FCC PART 15, SUBPART B and C TEST REPORT

for

EchoStar Sling TV BLE Remote 2016

MODEL: URC-2004BC0-R

Prepared for

UNIVERSAL ELECTRONICS INC. 201 SANDPOINTE AVE, 8th FLOOR SANTA ANA, CA 92707

Prepared by:

EDGAR VALENCIA

Approved by:

KYLE FUJIMOTO

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: OCTOBER 3, 2016

	REPORT		APPENDICES			TOTAL	
	BODY	\boldsymbol{A}	В	C	D	E	
PAGES	16	2	2 2		13	27	62

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	5
1. PURPOSE	6
2. ADMINISTRATIVE DATA	7
2.1 Location of Testing	7
2.2 Traceability Statement	7
2.3 Cognizant Personnel2.4 Date Test Sample was Received	7 7
2.5 Disposition of the Test Sample	7
2.6 Abbreviations and Acronyms	7
3. APPLICABLE DOCUMENTS	8
4. DESCRIPTION OF TEST CONFIGURATION	9
4.1 Description of Test Configuration – Emissions	9
4.1.1 Cable Construction and Termination	9
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	10
5.1 EUT and Accessory List	10
6. TEST SITE DESCRIPTION	12
6.1 Test Facility Description	12
6.2 EUT Mounting, Bonding and Grounding	12
7. TEST PROCEDURES	13
7.1 RF Emissions	13
7.1.1 Conducted Emissions Test	13
7.1.2 Radiated Emissions Test	14
7.1.3 RF Emissions Test Results	15
8. CONCLUSIONS	16

LIST OF APPENDICES

APPENDIX	TITLE	
A	Laboratory Accreditations and Recognitions	
В	Modifications to the EUT	
С	Additional Models Covered Under This Report	
D	Diagrams and Charts	
	Test Setup Diagrams	
	Antenna and Effective Gain Factors	
Е	Data Sheets	

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Layout of the Semi-Anechoic Test Chamber

Report Number: B60907D1

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product certification, approval or endorsement by NVLAP, NIST or any agency of the federal government.

Device Tested: EchoStar Sling TV BLE Remote 2016

Models: URC-2004BC0-R

S/N: N/A

Product Description: The EUT is a Bluetooth low energy remote controller.

Modifications: The EUT was not modified in order to meet the specifications.

Customer: Universal Electronics, Inc.

201 Sandpointe Ave, 8Th Floor

Santa Ana, CA 92707

Test Dates: August 24 and 25; September 7 and 8, 2016

Test Specification covered by accreditation:

Test Specifications: Emissions requirements

CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.209, and 15.249

Test Procedure: ANSI C63.4, ANSI C63.10

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Spurious Radiated RF Emissions, 10 kHz – 25000 MHz	Complies with the Class B limits of CFR Title 47, Part 15 Subpart B; and the limits of CFR Title 47, Part
	(Transmitter, Receiver, and Digital portion)	15, Subpart C, section 15.205, 15.209 and 15.249 Highest reading in relation to spec limit: 40.71 dBuV/m @ 2400 MHz (*U = 3.70 dB)

Report Number: B60907D1

1. PURPOSE

This document is a qualification test report based on the emissions tests performed on the EchoStar Sling TV BLE Remote 2016, Model: URC-2004BC0-R. The emissions measurements were performed according to the measurement procedure described in ANSI C63.4 and ANSI C63.10. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the Class B specification limits defined by CFR Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.249.

ADMINISTRATIVE DATA

2.1 Location of Testing

2.

The emissions tests described herein were perform ed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Universal Electronics, Inc.

Jesse Mendez Staff Engineer Electrical

Compatible Electronics Inc.

Edgar Valencia

Kyle Fujimoto

James Ross

Lab Technician

Test Engineer

Test Engineer

2.4 Date Test Sample was Received

The test sample was received on August 24, 2016.

2.5 Disposition of the Test Sample

The test sample has not been returned to Universal Electronics, Inc. as of the date of this test report.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference

EUT Equipment Under Test

P/N Part Number S/N Serial Number HP Hewlett Packard

ITE Information Technology Equipment
LISN Line Impedance Stabilization Network

N/A Not Applicable
Tx Transmit
Rx Receive

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this emissions Test Report.

SPEC	TITLE
FCC Title 47, Part 15 Subpart C	FCC Rules – Radio frequency devices (including digital devices) – Intentional Radiators
FCC Title 47, Part 15 Subpart B	FCC Rules – Radio frequency devices (including digital devices) – Unintentional Radiators
EN 50147-2: 1997	Anechoic chambers. Alternative test site suitability with respect to site attenuation
ANSI C63.4 2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10 2013	American National Standard for Testing Unlicensed Wireless Devices

Report Number: **B60907D1**

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration – Emissions

The EchoStar Sling TV BLE Remote 2016, Model: URC-2004BC0-R (EUT) was tested as a stand alone device. A fresh set of batteries were inserted in the EUT prior to the testing.

The EUT was continuously transmitting during the testing.

The EUT was tested for emissions at the low, middle, and high channels while in the X, Y and Z axis.

The final radiated data for the EUT was taken in the mode described.

The X orientation is when the EUT is parallel to the ground. The Y orientation is when the EUT is perpendicular to the ground mounted vertically. The Z orientation is when the EUT is perpendicular to the ground mounted horizontally.

4.1.1 Cable Construction and Termination

The EUT has no external cables.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
ECHOSTAR SLING TV BLE REMOTE	UNIVERSAL ELECTRONICS, INC.	URC-2004BC0-R	N/A	MG3-2004

5.2 Emissions Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CAL. CYCLE
	GENERA	L TEST EQUIP	MENT USED IN	LAB D	
TDK TestLab	TDK RF Solutions, Inc.	9.22	700145	N/A	N/A
Computer	Hewlett Packard	p6716f	MXX1030PX0	N/A	N/A
LCD Monitor	Hewlett Packard	52031a	3CQ046N3MG	N/A	N/A
EMI Receiver, 20 Hz – 26.5 GHz	Agilent Technologies	N9038A	MY51210150	December 29, 2015	1 Year
	RF RADI	ATED EMISSIO	NS TEST EQUIP	MENT	
CombiLog Antenna	Com-Power	AC-220	61060	September 3, 2015	2 Year
Preamplifier	Com-Power	PAM-118A	551024	May 12, 2016	1 Year
Loop Antenna	Com-Power	AL-130	17089	February 6, 2015	2 Year
Horn Antenna	Com-Power	AH-118	071175	February 26, 2016	2 Year
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A
System Controller	Sunol Sciences Corporation	SC110V	112213-1	N/A	N/A
Turntable	Sunol Sciences Corporation	2011VS	N/A	N/A	N/A
Antenna-Mast	Sunol Sciences Corporation	TWR95-4	112213-3	N/A	N/A
Preamplifier	Com-Power	PA-840	711013	May 13, 2016	1 Year
Horn Antenna	Com-Power	AH-826	71957	N/A	N/A

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for emissions test location.

