apr 24&25, 2018	Peng Xuewei	PASS			
7	15.207	Conducted Emission		Mar 16, 2018	Peng Xuewei	PASS			
8	15.209, 15.247(d)	Radiated Emission		Apr 25, 2018	Peng Xuewei	PASS			
Note	1: The tests	of Conducted Emission and	Radia	ted Emission we	ere performed acc	ording to			
the n	nethod of me	easurements prescribed in Al	NSI Ce	63.10 2013.		-			
Note	2: These RF	tests were performed accor	ding to	the method of i	measurements pre	escribed in			
	KDB5580	74 D01 DTS Meas Guidanc	e v04,	KDB662911 D0	1 Multiple Transm	itter			

Output v02r01.

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Peak Output Power

2.2.1. Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed1 Watt.

2.2.2. Test Description

The measured output power was calculated by the reading of the USB Wideband Power Sensor and calibration.

A. Test Setup:

The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in power meter.

B. Equipments List:

Please refer ANNEX A(1.5).

2.2.3. Test Result

The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

Frequency	ANTO		AN	Limit				
Channel	(MHz)	Measured Peak Power		Measured Peak Power				Verdict
	(IVIFIZ)	dBm	W	dBm	W	dBm	W	
1	2412	19.37	0.0865	20.11	0.1026			PASS
6	2437	19.90	0.0977	19.39	0.0869	30	1	PASS
11	2462	18.94	0.0783	19.00	0.0794			PASS

2.2.3.1 802.11b Test Mode

Channel	Channel Frequency		ANT0 Average Power		ANT1 Average Power			Verdict
	(MHz)	dBm	W	dBm	W	dBm	W	
1	2412	15.60	0.0363	15.72	0.0373			PASS
6	2437	15.28	0.0337	15.09	0.0323	30	1	PASS
11	2462	14.77	0.0300	15.26	0.0336			PASS

2.2.3.2 802.11g Test mode

Channel Frequency (MHz)		ANT0		AN	Limit			
		Measured Peak Power		Measured Peak Power			Verdict	
	(10112)	dBm	W	dBm	W	dBm	W	
1	2412	23.75	0.2371	24.39	0.2748			PASS
6	2437	22.78	0.1897	24.63	0.2904	30	1	PASS
11	2462	23.18	0.2080	23.68	0.2333			PASS

Channel Frequency		ANT0 Average Power		AN Average	Limit		Verdict	
	(MHz)	dBm	W	dBm	W	dBm	W	
1	2412	12.34	0.0171	11.82	0.0152			PASS
6	2437	12.12	0.0163	11.67	0.0147	30	1	PASS
11	2462	11.47	0.0140	11.39	0.0138			PASS

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.2.3.3 802.11n-20MHz Test mode

Channel Frequency (MHz)	Froquoney	AN	IT0	AN	IT1 Limit		i+		
	Measured I	Peak Power	Measured Peak Power		π	Verdict			
		dBm	W	dBm	W	dBm	W		
1	2412	23.34	0.2158	22.76	0.1888			PASS	
6	2437	21.78	0.1507	23.37	0.2173	30	1	PASS	
11	2462	22.27	0.1687	23.07	0.2028			PASS	

Channel	Frequency		IT0 e Power		NT1 Lir		it	Verdict
	(MHz)	dBm	W	dBm	W	dBm	W	
1	2412	10.88	0.0122	11.02	0.0126			PASS
6	2437	10.32	0.0108	9.87	0.0097	30	1	PASS
11	2462	8.61	0.0073	10.17	0.0104			PASS

Total Peak Power (ANT0+ANT1)

Channel	Frequency	Total Peak Power	Total Peak Power	Lin	nit	Verdict		
	(MHz)	(dBm)	(W)	dBm	W	verdict		
1	2412	26.07	0.4046			PASS		
6	2437	25.66	0.3681	30	1	PASS		
11	2462	25.70	0.3715			PASS		
Note: Dir	Note: Directional gain = 1.5dBi + 10log(2) = 4.51dBi < 6dBi, so the power limit is 1W(30dBm).							

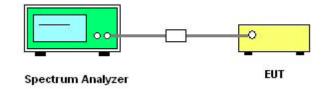
2.2.3.4 802.11n-40MHz Test mode

Freque	Froquency	AN	IT0	AN	T1	Lim	i+	
Channel Frequency (MHz)		Measured I	Peak Power	Measured Peak Power		π	Verdict	
	(10112)	dBm	W	dBm	W	dBm	W	
3	2422	19.18	0.0828	21.55	0.1429			PASS
6	2437	19.73	0.0940	20.54	0.1132	30	1	PASS
9	2452	19.03	0.0800	20.60	0.1148			PASS

Channel	Frequency		IT0	AN		Lim	it	
	(MHz)	Average	e Power	Average	Power		Verdict W PASS	
	(IVIFIZ)	dBm	W	dBm	W	dBm	W	
3	2422	7.69	0.0059	8.78	0.0076			PASS
6	2437	7.39	0.0055	8.90	0.0078	30	1	PASS
9	2452	6.96	0.0050	8.04	0.0064			PASS

Total Peak Power (ANT0+ANT1)

Channel	Frequency	Total Peak Power	Total Peak Power	Lin	nit	Verdict		
	(MHz)	(dBm)	(W)	dBm	W	verdict		
3	2422	23.54	0.2259			PASS		
6	2437	23.16	0.2070	30	1	PASS		
9	2452	22.90	0.1950			PASS		
Note: Dir	Note: Directional gain = 1.5dBi + 10log(2) = 4.51dBi < 6dBi, so the power limit is 1W(30dBm).							



2.3.1. Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.3.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 8.1 Option 1 was used in order to prove compliance.

B. Equipments List:

Please refer ANNEX A(1.5).

2.3.3. Test Result

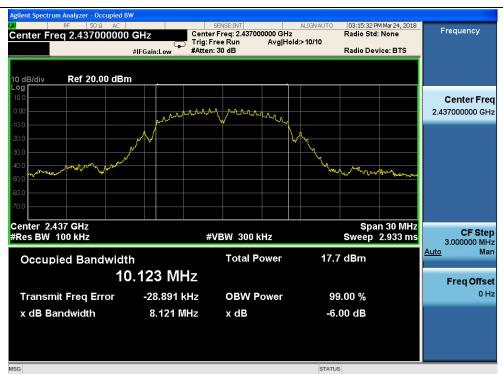
The lowest, middle and highest channels are selected to perform testing to record the 6 dB bandwidth of the Module.

2.3.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency (MHz)	ANT1 6 dB Bandwidth (MHz)	Limits(kHz)	Result
1	2412	8.114	≥500	PASS
6	2437	8.121	≥500	PASS
11	2462	8.573	≥500	PASS

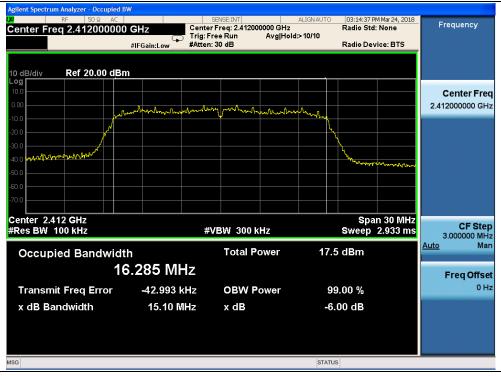
B. Test Plots


(ANT1, Channel 1, 2412MHz, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(ANT1, Channel 11, 2462MHz, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

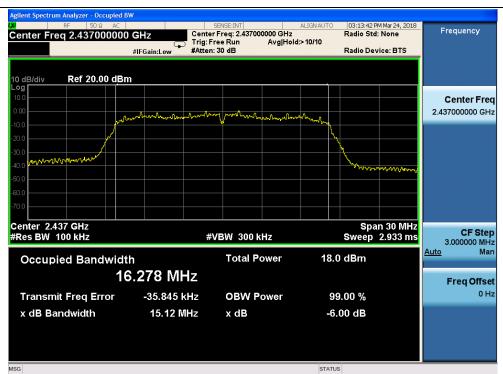


2.3.3.2 802.11g Test mode

A. Test Verdict:

Channel	Frequency (MHz)	ANT1 6 dB Bandwidth (MHz)	Limits(kHz)	Result
1	2412	15.10	≥500	PASS
6	2437	15.12	≥500	PASS
11	2462	15.11	≥500	PASS

B. Test Plots:

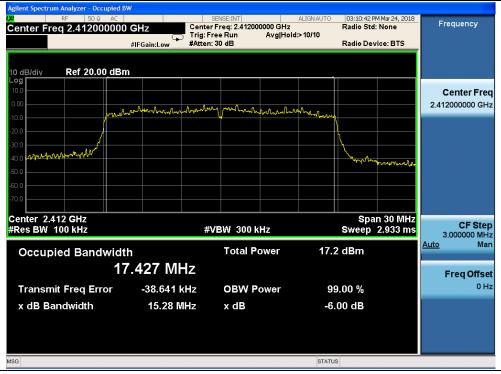

(ANT1, Channel 1, 2412MHz, 802.11g)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(ANT1, Channel 11, 2462MHz, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

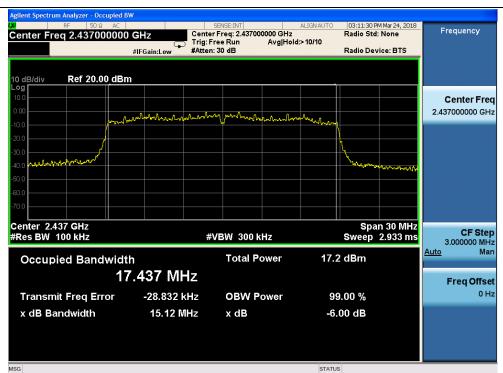


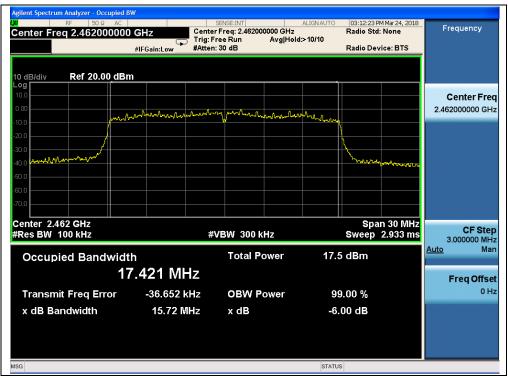
2.3.3.3 802.11n-20 Test mode

A. Test Verdict:

Channel	Frequency (MHz)	ANT1 6 dB Bandwidth (MHz)	Limits(kHz)	Result
1	2412	15.28	≥500	PASS
6	2437	15.12	≥500	PASS
11	2462	15.72	≥500	PASS

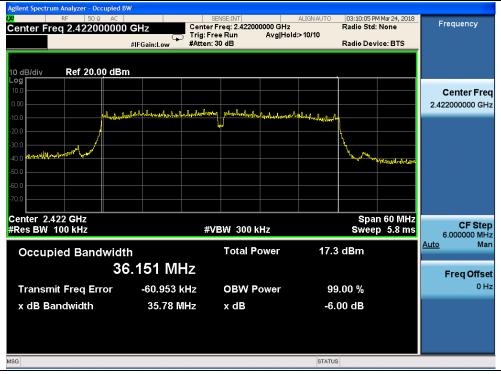
B. Test Plots:


(ANT1, Channel 1, 2412MHz, 802.11n-20)


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(ANT1, Channel 11, 2462MHz, 802.11n-20)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

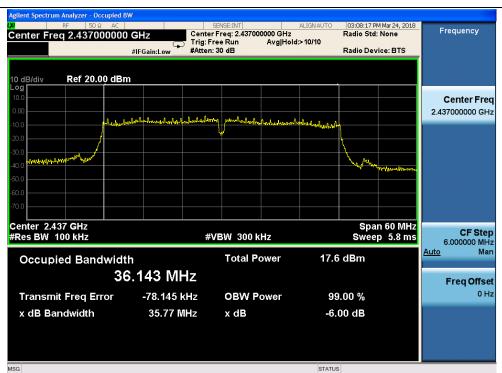


2.3.3.4 802.11n-40 Test mode

A. Test Verdict:

Channel	Frequency (MHz)	ANT1 6 dB Bandwidth (MHz)	Limits(kHz)	Result
3	2422	35.78	≥500	PASS
6	2437	35.77	≥500	PASS
9	2452	36.35	≥500	PASS

B. Test Plots:


(ANT1, Channel 3, 2422Mz, 802.11n-40)

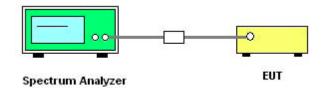
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


(AN	IT1.	Channel 6	5.	2437MHz.	802.11n-40)
(/	,	Onumber (-,	<u> </u>	002.1111.10/

(ANT1, Channel 9, 2452MHz, 802.11n-40)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.4. Conducted Spurious Emissions and Band Edge

2.4.1. Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.4.2. Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

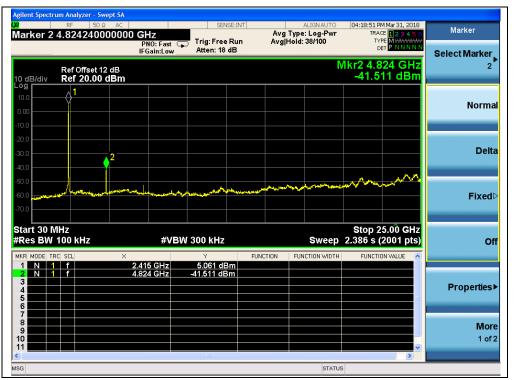
KDB 558074 Section 11.0 was used in order to prove compliance.

B. Equipments List:

Please refer ANNEX A(1.5).

2.4.3. Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

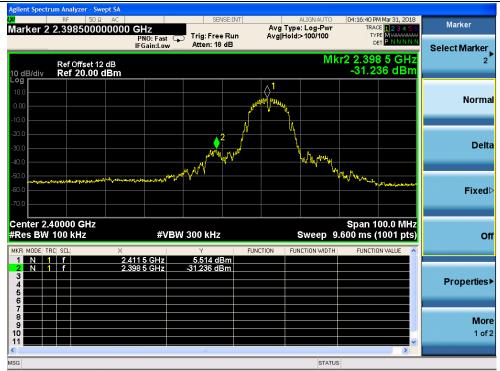

2.4.3.1 802.11b Test mode

A. Test Verdict:

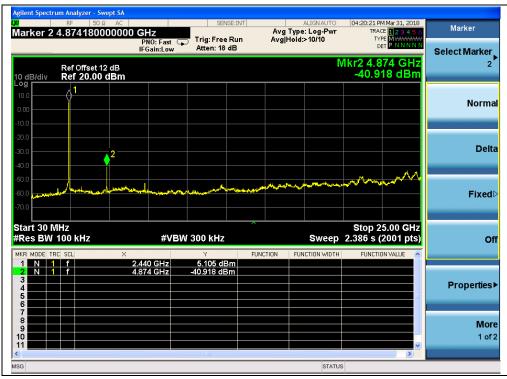
	Frequency	ANT1	Limit		
Channel	nnel Frequency (MHz)	Measured Max. Out of	Carrier	Calculated	Verdict
		Band Emission (dBm)	Level	-20dBc Limit	
1	2412	-41.51	5.06	-14.94	PASS
6	2437	-40.92	5.11	-14.89	PASS
11	2462	-41.54	3.70	-16.30	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.



(ANT1, Channel = 1, 30MHz to 25GHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(ANT1, Band Edge @ Channel = 1)

(ANT1, Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

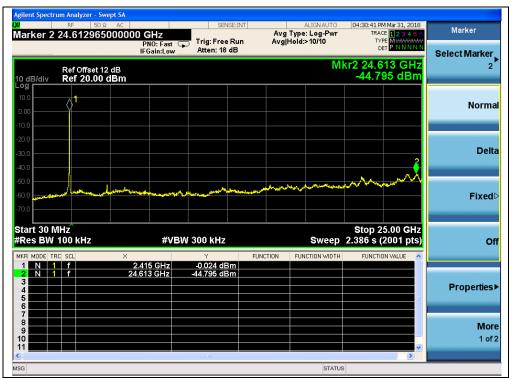
Agilent Spectrum Analyzer - Swept SA				
Marker 2 4.924120000000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	04:23:53 PM Mar 31, 2018 TRACE 1 2 3 4 5 6	Marker
PNO: Fast IFGain:Lov		Avg Hold:>10/10	TYPE MWWWW DET P N.N.N.N.N	Select Marker
Ref Offset 12 dB 10 dB/div Ref 20.00 dBm		Ν	/lkr2 4.924 GHz -41.544 dBm	2
10.0 0.00 -10.0				Normal
-20.0 -30.0 -40.0				Delta
-50.0 -60.0	n Bayar Marana an	anthe state of the	www.www	Fixed⊳
Start 30 MHz #Res BW 100 kHz #V	BW 300 kHz	Sweep	Stop 25.00 GHz 2.386 s (2001 pts)	Off
1 N 1 f 2.465 GHz 2 N 1 f 4.924 GHz 3 - - - 4 - - - 5 - - - 6 - - - -	3.695 dBm -41.544 dBm			Properties▶
7 8 9 10 11 11			×	More 1 of 2
MSG		STATUS		

(ANT1, Channel = 11, 30MHz to 25GHz)

(ANT1, Band Edge @ Channel = 11)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.4.3.2 802.11g Test mode

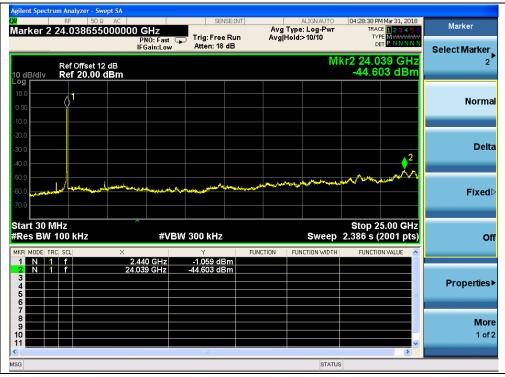
A. Test Verdict:

Frequency	ANT1	Limi			
Channel	Channel Frequency (MHz)	Measured Max. Out of	Carrier	Calculated	Verdict
	(IVITZ)	Band Emission (dBm)	Level	-20dBc Limit	
1	2412	-44.80	-0.02	-20.02	PASS
6	2437	-44.60	-1.06	-21.06	PASS
11	2462	-43.60	-0.51	-20.51	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

(ANT1, Channel = 1, 30MHz to 25GHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(ANT1, Band Edge, Channel = 1)

(ANT1, Channel = 6, 30MHz to 25GHz)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Agilent Spectrum Analyzer - Swept SA				
Marker 2 24.612965000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	04:27:03 PM Mar 31, 2018 TRACE 1 2 3 4 5 6	Marker
PNO: Fast IFGain:Low		Avg Hold>10/10	TYPE MWWWWW DET PNNNNN	Select Marker
Ref Offset 12 dB 10 dB/div Ref 20.00 dBm		М	kr2 24.613 GHz -43.598 dBm	2
10.0 0.00 -10.0				Normal
-20.0 				Delta
-50.0 -60.0 -70.0	ar to prove and the second of	المجنب العمل بالمحلوم المحمل المحال بعالي بع المحال		Fixed⊳
Start 30 MHz #Res BW 100 kHz #V	BW 300 kHz	Sweep	Stop 25.00 GHz 2.386 s (2001 pts)	Off
1 N 1 f 2.465 GHz 2 N 1 f 24.613 GHz 3 3 3 3 4 4 5 5 6 6 8 8 8 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	-0.509 dBm -43.598 dBm			Properties▶
7 8 9 9 10 11 11			~	More 1 of 2
MSG		STATU		

(ANT1, Channel = 11, 30MHz to 25GHz)

(ANT1, Band Edge, Channel = 11)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.4.3.3 802.11n -20MHz Test mode

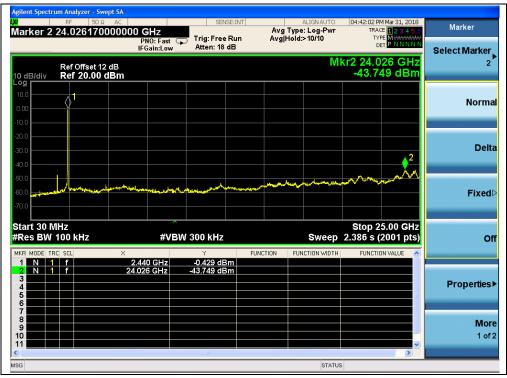
A. Test Verdict:

Frequency	ANT1	Limi			
Channel	Channel Frequency (MHz)	Measured Max. Out of	Carrier	Calculated	Verdict
	(IVITZ)	Band Emission (dBm)	Level	-20dBc Limit	
1	2412	-44.21	-0.69	-20.69	PASS
6	2437	-43.75	-0.43	-20.43	PASS
11	2462	-42.83	-0.63	-20.63	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

(ANT1, Channel = 1, 30MHz to 25GHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(ANT1, Band Edge, Channel = 1)

(ANT1, Channel = 6, 30MHz to 25GHz)

MORLAB

ter - Swept SA	
	Marker
PNO: Fast Trig: Free Run Avg Hold>10/10 TVPE NNNNN IFGain:Low Atten: 18 dB Sele	ct Marker
fset 12 dB Mkr2 1.765 GHz 0.00 dBm -42.829 dBm	2
	Norma
	Delta
	Fixed▷
Stop 25.00 GHz z #VBW 300 kHz Sweep 2.386 s (2001 pts) x Y FUNCTION FUNCTION WIDTH FUNCTION VALUE	Off
2.452 GHz -0.629 dBm 1.765 GHz -42.829 dBm	Properties •
	More 1 of 2
STATUS	

(ANT1, Channel = 11, 30MHz to 25GHz)

(ANT1, Band Edge, Channel = 11)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.4.3.4 802.11n -40MHz Test mode

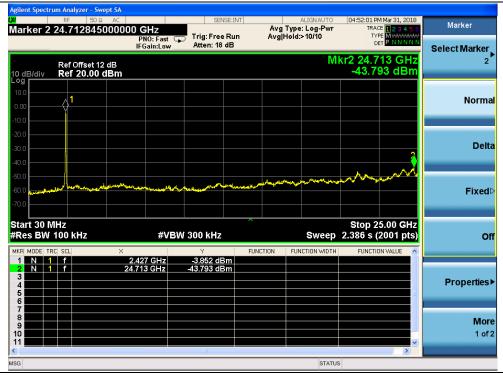
A. Test Verdict:

Channel Frequency (MHz)	ANT1	Limi			
	Measured Max. Out of	Carrier	Calculated	Verdict	
	(IVITZ)	Band Emission (dBm)	Level	-20dBc Limit	
3	2422	-44.13	-3.49	-23.49	PASS
6	2437	-43.79	-3.85	-23.85	PASS
9	2452	-43.56	-3.41	-23.41	PASS

B. Test Plots:

Note: The power of the Module transmitting frequency should be ignored.

(ANT1, Channel = 3, 30MHz to 25GHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(ANT1, Band Edge, Channel = 3)

(ANT1, Channel = 6, 30MHz to 25GHz)

MORLAB

Agilent Spectrum Analyzer - Swept SA				
Marker 2 24.138535000000 GHz		ALIGNAUTO Avg Type: Log-Pwr	04:56:17 PM Mar 31, 2018 TRACE 1 2 3 4 5 6	Marker
PNO: F IFGain:	ast Trig: Free Run Low Atten: 18 dB	Avg Hold:>10/10	TYPE MWWWW DET P N.N.N.N.N	Select Marker
Ref Offset 12 dB 10 dB/div Ref 20.00 dBm		М	kr2 24.139 GHz -43.560 dBm	2
10.0 0.00 -10.0				Normal
-20.0			¢²	Delta
-50.0 -60.0	when the second	and all and a set of the set of t		Fixed⊳
MKR MODE TRC SCL X		Sweep	Stop 25.00 GHz 2.386 s (2001 pts) FUNCTION VALUE	Off
1 N 1 f 2.452 Gi 2 N 1 f 2.453 Gi 3 - - - - 4 - - - - 5 - - - - - 6 - - - - - - 7 -				Properties►
7 8 9 10 11			×	More 1 of 2
MSG		STATUS	3	

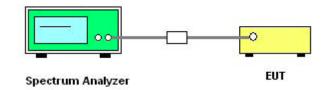
(ANT1, Channel = 9, 30MHz to 25GHz)

(ANT1, Band Edge, Channel = 9)

2.5. Power spectral density (PSD)

2.5.1. Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.


2.5.2. Test Description

A. Test procedure

The measured power spectral density was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for PSD test:

- a) Set analyzer center frequency to channel center frequency.
- b) Set the span to 1.5 times DTS bandwidth
- c) Set the RBW to 3 kHz
- d) Set the VBW to 10 kHz
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

B. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

KDB 558074 Section 10.2 was used in order to prove compliance.

C. Equipments List:

Please refer ANNEX A(1.5).

2.5.3. Test Result

2.5.3.1 802.11b Test mode

A. Test Verdict:

Channel	Frequency (MHz)	ANT0 Measured PSD (dBm/3kHz)	ANT1 Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
1	2412	-7.26	-7.09	8	PASS
6	2437	-7.93	-7.18	8	PASS
11	2462	-7.24	-7.90	8	PASS

B. Test Plots:

(Channel = 1, 802.11b, ANT0)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11b, ANT0)

(Channel = 11, 802.11b, ANT0)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 1, 802.11b, ANT1)

(Channel = 6, 802.11b, ANT1)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 11, 802.11b, ANT1)

2.5.3.2 802.11g Test mode

A. Test Verdict:

Channel	Frequency (MHz)	ANT0 Measured PSD (dBm/3kHz)	ANT1 Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
1	2412	-12.93	-12.13	8	PASS
6	2437	-12.61	-11.38	8	PASS
11	2462	-13.63	-12.13	8	PASS

B. Test Plots:

(Channel = 1, 802.11g, ANT0)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11g, ANT0)

(Channel = 11, 802.11g, ANT0)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 1, 802.11g, ANT1)

(Channel = 6, 802.11g, ANT1)

(Channel = 11, 802.11g, ANT1)

2.5.3.3 802.11n-20MHz Test mode

A. Test Verdict:

Channel	Frequency (MHz)	ANT0 Measured PSD (dBm/3kHz)	ANT1 Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
1	2412	-12.94	-13.16	8	PASS
6	2437	-12.71	-14.02	8	PASS
11	2462	-12.91	-13.81	8	PASS

Total Power spectral density (ANT0+ANT1)

Channel	Frequency (MHz)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict					
1	2412	-10.04	8	PASS					
6	2437	-10.31	8	PASS					
11	2462	-10.33	8	PASS					
Note: Dire	Note: Directional gain = 1.5dBi + 10log(2) = 4.51dBi < 6dBi, so the limit is 8 dBm/3kHz.								