6.2 EUT Mounting, Bonding and Grounding

For frequencies 1 GHz and below: The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

For frequencies above 1 GHz: The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 1.5 meters above the ground plane.

The EUT was not grounded.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Conducted Emissions Test

The EMI Receiver was used as a m easuring meter. A quasi-peak and/or average reading was taken only where indicated in the data sheets. A transient limiter was used for the protection of the EMI Receiver input stage, and the offset was adjusted accordingly to read the actual data m easured. The LISN output was measured using the EMI Receiver. The output of the second LISN was terminated by a 50-ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding, and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI 63:4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by computer software. The final qualification data is located in Appendix E.

Test Results:

This test was not performed for the EUT is battery powered and does not connect to the AC power mains.

7.1.2 Radiated Emissions Test

The EMI Receiver was used as the measuring meter. A built-in, internal preamplifier was used to increase the sensitivity of the instrument. The EMI Receiver was initially used with the Analyzer mode feature activated. In this mode, the EMI receiver can then record the actual frequency to be measured. This final reading is then taken accurately in the EMI Receiver mode, which takes into account the cable loss, amplifier gain and antenna factors, so that a true reading is compared to the true limit. A quasi-peak reading was taken only for those readings, which are marked accordingly on the data sheets. The effective measurement bandwidth used for the radiated emissions test was according to the frequency measured (200 Hz for 10 kHz to 150 kHz, 9 kHz for 150 kHz to 30 MHz, 120 kHz for 30 MHz to 1 GHz and 1 MHz for 1 GHz to 25 GHz).

For emissions above 1 GHz, the readings were averaged by "duty cycle correction factor", derived from 20 log (dwell time /100ms). This duty cycle correction factor was then subtracted from the peak reading.

The EMI test chamber of Compatible Electronics, Inc. was used for radiated emissions testing. This test site is in full compliance with ANSI C63.4, EN 50147-2 and CISPR 22. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable perm its EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

The EUT was tested at a 3-meter test distance. The six highest emissions are listed in Table 2.0.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
10 kHz to 150 kHz	200 Hz	Loop Antenna
150 kHz to 30 MHz	9 kHz	Loop Antenna
30 MHz to 1 GHz	120 kHz	CombiLog Antenna
1 GHz to 25 GHz	1 MHz	Horn Antenna

Test Results:

The EUT complies with the **Class B** limits of **CFR** Title 47, Part 15, Subpart B; and Subpart C sections 15.205, 15.209 and 15.249 for radiated emissions.

7.1.3 RF Emissions Test Results

Table 1.0 RADIATED EMISSION RESULTS

EchoStar Sling TV BLE Remote 2016

Model: URC-2004BC0-R

Frequency MHz	EMI Reading (dBuV/m)	Specification Limit (dBuV)	Delta (Cor. Reading – Spec. Limit) dB)
2400 (H) (Z-Axis)	40.71 (AVG)	53.97	-13.26
2400 (V) (Y-Axis)	39.60 (AVG)	53.97	-14.37
2442 (H) (Z-Axis)	78.27 (AVG)	93.97	-15.70
2442 (V) (Y-Axis)	77.18 (AVG)	93.97	-16.79
2402 (H) (Z-Axis)	76.89 (AVG)	93.97	-17.08
2402 (V) (Y-Axis)	75.72 (AVG)	93.97	-18.25

Notes:

- * The complete emissions data is given in Appendix E of this report.
- (BL) Black Lead
- (WL) White Lead
- (V) Vertical
- (H) Horizontal
- (QP) Quasi-Peak
- (Avg) Average

8. CONCLUSIONS

The EchoStar Sling TV BLE Remote 2016, Models: URC-2004BC0-R, as tested, meets all of the specification limits defined in FCC Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.249.

APPENDIX A

LABORATORY ACCREDITATIONS AND RECOGNITIONS

LABORATORY ACCREDITATIONS AND RECOGNITIONS

R For US, Canada, Australia/New Zealand, Japan, Taiwan, Korea, and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025.

For the most up-to-date version of our scopes and certificates please visit http://celectronics.com/ quality/ scope/

NVLAP LAB CODE 200528-0

Quote from ISO-ILAC-IAF Communiqué on 17025:

"A laboratory's fulfilment of the requirements of ISO/IEC 17025:2005 means the laboratory meets both the technical competence requirements and management system requirements that are necessary for it to consistently deliver technically valid test results and calibrations. The management system requirements in ISO/IEC 17025:2005 (Section 4) are written in language relevant to laboratory operations and meet the principles of ISO 9001:2008 Quality Management Systems — Requirements."

ANSI listing CETCB

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA).

US/EU MRA list NIST MRA site

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA). **APEC MRA list** NIST MRA site

We are also listed for IT products by the following country/agency:

VCCI Support member: Please visit http://www.vcci.jp/vcci_e/

FCC Listing, from FCC OET site
FCC test lab search https://fjallfoss.fcc.gov/oetcf/eas/reports/TestFirmSearch.cfm

Compatible Electronics IC listing can be found at: http://www.ic.gc.ca/eic/site/ic1.nsf/eng/home

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Subpart B and FCC 15.249 specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

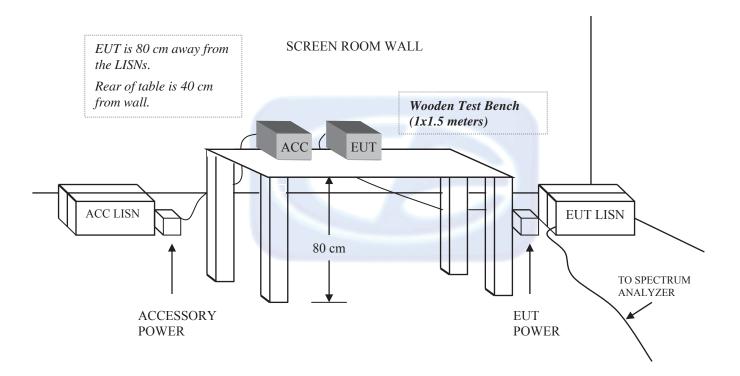
USED FOR THE PRIMARY TEST

EchoStar Sling TV BLE Remote 2016

Model: URC-2004BC0-R

S/N: N/A

There are no additional models covered under this report.