B. Test Plots:

(Channel = 1, 802.11n-20MHz, ANT0)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11n-20MHz, ANT0)

(Channel = 11, 802.11n-20MHz, ANT0)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 1, 802.11n-20MHz, ANT1)

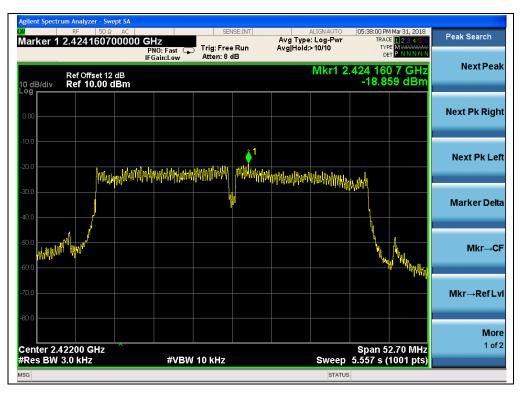
(Channel = 6, 802.11n-20MHz, ANT1)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 11, 802.11n-20MHz, ANT1)

2.5.3.4 802.11n-40MHz Test mode


A. Test Verdict:

Channel	Frequency (MHz)	ANT0 Measured PSD (dBm/3kHz)	ANT1 Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
3	2422	-18.86	-15.38	8	PASS
6	2437	-18.40	-17.24	8	PASS
9	2452	-17.83	-16.94	8	PASS

Total Power spectral density (ANT0+ANT1)

Channel	Frequency (MHz)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict					
3	2422	-13.77	8	PASS					
6	2437	-14.77	8	PASS					
9	2452	8	PASS						
Note: Dire	Note: Directional gain = 1.5dBi + 10log(2) = 4.51dBi < 6dBi, so the power limit is 8 dBm/3kHz.								

B. Test Plots:

(Channel = 3, 802.11n-40MHz, ANT0)


MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 6, 802.11n-40MHz, ANT0)

(Channel = 9, 802.11n-40MHz, ANT0)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

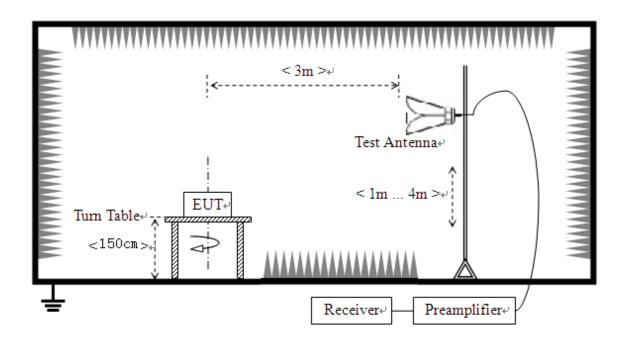
(Channel = 3, 802.11n-40MHz, ANT1)

(Channel = 6, 802.11n-40MHz, ANT1)

MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

(Channel = 9, 802.11n-40MHz, ANT1)


2.6. Restricted Frequency Bands

2.6.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.6.2. Test Description

A. Test Setup

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

KDB 558074 Section 12.1 was used in order to prove compliance.

B. Equipments List:

Please refer ANNEX A(1.5).

2.6.3. Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below: E $[dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$ A_T: Total correction Factor except Antenna U_R: Receiver Reading G_{preamp}: Preamplifier Gain A_{Factor}: Antenna Factor at 3m

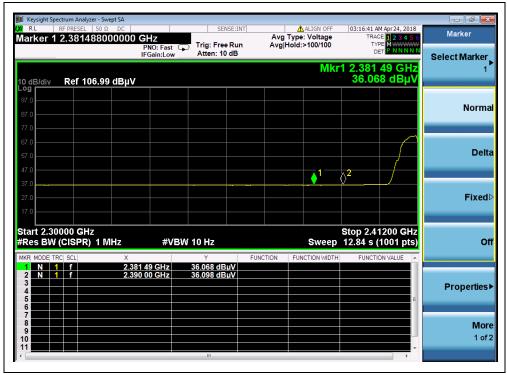
Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

2.6.3.1 802.11b Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict	
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)		
1	2381.49	PK	47.47	-33.63	32.56	46.40	74	PASS	
1	2381.49	AV	36.07	-33.63	32.56	35.00	54	PASS	
11	2484.19	PK	48.43	-33.18	32.50	47.75	74	PASS	
11	2483.81	AV	36.33	-33.18	32.50	35.65	54	PASS	


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

B. Test Plots:

Avg Type: Voltage Avg|Hold:>100/100 03:14:16 AM Apr 24, 2018 TRACE 1 2 3 4 5 6 TYPE M Trace/Detector Marker 1 2.381488000000 GHz Trig: Free Run Atten: 10 dB PNO: Fast 😱 IFGain:Low Select Trace Mkr1 2.381 49 GHz 47.471 dBµV 10 dB/div Ref 106.99 dBµV **Clear Write** Trace Average **1**- $\sqrt{2}$ Max Hold Start 2.30000 GHz #Res BW (CISPR) 1 MHz Stop 2.41200 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz **Min Hold** 2.381 49 GHz 2.390 00 GHz 47.471 dBµV 47.401 dBµV N 1 f N 1 f View Blank Trace On More 1 of 3

(Channel = 1 PEAK, 802.11b)

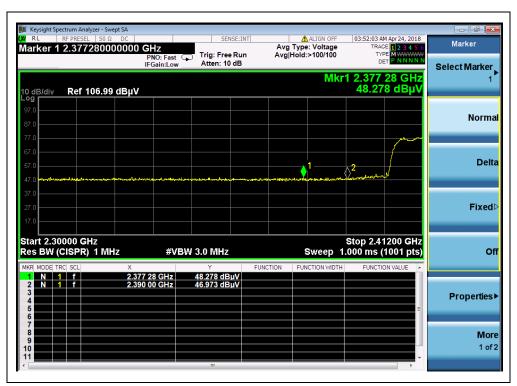
(Channel = 1 AVG, 802.11b)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Keysight Spectrum Analyzer - S R L RF PRESEL 50		SENS		ALIGN OFF		I Apr 24, 2018	
arker 2 2.4841920	000000 GHz PNO: Fast IFGain:Low	Trig: Free F	Run Avg	g Type: Voltage j Hold:>100/100	TRAC TYP DE	E 1 2 3 4 5 6 E M WWWWW T P N N N N N	Marker
) dB/div Ref 106.9		Atten. 10 C		Mkr2	2.484 1 48.42	92 GHz 9 dBµV	Select Marker 2
7.0 7.0							Norm
7.0			²				Deli
7.0		nlartin ^a rt-solara pinal and Ular			- #***	•1A.44.U-A=Aa	Fixed
7.0 tart 2.46200 GHz Res BW (CISPR) 1		BW 3.0 MHz			Stop 2.50	000 GHz	
KR MODE TRC SCL	Х	Y	FUNCTION	FUNCTION WIDTH			
1 N 1 f 2 N 1 f 3 4 5	2.483 500 GHz 2.484 192 GHz	47.194 dBµ 48.429 dBµ				=	Properties
6 7 8 9 0							M a 1 o
						-	

(Channel = 11 PEAK, 802.11b)

(Channel = 11 AVG, 802.11b)


2.6.3.2 802.11g Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency		Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Channel	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	verdict
1	2377.28	PK	48.28	-33.63	32.56	47.21	74	Pass
1	2387.36	AV	36.40	-33.63	32.56	35.33	54	Pass
11	2484.91	PK	48.60	-33.18	32.50	47.92	74	Pass
11	2484.15	AV	36.07	-33.18	32.50	35.39	54	Pass

B. Test Plots:

(Channel = 1 PEAK, 802.11g)

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

🚺 Keysight Spectrum Analyzer - Swept SA				
X RL RF PRESEL 50 Ω DC Marker 1 2.387360000000	GHZ PNO: Fast IFGain:Low Trig: Free Ru Atten: 10 dE	Avg Type: Voltage	03:55:45 AM Apr 24, 2018 TRACE 1 2 3 4 5 6 TYPE MWWW DET P NNNNN	Marker Select Marker
10 dB/div Ref 106.99 dBµV		Mkı	r1 2.387 36 GHz 36.404 dBµV	1
97.0 87.0				Norma
77.0 67.0 57.0 47.0				Deita
47.0 37.0 27.0 17.0 17.0				Fixed
Start 2.30000 GHz Â Res BW (CISPR) 1 MHz	#VBW 10 Hz	Sweep		Of
MKR MODE TRC SCL X 1 N 1 f 2.38 2 N 1 f 2.39 3 - - - 4 - - - 6 - - -	7 36 GHz 36.404 dBμV 0 00 GHz 36.392 dBμV	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Properties▶
7 8 9 10 11				More 1 of 2

(Channel = 1 AVG, 802.11g)

(Channel = 11 PEAK, 802.11g)

MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

- F		0.00.05.0			74.07	051105				Analyzer - S	
Marker	Apr 24, 2018	TRAC	ALIGN OFF	Avg Typ		SENSE			00000 G		
Select Marker		DI	>100/100	Avg Hold		Free R n: 10 dl		PNO: Fast FGain:Low			
2	54 GHz 8 dBµV	2.484 1 36.06	Mkr2						9 dBµV	f 106.9	/div
Norma											
Delt									\rightarrow		
									+ -		
			~~~~~		V <u>v</u>		~				
Fixed											
O	000 GHz 1001 pts)	Stop 2.50 4.357 s (	Sweep			z	W 10 H	#VI	/IHz	GHz SPR) 1 I	2.4620 BW (C
	N VALUE	FUNCTION	ICTION WIDTH	ION FU	FUNC		Y		х		DDE TRC S
						2 dBµ\ 8 dBµ\		00 GHz 54 GHz			N 1 N 1
Properties											
	=										
Mor											
1 of											

(Channel = 11 AVG, 802.11g)

#### 2.6.3.3 802.11n-20MHz Test mode

The lowest and highest channels are tested to verify the band edge emissions.

#### A. Test Verdict:

Channel	Frequency (MHz)	Detector	Receiver Reading U _R	A _T (dB)	A _{Factor} (dB@3m)	Max. Emission E	Limit (dBµV/m)	Verdict	
	(10112)	PK/ AV	(dBuV)	(UD)	(ub@Sill)	∟ (dBµV/m)	(ασμν/ιιι)		
1	2388.14	PK	50.16	-33.63	32.56	49.09	74	Pass	
1	2388.82	AV	36.86	-33.63	32.56	35.79	54	Pass	
11	2487.16	PK	48.87	-33.18	32.50	48.19	74	Pass	
11	2484.99	AV	36.84	-33.18	32.50	36.16	54	Pass	

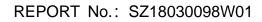




### **B. Test Plots:**

🛿 Keysight Spectrum Analyzer - Swept SA R Avg Type: Voltage Avg|Hold:>100/100 01:30:12 AM Apr 25, 2018 RACE 1 2 3 4 5 TYPE MWWWW DET P NNNN Marker 1 2.388144000000 GHz PN0: Fast C IFGain:Low Atten: 10 dB Marker Select Marker Mkr1 2.388 14 GHz 50.164 dBµ\ Ref 106.99 dBµV I0 dB/div og Normal Delta 12_ √2... **Fixed** Start 2.30000 GHz #Res BW (CISPR) 1 MHz Stop 2.41200 GHz 1.000 ms (1001 pts) #VBW 3.0 MHz Sweep Off 2.388 14 GHz 2.390 00 GHz 50.164 dBµV 49.512 dBµV Properties► More 1 of 2

# (Channel = 1 PEAK, 802.11n-20)




(Channel = 1 AVG, 802.11n-20)

**MORLAB** 

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn





Keysight Spectrum Analyzer - Swept SA					¢
RL RF PRESEL 50 Ω DC arker 2 2.487156000000	PNO: Fast 😱 Trig	Avg Ty	ALIGN OFF pe: Voltage d:>100/100	01:42:55 AM Apr 25, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N	
dB/div Ref 106.99 dBµ\	II Guilleow	10 dB	Mkr2	2.487 156 GHz 48.872 dBµV	Select Marke
7.0 7.0					Norn
	4 Wall Mary Lange Langer Part of Brand			אין אינג איז אין אינגעראינגערע אין אינגערע אין אינגערע אין אינגערע אין אינגערע אין אינגערע אין אינגערע אין אינג	De
.0 .0 .0					Fixe
art 2.46200 GHz tes BW (CISPR) 1 MHz	#VBW 3.0 N	z	Sweep 1.	Stop 2.50000 GHz 000 ms (1001 pts)	
R MODE TRC SCL X N 1 f 2 N 1 f 2.48	483 5 GHz 47.74 7 156 GHz 48.87	BμV	UNCTION WIDTH	FUNCTION VALUE	
				E	Propertie
					Ma

(Channel = 11 PEAK, 802.11n-20)



(Channel = 11 AVG, 802.11n-20)





# 2.6.3.4 802.11n-40MHz Test mode

The lowest and highest channels are tested to verify the band edge emissions.

#### A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	
3	2375.71	PK	49.45	-33.63	32.56	48.38	74	Pass
3	2388.14	AV	37.06	-33.63	32.56	35.99	54	Pass
9	2484.00	PK	50.69	-33.18	32.50	50.01	74	Pass
9	2484.08	AV	40.55	-33.18	32.50	39.87	54	Pass

#### B. Test Plots:



(Channel = 3 PEAK, 802.11n-40)







Keysight Spectrum Analyzer -           RL         RF PRESEL         50           arker         1         2.388144	ο 000000 GHz	SENS	Avg	ALIGN OFF	01:57:49 AM Apr 25, 2018 TRACE 1 2 3 4 5	Marker
	PNO: Fas IFGain:Lo			Hold:>100/100		Select Marker
dB/div Ref 106.	99 dBµV			Mkı	1 2.388 14 GHz 37.063 dBµV	
g 						Norm
7.0 7.0						NOTI
.0					$\sim$	
.0						De
7.0					12 Y	
.0						Fixe
.0						