Report Number: B60907D1 FCC Part 15 Subpart B and FCC Section 15.249 Test Report EchoStar Sling TV BLE Remote 2016

Model: URC-2004BC0-R

APPENDIX D

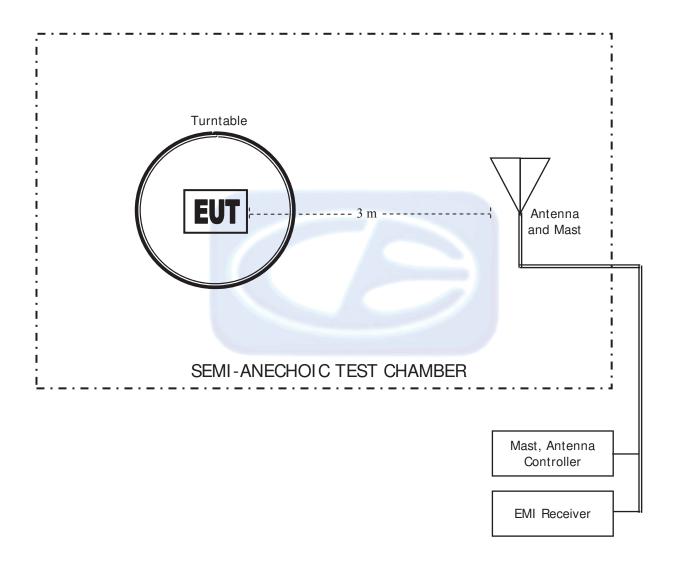

DIAGRAMS AND CHARTS

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

FIGURE 2: LAYOUT OF THE SEMI-ANECHOIC TEST CHAMBER

COM-POWER AL-130

LOOP ANTENNA

S/N: 17089

CALIBRATION DATE: FEBRUARY 6, 2015

FREQUENCY (MHz) 0.009	MAGNETIC (dB/m) -33.18	ELECTRIC (dB/m)
0.009	-33.18	18.32
0.01	-34.10	17.40
0.02	-38.65	12.85
0.03	-39.28	12.22
0.04	-40.09	11.41
0.05	-40.85	10.65
0.06	-40.88	10.62
0.07	-41.07	10.43
0.08	-41.04	10.46
0.09	-41.19	10.31
0.1	-41.20	10.30
0.2 0.3	-41.52	9.98
0.3	-41.53	9.97
0.4 0.5	-41.42 -41.53	10.08
0.5	-41.53	9.97
0.6	-41.53	9.97
0.7	-41.43	10.07
0.8	-41.23	10.27
0.9	-41.13	10.37
1	-41.14	10.36
2	-40.80	10.70
3	-40.66	10.84
4	-40.61	10.89
5	-40.33	11.17
6	-40.53	10.97
7	-40.47	11.03
8	-40.48	11.02
9	-39.93	11.57
10	-39.81	11.69
15	-43.35	8.15
20	-39.16	12.34
25	-40.24	11.26
30	-43.18	8.32

COM-POWER AC-220

COMBILOG ANTENNA

S/N: 61060

CALIBRATION DATE: SEPTEMBER 3, 2015

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	24.00	200	13.00
35	24.30	250	15.30
40	25.40	300	18.20
45	21.50	350	17.90
50	22.50	400	18.60
60	15.40	450	19.80
70	12.70	500	21.60
80	11.10	550	22.40
90	13.40	600	23.70
100	13.80	650	24.30
120	15.40	700	24.00
125	15.40	750	24.50
140	13.10	800	24.30
150	17.20	850	26.30
160	13.20	900	26.90
175	14.20	950	26.00
180	14.30	1000	25.60

COM POWER AH-118

HORN ANTENNA

S/N: 071175

CALIBRATION DATE: FEBRUARY 26, 2016

FREQUENCY	FACTOR	FREQUENCY	FACTOR	
(GHz)	(dB)	(GHz)	(dB)	
1.0	23.93	10.0	39.33	
1.5	25.54	10.5	39.64	
2.0	28.09	11.0	41.04	
2.5	30.21	11.5	44.29	
3.0	30.15	12.0	41.22	
3.5	30.17	12.5	41.50	
4.0	31.90	13.0	41.62	
4.5	33.51	13.5	40.63	
5.0	33.87	14.0	39.94	
5.5	35.08	14.5	41.84	
6.0	34.81	15.0	42.69	
6.5	34.26	15.5	39.03	
7.0	36.33	16.0	39.07	
7.5	37.03	16.5	41.40	
8.0	37.56	17.0	43.18	
8.5	40.07	17.5	47.01	
9.0	38.92	18.0	46.48	
9.5	38.21			

COM-POWER PA-118

PREAMPLIFIER

S/N: 551024

CALIBRATION DATE: MAY 12, 2016

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	39.84	6.0	39.05
1.1	39.40	6.5	38.94
1.2	39.58	7.0	39.25
1.3	39.68	7.5	39.09
1.4	39.91	8.0	39.01
1.5	39.78	8.5	38.60
1.6	39.50	9.0	38.64
1.7	39.81	9.5	39.67
1.8	39.89	10.0	39.30
1.9	39.94	11.0	39.15
2.0	39.57	12.0	39.24
2.5	40.39	13.0	39.49
3.0	40.63	14.0	39.44
3.5	40.80	15.0	39.94
4.0	40.86	16.0	40.09
4.5	39.94	17.0	40.06
5.0	34.47	18.0	39.76
5.5	39.32		

COM-POWER AH-826

HORN ANTENNA

S/N: 71957

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
18.0	33.5	22.5	35.5
18.5	33.5	23.0	35.9
19.0	34.0	23.5	35.7
19.5	34.0	24.0	35.6
20.0	34.3	24.5	36.0
20.5	34.9	25.0	36.2
21.0	34.7	25.5	36.1
21.5	35.0	26.0	36.2
22.0	35.0	26.5	35.7

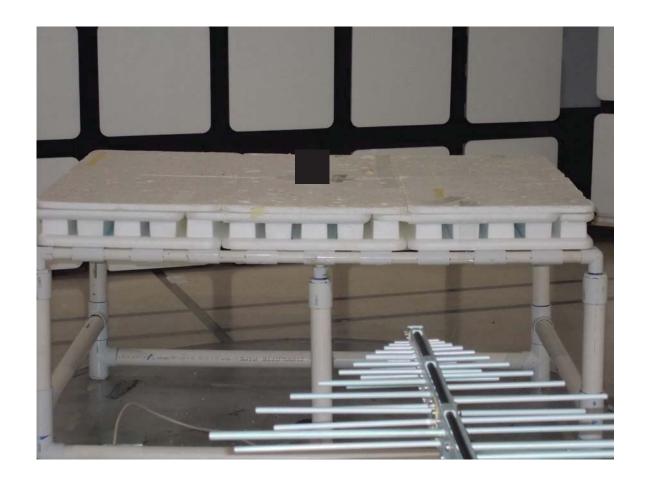
COM-POWER PA-840

MICROWAVE PREAMPLIFIER

S/N: 711013

CALIBRATION DATE: MAY 13, 2016

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
18.0	25.19	31.0	25.69
19.0	24.48	31.5	25.74
20.0	24.39	32.0	26.35
21.0	24.73	32.5	26.64
22.0	23.49	33.0	25.98
23.0	24.23	33.5	24.68
24.0	24.59	34.0	24.61
25.0	25.32	34.5	23.78
26.0	25.66	35.0	24.74
26.5	25.99	35.5	24.39
27.0	26.26	36.0	23.46
27.5	25.33	36.5	23.71
28.0	24.49	37.0	26.35
28.5	24.74	37.5	23.49
29.0	25.93	38.0	25.42
29.5	26.28	38.5	24.87
30.0	26.17	39.0	22.60
30.5	26.11	39.5	20.57
		40.0	19.15


EchoStar Sling TV BLE Remote 2016 Model: URC-2004BC0-R

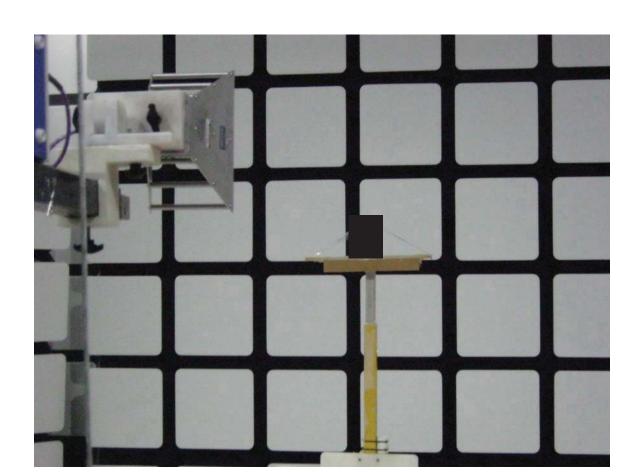
FRONT VIEW

UNIVERSAL ELECTRONICS, INC
ECHOSTAR SLING TV BLE REMOTE 2016
MODEL: URC-2004BC0-R
FCC SUBPART B AND C – RADIATED EMISSIONS – BELOW 1 GHz

choStar Sling TV BLE Remote 2016 Model: URC-2004BC0-R

REAR VIEW

UNIVERSAL ELECTRONICS, INC
ECHOSTAR SLING TV BLE REMOTE 2016
MODEL: URC-2004BC0-R
FCC SUBPART B AND C – RADIATED EMISSIONS – BELOW 1 GHz


Model: URC-2004BC0-R

FRONT VIEW

UNIVERSAL ELECTRONICS, INC
ECHOSTAR SLING TV BLE REMOTE 2016
MODEL: URC-2004BC0-R
FCC SUBPART B AND C – RADIATED EMISSIONS – ABOVE 1 GHz

REAR VIEW

UNIVERSAL ELECTRONICS, INC
ECHOSTAR SLING TV BLE REMOTE 2016
MODEL: URC-2004BC0-R
FCC SUBPART B AND C – RADIATED EMISSIONS – ABOVE 1 GHz

APPENDIX E

DATA SHEETS

RADIATED EMISSIONS DATA SHEETS

FCC 15.249 Universal Electronics, Inc. EchoStar Sling TV BLE Remote Model: URC-2004BC0-R

viodel. ONO-2004BO0-

Date: 08/24/2016

Lab: D

Tested By: Kyle Fujimoto

Low Channel Z-Axis

			<u> </u>		Реак /	Table	Ant.	
Freq.	Level	Pol			QP/	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
2402	90.44	V	113.97	-23.53	Peak	186.25	249.47	
2402	70.44	V	93.97	-23.53	Avg	186.25	249.47	
4804	45.33	٧	73.97	-28.64	Peak	63.00	142.47	
4804	25.33	V	53.97	-28.64	Avg	63.00	142.47	
7206	44.62	٧	73.97	-29.35	Peak	110.50	223.61	
7206	24.62	٧	53.97	-29.35	Avg	110.50	223.61	
9608								No Emission
9608								Detected
12010								No Emission
12010								Detected
14412								No Emission
14412								Detected
40044								
16814								No Emission
16814								Detected
19216								No Emission
19216								No Emission Detected
19210							\vdash	Detected
21618								No Emission
21618								Detected
21018								Detected
24020								No Emission
24020								Detected
								20,00,00

Lab: D

Date: 08/24/2016

Tested By: Kyle Fujimoto

FCC 15.249
Universal Electronics, Inc.
EchoStar Sling TV BLE Remote

Model: URC-2004BC0-R

Low Channel Z-Axis

					Peak/	rable	Ant.	
Freq.	Level	Pol			QP/	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
2402	96.89	Н	113.97	-17.08	Peak	79.75	127.43	
2402	76.89	Ξ	93.97	-17.08	Avg	79.75	127.43	
4804	45.42	Н	73.97	-28.55	Peak	177.50	126.65	
4804	25.42	Н	53.97	-28.55	Avg	177.50	126.65	
7206	45.91	Н	73.97	-28.06	Peak	174.25	191.07	
7206	25.91	Н	53.97	-28.06	Avg	174.25	191.07	
9608								No Emission
9608								Detected
12010								No Emission
12010								Detected
14412								No Emission
14412								Detected
40044								
16814								No Emission
16814								Detected
10010								No Feelenier
19216								No Emission
19216								Detected
21618								No Emission
21618								Detected
24020								No Emission
24020								Detected
24020								Detected

Date: 08/24/2016

Tested By: Kyle Fujimoto

Lab: D

FCC 15.249
Universal Electronics, Inc.
EchoStar Sling TV BLE Remote

Model: URC-2004BC0-R

Low Channel Y-Axis

From	Level	Pol			Peak /	Table	Ant.	
Freq.					QP/	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
2402	95.72	V	113.97	-18.25	Peak	61.25	127.31	
2402	75.72	V	93.97	-18.25	Avg	61.25	127.31	
4804	44.09	V	73.97	-29.88	Peak	83.50	249.95	
4804	24.09	V	53.97	-29.88	Avg	83.50	249.95	
7206	45.01	V	73.97	-28.96	Peak	330.00	142.83	
7206	25.01	V	53.97	-28.96	Avg	330.00	142.83	
9608								No Emission
9608								Detected
12010								No Emission
12010								Detected
14412								No Emission
14412								Detected
16814								No Emission
16814								Detected
19216	·							No Emission
19216								Detected
21618								No Emission
21618								Detected
24020								No Emission
24020								Detected

FCC 15.249 Universal Electronics, Inc. EchoStar Sling TV BLE Remote Model: URC-2004BC0-R

Low Channel Y-Axis Date: 08/03/2016 Lab: D Tested By: Kyle Fujimoto

Frea.	Level	Pol			Peak / QP /	Table Angle	Ant. Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
2402	79.26	Н	113.97	-34.71	Peak	134.50	191.25	
2402	59.26	Н	93.97	-34.71	Avg	134.50	191.25	
4804	46.42	Н	73.97	-27.55	Peak	199.00	206.95	
4804	26.42	Π	53.97	-27.55	Avg	199.00	206.95	
7206	44.25	Н	73.97	-29.72	Peak	303.50	127.49	
7206	24.25	Н	53.97	-29.72	Avg	303.50	127.49	
9608								No Emission
9608								Detected
12010								No Emission
12010								Detected
14412								No Emission
14412								Detected
16814								No Emission
16814								Detected
19216								No Emission
19216								Detected
21618								No Emission
21618								Detected
	\vdash			\vdash			\vdash	
24020								No Emission
24020								Detected

FCC 15.249 Universal Electronics, Inc. EchoStar Sling TV BLE Remote Model: URC-2004BC0-R

Lab: D

Tested By: Kyle Fujimoto

Date: 08/24/2016

Low Channel X-Axis

					Peak /	Table	Ant.	
Freq.	Level	Pol			QP/	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
2402	94.94	V	113.97	-19.03	Peak	130.50	175.43	
2402	74.94	V	93.97	-19.03	Avg	130.50	175.43	
4804	47.44	V	73.97	-26.53	Peak	258.50	111.31	
4804	27.44	V	53.97	-26.53	Avg	258.50	111.31	
7206	44.66	V	73.97	-29.31	Peak	0.00	221.40	
7206	24.66	V	53.97	-29.31	Avg	0.00	221.40	
9608								No Emission
9608								Detected
40040								
12010								No Emission
12010								Detected
44440								
14412								No Emission
14412								Detected
40044								
16814 16814								No Emission
10814								Detected
19216								No Emission
19216								Detected
19210								Detected
21618								No Emission
21618								Detected
2.010								201000
24020								No Emission
24020								Detected

FCC 15.249

Report Number: **B60907D1**FCC Part 15 Subpart B and FCC Section 15.249 Test Report EchoStar Sling TV BLE Remote 2016 Model: URC-2004BC0-R

Universal Electronics, Inc.

EchoStar Sling TV BLE Remote

Model: URC-2004BC0-R

Date: 08/24/2016

Lab: D

Tested By: Kyle Fujimoto

Low Channel X-Axis

From	Level	Pol			Peak /	Table	Ant.	
Freq. (MHz)	(dBuV/m)	(v/h)	Limit	Margin	QP / Avg	Angle (deg)	Height (cm)	Comments
2402	95.49	H	113.97	-18.48	Peak	203.00	110.95	Comments
2402	75.49	H	93.97	-18.48		203.00	110.95	
2402	75.49	п	93.97	-10.40	Avg	203.00	110.95	
4804	47.76	Н	73.97	-26.21	Peak	108.25	127.43	
4804	27.76	H	53.97	-26.21	Avg	108.25	127.43	
4004	21.10	п	55.97	-20.21	Avg	106.23	127.43	
7206	44.70	Н	73.97	-29.27	Peak	69.25	126.95	
7206	24.70	Н	53.97	-29.27	Avg	69.25	126.95	
7200	24.70	- 11	33.31	-25.21	Avg	05.20	120.93	
9608								No Emission
9608								Detected
12010								No Emission
12010								Detected
14412								No Emission
14412								Detected
16814								No Emission
16814								Detected
19216								No Emission
19216								Detected
21618								No Emission
21618								Detected
	\vdash							
24020								No Emission
24020								Detected

 FCC 15.249
 Date: 08/24/2016

 Universal Electronics, Inc.
 Date: 08/24/2016

 EchoStar Sling TV BLE Remote
 Lab: D

 Model: URC-2004BC0-R
 Tested By: Kyle Fujimoto

Middle Channel Z-Axis

					Peak /	Table	Ant.	
Freq.	Level	Pol		l	QP/	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
2442	87.00	V	113.97	-26.97	Peak	20.00	244.92	
2442	67.00	V	93.97	-26.97	Avg	20.00	244.92	
4884	45.86	V	73.97	-28.11	Peak	264.50	150.05	
4884	25.86	V	53.97	-28.11	Avg	264.50	150.05	
7326	47.76	V	73.97	-26.21	Peak	145.00	170.89	
7326	27.76	V	53.97	-26.21	Avg	145.00	170.89	
9768								No Emission
9768								Detected
12210								No Emission
12210								Detected
14652								No Emission
14652								Detected
17094								No Emission
17094								Detected
40500								
19536								No Emission
19536								Detected
04070								
21978								No Emission
21978								Detected
04400								No Fortage
24420								No Emission
24420								Detected

FCC 15.249
Universal Electronics, Inc.
EchoStar Sling TV BLE Remote
Model: URC-2004BC0-R

Middle Channel Z-Axis Date: 08/24/2016 Lab: D Tested By: Kyle Fujimoto

				_	Реак /	Table	Ant.	
Freq.	Level	Pol			QP /	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
2442	98.27	H	113.97	-15.70	Peak	252.25	102.05	
2442	78.27	Н	93.97	-15.70	Avg	252.25	102.05	
4884	51.20	Н	73.97	-22.77	Peak	318.25	140.98	
4884	31.20	Н	53.97	-22.77	Avg	318.25	140.98	
7326	48.17	Н	73.97	-25.80	Peak	150.00	155.07	
7326	28.17	Н	53.97	-25.80	Avg	150.00	155.07	
9768								No Emission
9768								Detected
12210								No Emission
12210								Detected
14652								No Emission
14652								Detected
17094								No Emission
17094								Detected
40500								
19536								No Emission
19536							\vdash	Detected
04076							\vdash	
21978							\vdash	No Emission
21978							\vdash	Detected
04400							\vdash	N- E-1-1-
24420							\vdash	No Emission
24420							\vdash	Detected

FCC 15.249 Universal Electronics, Inc. EchoStar Sling TV BLE Remote Model: URC-2004BC0-R

Lab: D Tested By: Kyle Fujimoto

Date: 08/24/2016

Middle Channel Y-Axis

					Реак /	Table	Ant.	
Freq.	Level	Pol			QP /	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
2442	97.18	V	113.97	-16.79	Peak	260.75	164.68	551111151115
2442	77.18	V	93.97	-16.79	Avg	260.75	164.68	
			00.01	100	7119	200.70	101.00	
4884	43.37	V	73.97	-30.60	Peak	88.50	110.89	
4884	23.37	V	53.97	-30.60	Avg	88.50	110.89	
7326	44.05	٧	73.97	-29.92	Peak	158.25	173.16	
7326	24.05	V	53.97	-29.92	Avg	158.25	173.16	
9768								No Emission
9768								Detected
12210								No Emission
12210								Detected
14652								No Emission
14652								Detected
14052								Detected
17094								No Emission
17094								Detected
17001								Dototea
19536								No Emission
19536								Detected
21978								No Emission
21978								Detected
24420								No Emission
24420								Detected

Report Number: **B60907D1**FCC Part 15 Subpart B and FCC Section 15.249 Test Report EchoStar Sling TV BLE Remote 2016

Model: URC-2004BC0-R

FCC 15.249 Universal Electronics, Inc. EchoStar Sling TV BLE Remote Model: URC-2004BC0-R

Date: 08/24/2016 Lab: D Tested By: Kyle Fujimoto

Middle Channel Y-Axis

					Реак /	Table	Ant.	
Freq.	Level	Pol			QP/	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
2442	88.21	Н	113.97	-25.76	Peak	149.00	172.98	
2442	68.21	Ι	93.97	-25.76	Avg	149.00	172.98	
4884	50.89	Н	73.97	-23.08	Peak	147.75	142.95	
4884	30.89	Н	53.97	-23.08	Avg	147.75	142.95	
7326	43.73	Н	73.97	-30.24	Peak	201.50	207.49	
7326	23.73	Н	53.97	-30.24	Avg	201.50	207.49	
9768								No Emission
9768								Detected
10010								No Emission
12210								No Emission
12210								Detected
14652								No Emission
14652								
14052								Detected
17094				-				No Emission
17094								Detected
17004								Detected
19536								No Emission
19536								Detected
21978								No Emission
21978								Detected
24420								No Emission
24420								Detected

FCC 15.249 Universal Electronics, Inc. EchoStar Sling TV BLE Remote

Model: URC-2004BC0-R

Middle Channel X-Axis Date: 08/24/2016 Lab: D Tested By: Kyle Fujimoto

	Ant.	Table	Peak / QP /			Pol	Level	Eroa
Comments	Height (cm)	Angle (deg)		Margin	Limit	(v/h)	(dBuV/m)	Freq. (MHz)
Comments	` '	, 0,	Avg	Margin		` '	,	, ,
	174.89	324.75	Peak	-20.93	113.97	V	93.04	2442
	174.89	324.75	Avg	-20.93	93.97	V	73.04	2442
	127.37	235.00	Peak	-23.37	73.97	V	50.60	4884
	127.37	235.00			53.97	V	30.60	4884
	127.37	235.00	Avg	-23.37	53.97	V	30.60	4884
	249.95	0.25	Peak	-29.16	73.97	V	44.81	7326
	249.95	0.25	Avg	-29.16	53.97	V	24.81	7326
								0700
No Emission								9768
Detected								9768
No Emission								12210
Detected								12210
No Emission								14652
Detected								14652
No Emission								17094
Detected								17094
								10505
No Emission								19536
Detected								19536
No Emission								21978
Detected								21978
No Emission								24420
Detected								24420

Model: URC-2004BC0-R

FCC 15.249 Universal Electronics, Inc. EchoStar Sling TV BLE Remote Model: URC-2004BC0-R

Date: 08/24/2016 Lab: D Tested By: Kyle Fujimoto

Middle Channel X-Axis

Freg.	Level	Pol			Peak / QP /	Table	Ant.	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	Angle (deg)	Height (cm)	Comments
2442	93.97	Н	113.97	-20.00	Peak	28.00	111.37	
2442	73.97	H	93.97	-20.00	Avg	28.00	111.37	
2112	70.07		00.07	20.00	7119	20.00	111.07	
4884	50.65	Н	73.97	-23.32	Peak	85.25	127.43	
4884	30.65	Н	53.97	-23.32	Avg	85.25	127.43	
7326	45.01	Н	73.97	-28.96	Peak	241.00	191.37	
7326	25.01	Н	53.97	-28.96	Avg	241.00	191.37	
9768								No Emission
9768								Detected
12210								No Emission
12210								Detected
14652								No Emission
14652								Detected
17094								No Emission
17094								Detected
19536								No Emission
19536								Detected
21978								No Emission
21978								Detected
04400								
24420								No Emission
24420								Detected

FCC 15.249 Universal Electronics, Inc. EchoStar Sling TV BLE Remote

Model: URC-2004BC0-R

High Channel Z-Axis Date: 08/24/2016 Lab: D Tested By: Kyle Fujimoto

_					Peak /	lable	Ant.	
Freq.	Level	Pol			QP/	Angle	Height	_
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
2480	79.26	V	113.97	-34.71	Peak	115.50	175.31	
2480	59.26	V	93.97	-34.71	Avg	115.50	175.31	
4960	52.53	V	73.97	-21.44	Peak	149.00	191.25	
4960	32.53	V	53.97	-21.44	Avg	149.00	191.25	
7440	44.30	V	73.97	-29.67	Peak	116.00	143.07	
7440	24.30	V	53.97	-29.67	Avg	116.00	143.07	
9920								No Emission
9920								Detected
12400								No Emission
12400								Detected
14880								No Emission
14880								Detected
17360								No Emission
17360								Detected
19840								No Emission
19840								Detected
22320								No Emission
22320								Detected
24800								No Emission
24800								Detected

FCC 15.249 Universal Electronics, Inc. EchoStar Sling TV BLE Remote Model: URC-2004BC0-R

Date: 08/24/2016 Lab: D

Tested By: Kyle Fujimoto

High Channel Z-Axis

					Реак /	Table	Ant.	
Freq.	Level	Pol			QP/	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
2480	94.08	Н	113.97	-19.89	Peak	75.25	191.49	
2480	74.08	Н	93.97	-19.89	Avg	75.25	191.49	
4960	55.18	Н	73.97	-18.79	Peak	156.25	127.31	
4960	35.18	Н	53.97	-18.79	Avg	156.25	127.31	
7440	45.01	Н	73.97	-28.96	Peak	332.00	223.43	
7440	25.01	Н	53.97	-28.96	Avg	332.00	223.43	
9920								No Emission
9920								Detected
12400								No Emission
12400								Detected
12400								Detected
14880								No Emission
14880								Detected
14000								Detected
17360								No Emission
17360								Detected
19840								No Emission
19840								Detected
22320								No Emission
22320								Detected
24800								No Emission
24800								Detected

Date: 08/24/2016

FCC 15.249 Universal Electronics, Inc. EchoStar Sling TV BLE Remote Model: URC-2004BC0-R

Lab: D Tested By: Kyle Fujimoto

High Channel Y-Axis

					Реак /	Table	Ant.	
Freq.	Level	Pol			QP/	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
2480	94.40	V	113.97	-19.57	Peak	104.00	126.83	
2480	74.40	V	93.97	-19.57	Avg	104.00	126.83	
4960	53.26	٧	73.97	-20.71	Peak	181.00	175.25	
4960	33.26	٧	53.97	-20.71	Avg	181.00	175.25	
7440	44.41	V	73.97	-29.56	Peak	162.25	239.55	
7440	24.41	V	53.97	-29.56	Avg	162.25	239.55	
9920								No Emission
9920								Detected
12400								No Emission
12400								
12400								Detected
14880								No Emission
14880								Detected
14000								Detected
17360								No Emission
17360								Detected
19840								No Emission
19840								Detected
22320								No Emission
22320								Detected
24800								No Emission
24800								Detected

FCC 15.249
Universal Electronics, Inc.
EchoStar Sling TV BLE Remote
Model: URC-2004BC0-R

Date: 08/24/2016 Lab: D

Tested By: Kyle Fujimoto

High Channel Y-Axis

					Peak /	Table	Ant.	
Freq.	Level	Pol			QP /	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
2480	80.92	H	113.97	-33.05	Peak	133.00	206.83	001111101110
2480	60.92	H	93.97	-33.05	Avg	133.00	206.83	
2400	00.52	- 11	93.91	-55.05	Avg	133.00	200.00	
4960	52.55	Н	73.97	-21.42	Peak	344.75	175.01	
4960	32.55	Н.	53.97	-21.42	Avg	344.75	175.01	
4000	02.00		00.07	21.72	7119	011.70	17 0.01	
7440	44.26	Н	73.97	-29.71	Peak	110.25	110.53	
7440	24.26	Н	53.97	-29.71	Avg	110.25	110.53	
9920								No Emission
9920								Detected
12400								No Emission
12400								Detected
14880								No Emission
14880								Detected
17360								No Emission
17360								Detected
19840								No Emission
19840								Detected
0000								
22320								No Emission
22320								Detected
04000								
24800								No Emission
24800								Detected

Report Number: B60907D1 FCC Part 15 Subpart B and FCC Section 15.249 Test Report EchoStar Sling TV BLE Remote 2016

Model: URC-2004BC0-R

FCC 15.249 Universal Electronics, Inc. EchoStar Sling TV BLE Remote Model: URC-2004BC0-R

Date: 08/24/2016 Lab: D Tested By: Kyle Fujimoto

High Channel X-Axis

					Реак /	Table	Ant.	
Freq.	Level	Pol			QP/	Angle	Height	
(MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
2480	90.02	V	113.97	-23.95	Peak	305.25	174.71	
2480	70.02	V	93.97	-23.95	Avg	305.25	174.71	
4960	55.18	٧	73.97	-18.79	Peak	137.75	159.79	
4960	35.18	٧	53.97	-18.79	Avg	137.75	159.79	
7440	44.12	V	73.97	-29.85	Peak	333.00	251.67	
7440	24.12	V	53.97	-29.85	Avg	333.00	251.67	
9920								No Emission
9920								Detected
12400								No Emission
12400								
12400								Detected
14880								No Emission
14880								Detected
14000								Detected
17360								No Emission
17360								Detected
19840								No Emission
19840								Detected
22320								No Emission
22320								Detected
24800								No Emission
24800								Detected

FCC 15.249

Report Number: **B60907D1**FCC Part 15 Subpart B and FCC Section 15.249 Test Report EchoStar Sling TV BLE Remote 2016 Model: URC-2004BC0-R

Universal Electronics, Inc.

EchoStar Sling TV BLE Remote

Model: URC-2004BC0-R

Date: 08/24/2016

Lab: D

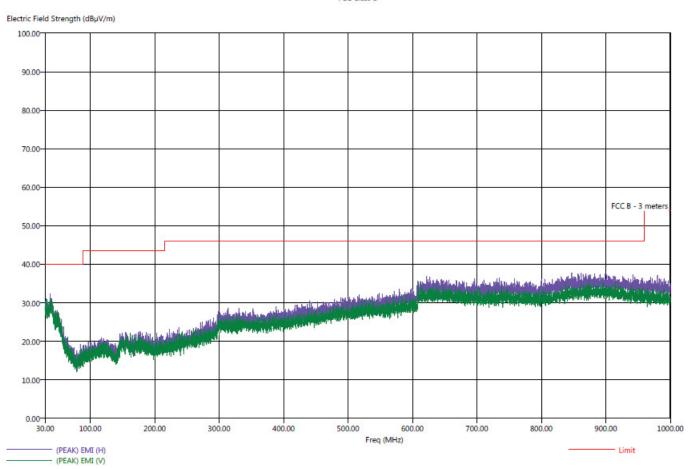
Tested By: Kyle Fujimoto

High Channel X-Axis

From:	Level	Pol			Peak /	Table	Ant.	
Freq. (MHz)	(dBuV/m)	(v/h)	Limit	Margin	Avg	Angle (deg)	Height (cm)	Comments
2480	92.47	Н	113.97	-21.50	Peak	211.25	126.89	Comments
2480	72.47	H	93.97	-21.50	Avg	211.25	126.89	
2400	12.41	- "	30.31	-21.00	Avg	211.20	120.03	
4960	53.15	Н	73.97	-20.82	Peak	255.25	143.31	
4960	33.15	H	53.97	-20.82	Avg	255.25	143.31	
4000	00.10		00.07	20.02	7119	200.20	140.01	
7440	44.66	Н	73.97	-29.31	Peak	173.25	111.07	
7440	24.66	Н	53.97	-29.31	Avg	173.25	111.07	
9920								No Emission
9920								Detected
12400								No Emission
12400								Detected
14880								No Emission
14880								Detected
17360								No Emission
17360								Detected
19840								No Emission
19840								Detected
22320								No Emission
22320								Detected
24800								No Emission
24800								Detected

9/7/2016 9:17:58 AM Sequence: Preliminary Scan

Title: Pre-Scan - FCC Class B File: Agilent - Pre-Scan - FCC Class B - 30 MHz to 1000 MHz - X-Axis.set Operator: James Ross


EUT Type: EchoStar Sling TV BLE Remote

EUT Condition: The EUT is continuously transmitting at the low channel - X-axis (EchoStar's X-axis)
Comments: Company: Universal Electronics. Inc.

Model: URC-2004BC0-R

The X-axis (EchoStar's X-axis) was the worst case

FCC Class B

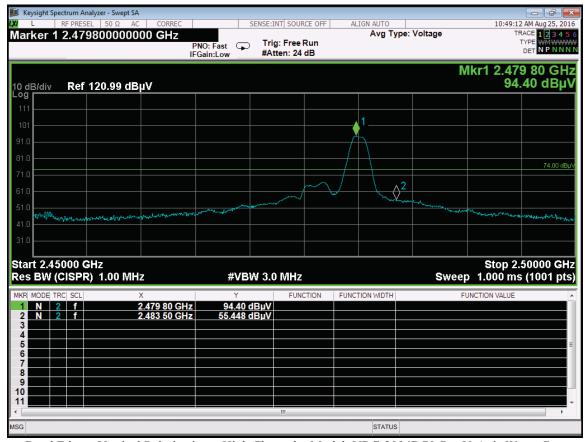
^{*}No emissions were found from 10 kHz to 1 GHz.

BAND EDGES
DATA SHEETS

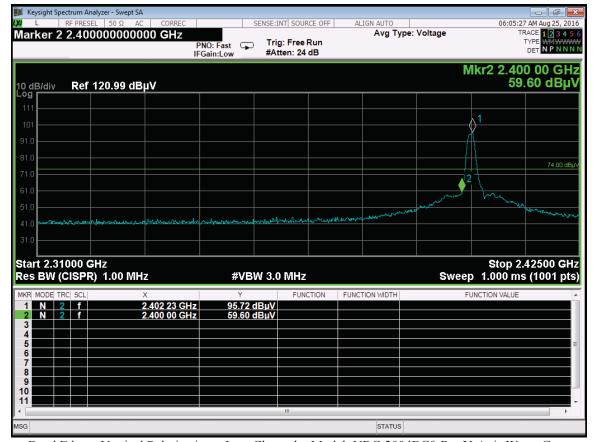
FCC 15.249

Universal Electronics, Inc.

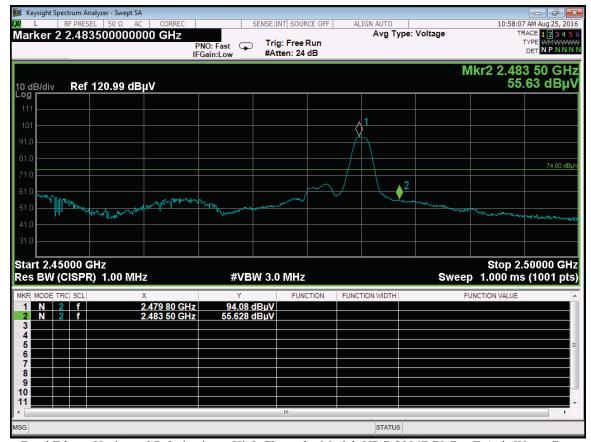
EchoStar Sling TV BLE Remote

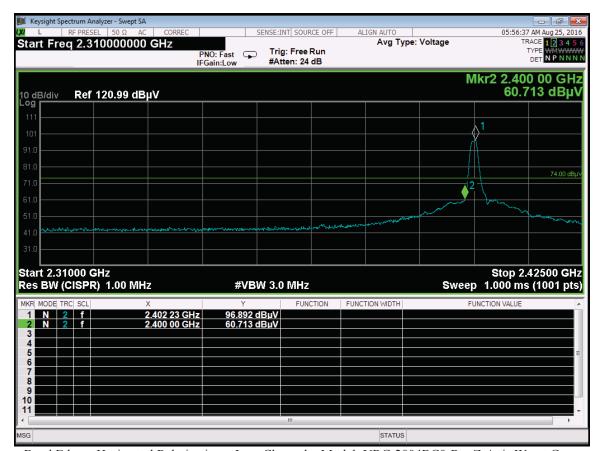

Date: 08/25/2016

Lab: D


Model: URC-2004BC0-R Tested By: Kyle Fujimoto

Band Edges Worst Case Axis


					Peak /	lable	Ant.	
Freq.	Level	Pol			QP/	Angle	Height	
(MHz)	(dBuV)	(v/h)	Limit	Margin	Avg	(deg)	(cm)	Comments
(32)				1000			1981 1997	
2402	96.89	H	113.97	-17.08	Peak	61.25	127.31	Fundamental
2402	76.89		93.97	-17.08	Avg	61.25	127.31	Low Channel - Z-Axis
2400	60.71	Н	73.97	-13.26	Peak	61.25	127.31	Band Edge
2400	40.71	H	53.97	-13.26	Avg	61.25	127.31	Low Channel - Z-Axis
8	y							
2402	95.72	V	113.97	-18.25	Peak	61.25	127.31	Fundamental
2402	75.72	V	93.97	-18.25	Avg	61.25	127.31	Low Channel - Y-Axis
36								
2400	59.60	V	73.97	-14.37	Peak	61.25	127.31	Band Edge
2400	39.60	V	53.97	-14.37	Avg	61.25	127.31	Low Channel - Y-Axis
2480	94.40	V	113.97	-19.57	Peak	104.00	126.83	Fundamental
2480	74.40	V	93.97	-19.57	Avg	104.00	126.83	High Channel - Y-Axis
2-29 0 0	\$95 SERVER DE			80.7000/03# AN		ESS MINISTER	201-000/931 in	De la Composition della compos
2483.5	55.45	V	113.97	-58.52	Peak	104.00	126.83	Band Edge
2483.5	35.45	V	93.97	-58.52	Avg	104.00	126.83	High Channel - Y-Axis
2100.0	00.10		00.07	00.02	7119	101.00	120.00	riigii onaimor i rusio
2480	94.08	Н	113.97	-19.89	Peak	75.25	191.49	Fundamental
2480	74.08	Н	93.97	-19.89	Avg	75.25	191.49	High Channel - Z-Axis
2400	7 4.00	5/8/1	30.07	10.00	7179	70.20	101.40	riigii onamer - 2-Axis
2483.5	55.63	Н	113.97	-58.34	Peak	75.25	191.49	Band Edge
2483.5	35.63	H	93.97	-58.34	Avg	75.25	191.49	High Channel - Z-Axis
2400.0	33.03	III III	90.91	-30.34	Avy	13.23	131.43	riigii Gilalifiei - Z-Axis
ró -						2 2		
-								
						2		


Band Edge - Vertical Polarization - High Channel - Model: URC-2004BC0-R - Y-Axis Worst Case

Band Edge - Vertical Polarization - Low Channel - Model: URC-2004BC0-R - Y-Axis Worst Case

Band Edge - Horizontal Polarization - High Channel - Model: URC-2004BC0-R - Z-Axis Worst Case

Band Edge - Horizontal Polarization - Low Channel - Model: URC-2004BC0-R - Z-Axis Worst Case