art 2.30000 GHz es BW (CISPR) 1	MHz #	VBW 10 Hz		Sweep	Stop 2.41200 GHz 12.84 s (1001 pts)	
R MODE TRC SCL	× 2.388 14 GHz	Y 37.063 dBu	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
N 1 f	2.388 14 GHz 2.390 00 GHz					Propertie
					=	Froperue
						Ma
						1 0
					4	

(Channel = 3 AVG, 802.11n-40)



(Channel = 9 PEAK, 802.11n-40)

**MORLAB** 

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn E-mail: service@morlab.cn



ট <mark>►</mark>	pr 25, 2018 1 <b>2 3 4 5 6</b>	02:08:24 AM	ALIGN OFF	Ave	NSE:INT	SEN	GHz		ectrum Analyzer	RL
Select Marker	MWWWWW PNNNNN	TYPE	old:>100/100	Avg		Trig: Free Atten: 10	PNO: Fast IFGain:Low	000000	2.40407	
2	8 GHZ dBµV	2.484 07 40.547	MKr2		_			.99 dBµV	Ref 106	0 dB/div
Norma										. <b>og</b> 97.0 87.0
Delta										77.0 67.0
				2						47.0 37.0
Fixed										27.0 17.0
Of	01 pts)	Stop 2.500 4.357 s (1	Sweep			10 Hz	#VBV		200 GHz (CISPR)	Res BW
	VALUE	FUNCTION	FUNCTION WIDTH	NCTION	μV	Y 39.529 dB 40.547 dB	500 GHz 078 GHz		RC SCL	~
Properties	=									3 4 5 6
More										7 8 9
1 of 2										10

(Channel = 9 AVG, 802.11n-40)





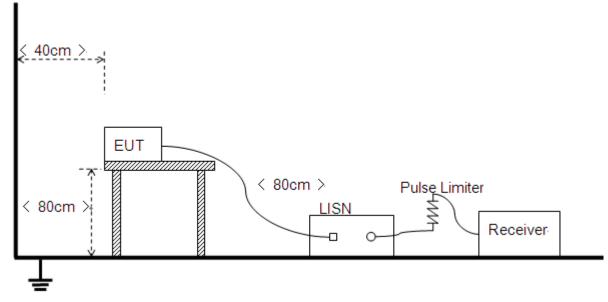


# 2.7. Conducted Emission

# 2.7.1. Requirement

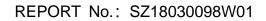
According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a  $50\mu$ H/50 $\Omega$  line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)				
(MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
5 - 30	60	50			


NOTE:

(a) The lower limit shall apply at the band edges.

(b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 - 0.50MHz.


# 2.7.2. Test Description

## A. Test Setup:



The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10 2013.

MORLAB

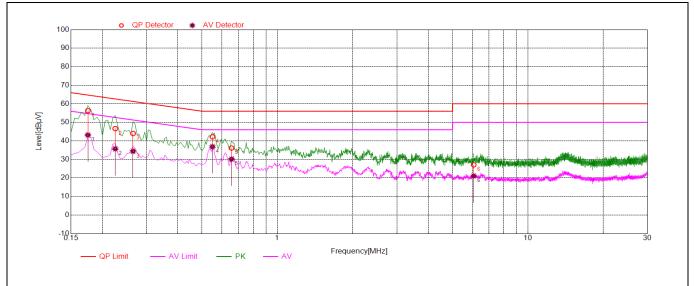




## **B.** Equipments List:

Please reference ANNEX A(1.5).

# 2.7.3. Test Result


The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Note: Both of the test voltage AC 120V/60Hz and AC 230V/50Hz were considered and tested respectively, only the results of the worst case AC 120V/60Hz were recorded in this report.

## A. Test setup:

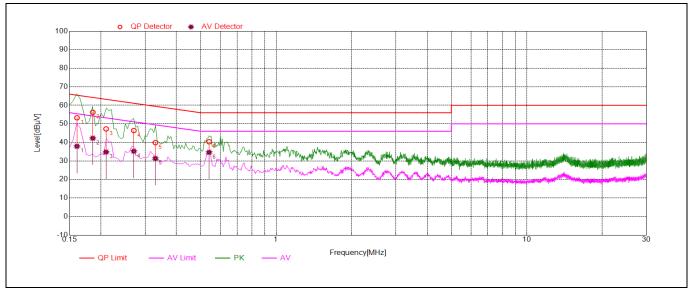
The EUT configuration of the emission tests is EUT + Link. The test voltage is AC 120V/60Hz.

#### **Test Plots:** Β.



(Plot A: L Phase)

NO. Fre.	Emission Level (dBµV)		Limit (dBµV)		Power-line	Verdict	
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.17	56.29	43.17	64.72	54.72		PASS
2	0.22	46.63	35.71	62.63	52.63		PASS
3	0.26	44.01	34.41	61.27	51.27		PASS
4	0.55	42.17	36.88	56.00	46.00	Line	PASS
5	0.66	36.14	30.13	56.00	46.00	_	PASS
6	6.07	27.07	21.08	60.00	50.00		PASS




SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525






(Plot B: N Phase)

NO.	NO. Fre.	Emission Level (dBµV)		Limit (dBµV)		Power-line	Verdict
	(MHz)	Quai-peak	Average	Quai-peak	Average		
1	0.16	53.29	37.90	65.44	55.44		PASS
2	0.19	56.22	42.25	64.24	54.24		PASS
3	0.21	47.27	34.78	63.22	53.22		PASS
4	0.27	46.39	35.23	61.11	51.11	Neutral	PASS
5	0.33	39.86	31.33	59.46	49.46		PASS
6	0.54	40.33	34.63	56.00	46.00		PASS







# 2.8. Radiated Emission

# 2.8.1. Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

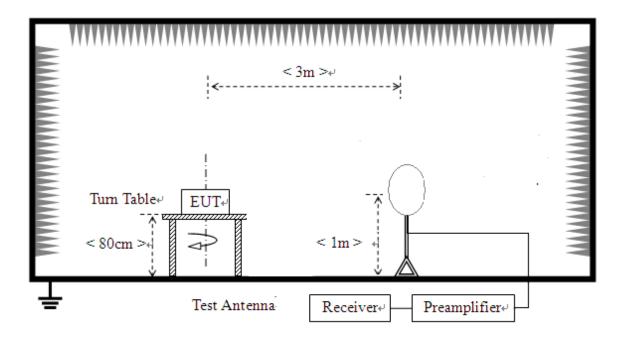
According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

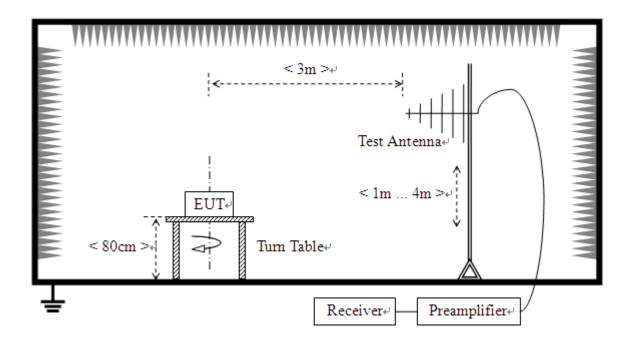
Note:

- For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)



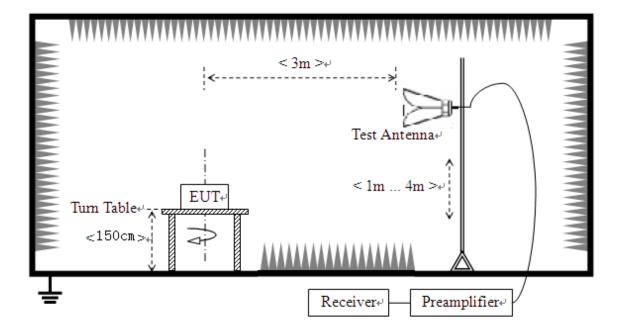




# 2.8.2. Test Description

#### A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz




2) For radiated emissions from 30MHz to1GHz





SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3) For radiated emissions above 1GHz



The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

# A. Equipments List:

Please reference ANNEX A(1.5).

# 2.8.3. Test Result

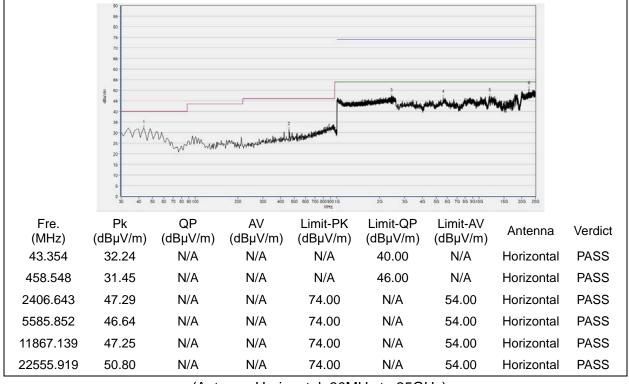
According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

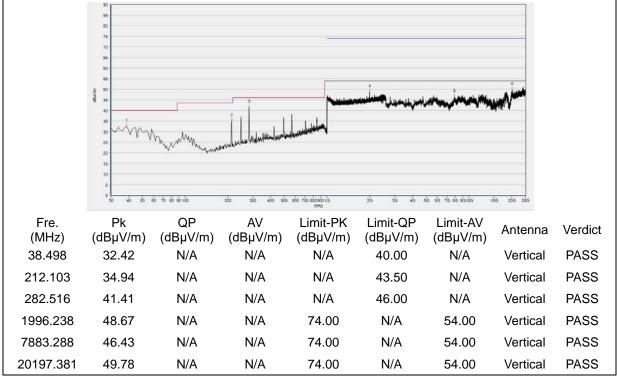
During the test, the total correction Factor  $A_T$  and  $A_{Factor}$  were built in test software.

**Note1:** All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

**Note2:** For the frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit was not recorded.


**Note3:** For the frequency, which started from 25GHz to 40GHz, was pre-scanned and the result which was 10dB lower than the limit was not recorded.



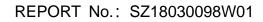



#### 2.8.3.1 802.11b Test mode

#### Plots for Channel = 1

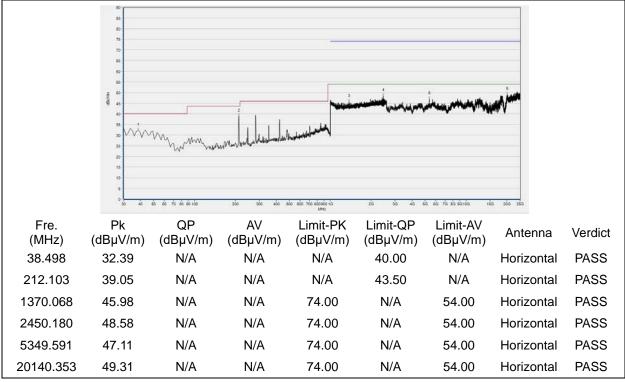


(Antenna Horizontal, 30MHz to 25GHz)

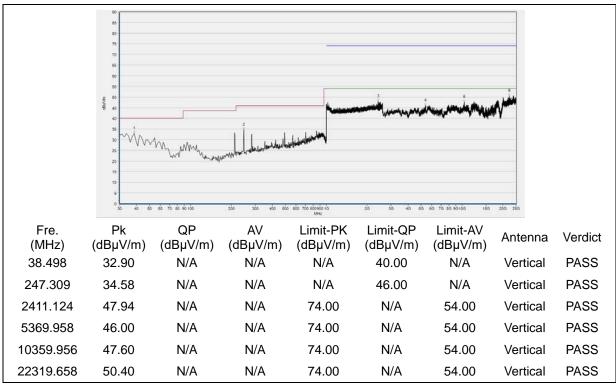



(Antenna Vertical, 30MHz to 25GHz)




SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525 E-mail: service@morlab.cn





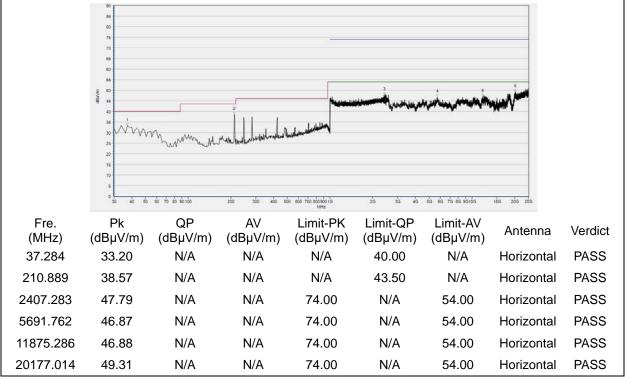

Plot for Channel = 6



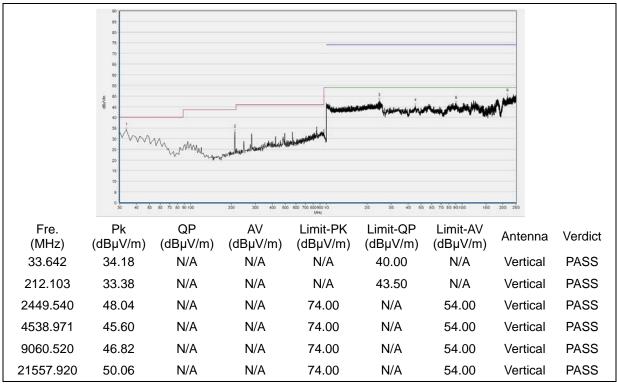
(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)




SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn


Fax: 86-755-36698525 E-mail: service@morlab.cn



Plot for Channel = 11



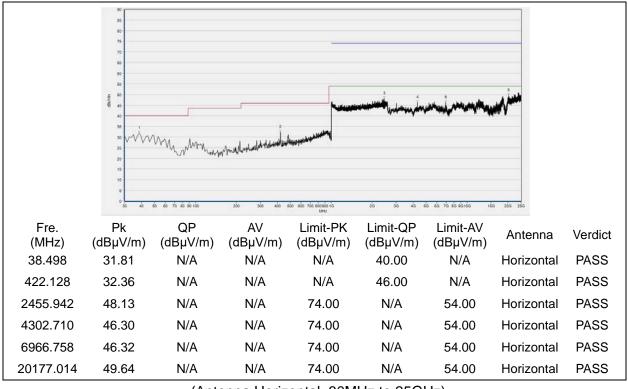
(Antenna Horizontal, 30MHz to 25GHz)



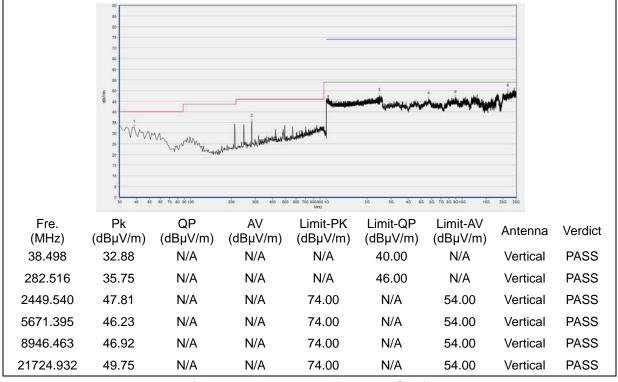
(Antenna Vertical, 30MHz to 25GHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555


Fax: 86-755-36698525 E-mail: service@morlab.cn




# REPORT No.: SZ18030098W01

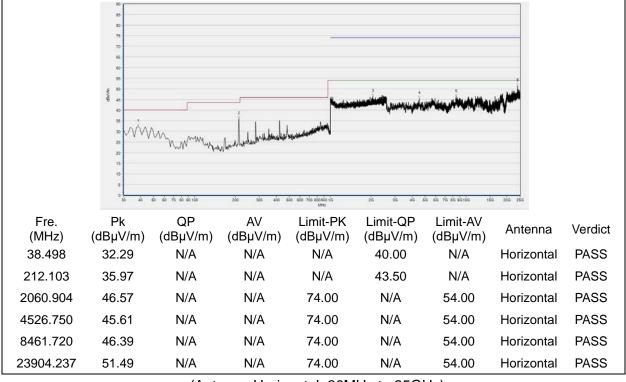
### 2.8.3.2 802.11g Test mode

Plots for Channel = 1

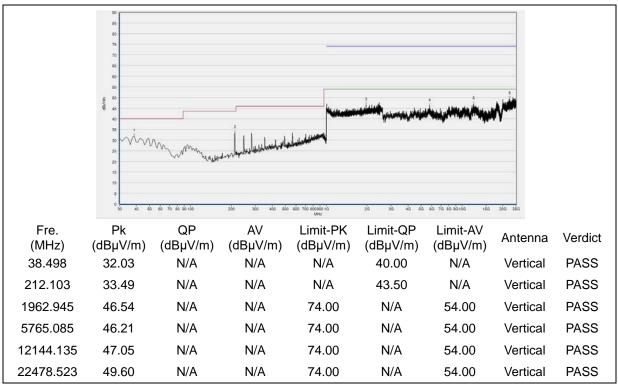


(Antenna Horizontal, 30MHz to 25GHz)




(Antenna Vertical, 30MHz to 25GHz)

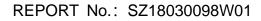



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

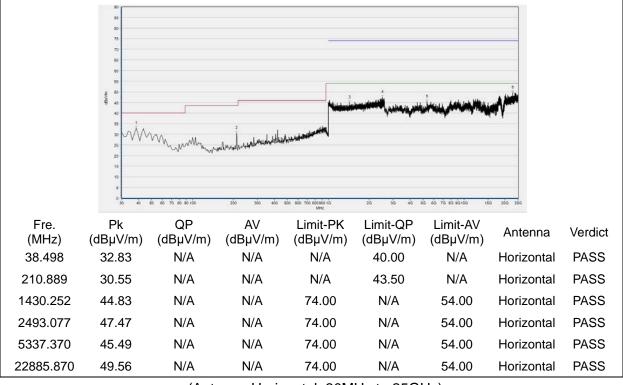




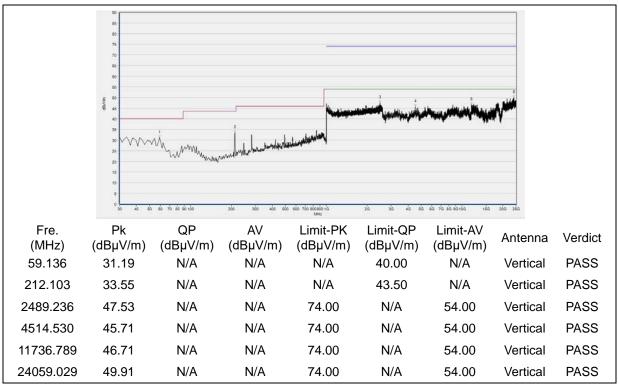



(Antenna Horizontal, 30MHz to 25GHz)




(Antenna Vertical, 30MHz to 25GHz)

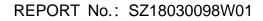



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa: Http://www.morlab.cn E-r





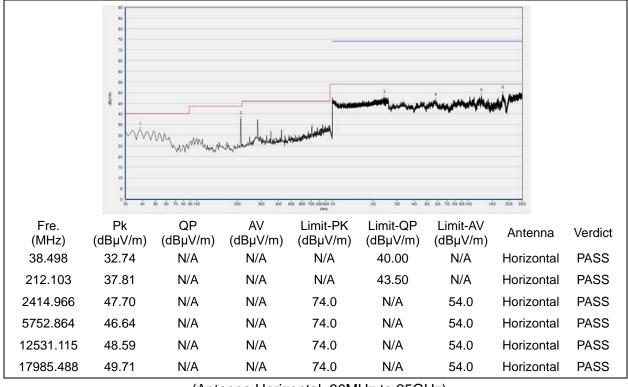



(Antenna Horizontal, 30MHz to 25GHz)

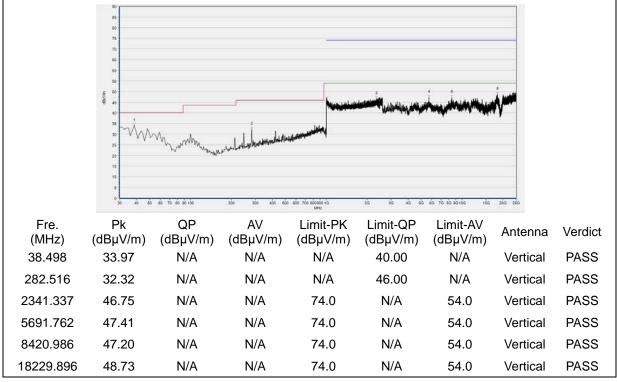


(Antenna Vertical, 30MHz to 25GHz)




SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn E-

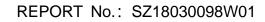




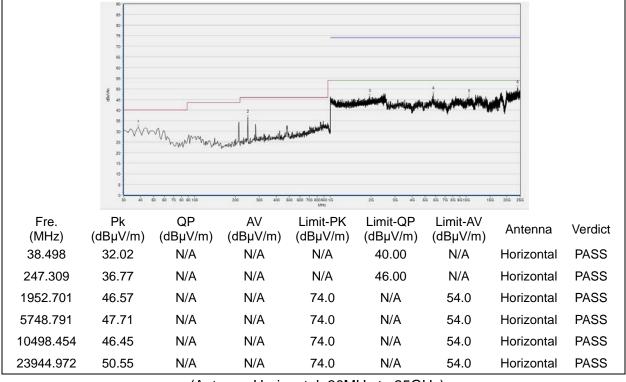

## 2.8.3.3 802.11n-20MHz Test mode

#### Plots for Channel = 1

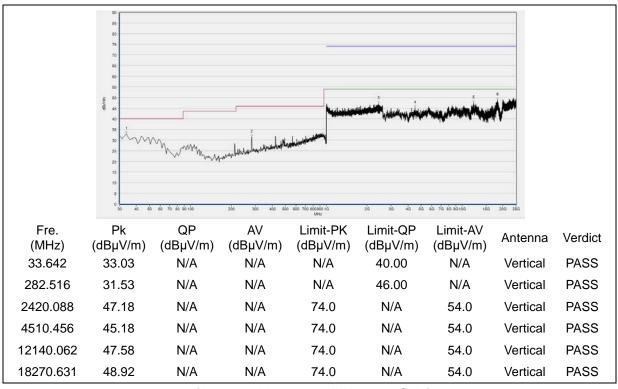



(Antenna Horizontal, 30MHz to 25GHz)




(Antenna Vertical, 30MHz to 25GHz)




SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

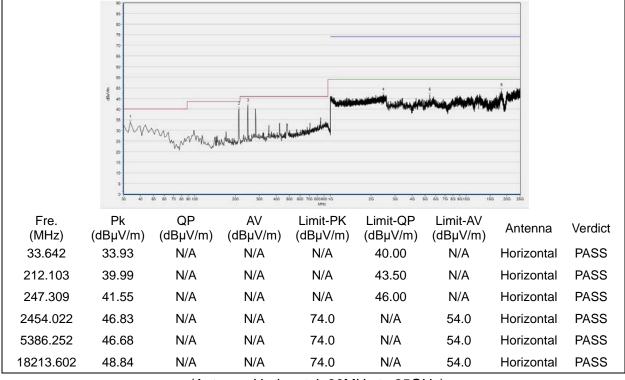




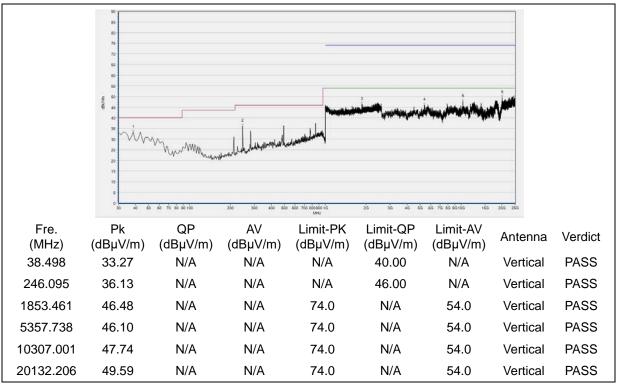


(Antenna Horizontal, 30MHz to 25GHz)




(Antenna Vertical, 30MHz to 25GHz)

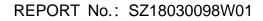



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa: Http://www.morlab.cn E-r








(Antenna Horizontal, 30MHz to 25GHz)

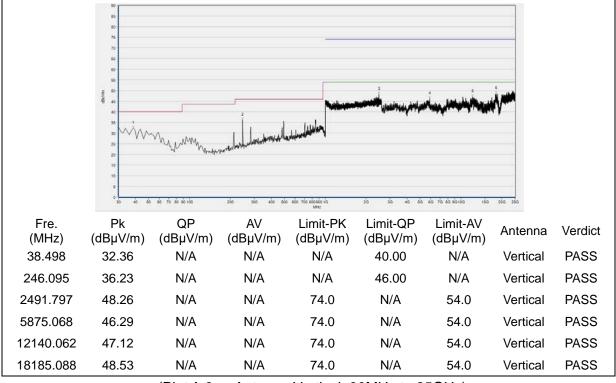


(Antenna Vertical, 30MHz to 25GHz)




SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn E-





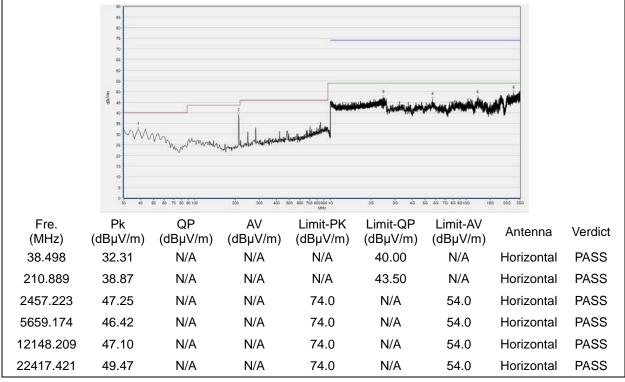

## 2.8.3.4 802.11n-40MHz Test mode

#### Plots for Channel = 3

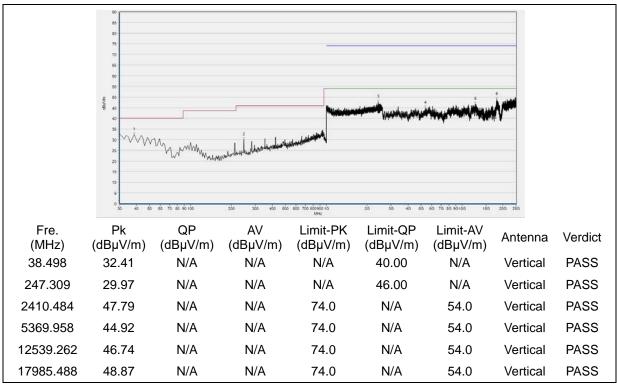


(Antenna Horizontal, 30MHz to 25GHz)




(Plot A.3: Antenna Vertical, 30MHz to 25GHz)

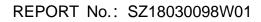



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

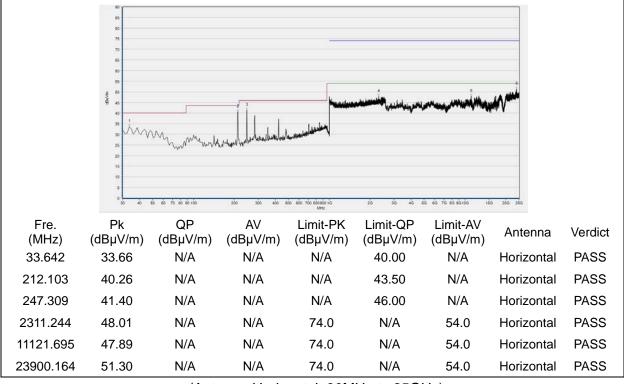




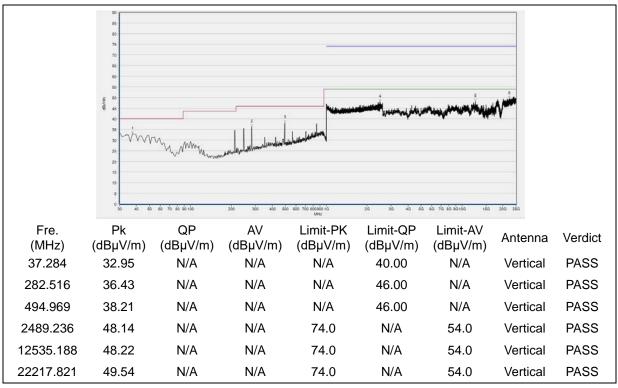



(Antenna Horizontal, 30MHz to 25GHz)




(Antenna Vertical, 30MHz to 25GHz)




SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 F Http://www.morlab.cn E







(Antenna Horizontal, 30MHz to 25GHz)



(Antenna Vertical, 30MHz to 25GHz)



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 F Http://www.morlab.cn E



# **Annex A Test Uncertainty**

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Peak Output Power	±2.22dB
Power spectral density (PSD)	±2.22dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB
Conducted Emission	±2.44dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



# **Annex B Testing Laboratory Information**

# 1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.			
Department:	Morlab Laboratory			
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang			
	Road, Block 67, BaoAn District, ShenZhen, GuangDong			
	Province, P. R. China			
Responsible Test Lab	Mr. Su Fong			
Manager:	Mr. Su Feng			
Telephone:	+86 755 36698555			
Facsimile:	+86 755 36698525			

## 2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
	FL.3, Building A, FeiYang Science Park, No.8 LongChang
Address:	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

## 3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192.





# 4. Test Equipments Utilized

# 4.1 Conducted Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Power Splitter	NW521	1506A	Weinschel	2017.05.24	2018.05.23
Attenuator 1	(N/A.)	10dB	Resnet	2017.05.24	2018.05.23
Attenuator 2	(N/A.)	3dB	Resnet	2017.05.24	2018.05.23
EXA Signal	MY53470836		Agilopt	2017.12.03	2018.12.02
Analzyer	IVI 1 5347 0630	N9010A	Agilent	2017.12.03	2016.12.02
USB Wideband	MY54210011	U2021XA	Agilent	2017.05.24	2018.05.23
Power Sensor	WIT 542 100 11	02021XA	Aglient	2017.05.24	2010.05.25
RF cable	CB01	RF01	Morlab	N/A	N/A
(30MHz-26GHz)	CDUI	REUI	INIONAD	IN/A	IN/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01		HUBER-		NI/A
SMA connector	CN01 RF03	кг03	SUHNER	N/A	N/A

# 4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY56400093	N9038A	KEYSIGHT	2017.07.13	2018.07.12
LISN	812744	NSLK 8127	Schwarzbeck	2017.05.17	2018.05.16
Pulse Limiter (20dB)	9391	VTSD 9561-D	Schwarzbeck	2017.05.17	2018.05.16
Coaxial cable(BNC) (30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A

# 4.3Auxiliary Test Equipment

Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal. Due
Computer	T430i	Think Pad	Lenovo	N/A	N/A

## 4.4 List of Software Used

Description	Manufacturer	Software Version
Test system	Tonscend	V2.6
Power Panel	Agilent	V3.8
MORLAB EMCR V1.2	MORLAB	V 1.0





# 4.5 Radiated Test Equipments

Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
Receiver	MY54130016	N9038A	Agilent	2017.05.17	2018.05.16
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2017.05.14	2018.05.13
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2017.09.13	2018.09.12
Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2018.03.03	2019.03.02
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2017.09.13	2018.09.12
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2017.05.17	2018.05.16
Anechoic Chamber	N/A	9m*6m*6m	CRT	2017.11.19	2020.11.18

_____ END OF REPORT

_



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn