Report number: 2002124 FCC: Part 15.247 Industry Canada: RSS-210 FCC ID: MFMSAMP24S M/N: Extended Amplified WLAN System (1W)

ADDITIONAL INFORMATION FOR AGC AMPLIFIER

The AGC amplifier has been investigated for maximum gain conditions. The minimum gain condition has been investigated and considered as the worst case for the previous data. The amplifier has been tested as shown below.

1 JUSTIFICATION

Because of the linear relationship between the field strength and the intensity of the current for the same frequency and azimuth, to show compliance for the maximum amplifier gain, most of the conducted measurements were performed for the critical aspect of the testing.

- Band edge: a table was provided to show that the conducted average measurement is lower at the band edge (and the delta between the carrier and the maximum spurious in the restricted band) for the maximum amplifier gain compared to the minimum amplifier gain. Due to the relationship between the intensity of the current and the field strength for the same frequencies (2390MHz, 2483.5MHz), the radiated measurement performed for the report for the minimal amplifier gain, the unit was considered compliant at the band edge
- Radiated spurious emission: the conducted spurious at the port was compared to the measurement performed for the minimal amplifier gain. The unit was found compliant for the radiated testing for the minimal amplifier gain with all types of antennas. Meanwhile the conducted measurement was for all harmonics and spurious for the maximum amplifier gain compared to the minimum amplifier gain. In conclusion, the unit was considered compliant for the radiated spurious due the inherent characteristics of the antenna listed above. To show that the unit is compliant, the unit was tested with the highest antenna gain antenna of all families' type. The results are listed Section 5 of this appendix.

2 POWER OUTPUT

2.1 POWER OUTPUT TEST PROCEDURE

The peak conducted output power of the EUT was measured using an Agilent 4416A EPM-P Series Power Meter with an E9323A Peak and Average Power Sensor. The power at the port was find lower compare to the minimum amplifier gain measurement.

2.2 TEST EQUIPMENT USED FOR TESTING

RTL ASSET #	MANUFACTURER	Model	PART TYPE	Serial Number
901186	Agilent Technologies	E9323A (50MHz-6GHz)	Peak & Avg. Power Sensor	US40410380
901184	Agilent Technologies	E4416A	EPM-P Power Meter, single channel	GB41050573
900931	HP	8566B	Spectrum Analyzer (100Hz – 22 GHz)	3138A07771

TABLE 1-1: RADIATED RF OUTPUT – EIRP TEST EQUIPMENT

2.3 POWER OUTPUT TEST DATA

TABLE 1-2:POWER OUTPUT TEST DATA

 Operating Frequency (MHz):
 2422, 2437 & 2452

 Channel:
 3, 6 & 9

TABLE 1-3:POWER OUTPUT TEST DATA

CHANNEL	POWER CONDUCTED OUTPUT (dBm)
3	17.0
6	16.5
9	16.2

*Measurement accuracy is +/- 1.5 dB

2.4 **POWER OUTPUT OF THE AMPLIFIER**

To verify the characteristic of the amplifier the unit has been tested with different cable lengths between the DC Injector and the input of the amplifier. The unit was not capable amplifying a signal lower than 3.6 dBm as reported in the table below.

POWER AT INPUT (dBm)	POWER AT OUTPUT (dBm)	RATIO OUTPUT/INPUT
0.5	17.0	34.0
3.1	20.5	6.6
6.8	23.7	3.5
17.3	26.5	1.5
17.8	26.8	1.5
22.1	27.0	1.2

Report number:2002124FCC:Part 15.247Industry Canada:RSS-210FCC ID:MFMSAMP24SM/N:Extended AmplifiedWLAN System (1W)

linearity of power 40 35 30 25 – power output 20 ratio output input 15 10 5 0 5 0 10 15 20 25

Franck Schuppius	Frand June	09/12/02
Test Technician/Engineer	Signature	Date Of Test

3 COMPLIANCE WITH THE RESTRICTED BAND EDGE - §15.205

3.1 TEST PROCEDURE

Compliance with the band edges for the high gain of the amplifier was performed by comparing the absolute value at the band edge, and the delta between the carrier and the highest point in the restricted band, with the low gain of the amplifier.

3.2 COMPLIANCE WITH THE RESTRICTED BAND EDGE TEST DATA

Operating Frequency (MHz): 2422-2452 Channel: 3 & 9 Distance (m): 3 Limit (dBuV/m): 54

TABLE 3-1: RESTRICTED BAND EDGE TEST DATA FOR LOW GAIN OF AMPLIFIER

Channel Set to	Frequency tested (MHz)	Detector	Field Strength Level
3	2390.0	Absolute measurement	-40.5dBm
3	2390.0	Delta measurement	51.1dB
9	2483.5	Absolute measurement	-41.6dBm
9	2483.5	Delta measurement	50.4 dB

TABLE 3-2: RESTRICTED BAND EDGE TEST DATA FOR HIGH GAIN OF AMPLIFIER

Channel Set to	Frequency tested (MHz)	Detector	Field Strength Level
3	2390.0	Absolute measurement	-41.5 dBm
3	2390.0	Delta measurement	49.7 dB
9	2483.5	Absolute measurement	41.7dBm
9	2483.5	Delta measurement	49.9 dB

TEST PERSONNEL:

Franck Schuppius Test Technician/Engineer

Signature

09/12/02 Date Of Test

Channel Number:3Frequency (MHz):2422Resolution Bandwidth (MHz):1Video Bandwidth (Hz):10

PLOT 3-1: BAND EDGE: AVERAGE MEASUREMENT FOR CHANNEL 3 HIGH GAIN

TEST PERSONNEL:

Franck Schuppius09/12/02Test Technician/EngineerSignatureDate Of Test

Channel Number:	3
Frequency (MHz):	2422
Resolution Bandwidth (MHz):	1
Video Bandwidth (Hz):	10

PLOT 3-2: BAND EDGE: AVERAGE MEASUREMENT FOR CHANNEL 3 LOW GAIN

Franck Schuppius	Frank Juins	09/12/02
Test Technician/Engineer	Signature	Date Of Test

Channel Number:	3
Frequency (MHz):	2422
Resolution Bandwidth (MHz):	1
Video Bandwidth (Hz):	10

PLOT 3-3: BAND EDGE: DELTA MEASUREMENT FOR CHANNEL 3 HIGH GAIN

RTL										MKR DEL	TA 32.63) MHz
	14:38:28	Sep 12, 2	2002	REF	= 20.0 dBi	m A	TTEN 10	dB	-	-	49.7	7 dB
												20
Log												
10 dB												10
~" .									1			
Offset									- /			0
40 ab												
												10 .
												-10 Am
												plitu
												-20 ^{la}
												[dĒ
												[mî
												-30
							7					-40
			T									10
												-50
												-60
	2345.000					23	90.000				2435.00	0 ~~
	RBW 1 M	Hz VBW	<u>10 Hz</u>	2		Frequei	ncy [MHz]	SN	/P 27.0 s	SPAN 90	.000 MHz	

TEST PERSONNEL:

Franck Schuppius09/12/02Test Technician/EngineerSignatureDate Of Test

Channel Number:3Frequency (MHz):2422Resolution Bandwidth (MHz):1Video Bandwidth (Hz):10

PLOT 3-4: BAND EDGE: DELTA MEASUREMENT FOR CHANNEL 3 LOW GAIN

Franck Schuppius	Frank Juis	09/12/02
Test Technician/Engineer	Signature	Date Of Test

Channel Number:9Frequency (MHz):2452Resolution Bandwidth (MHz):1Video Bandwidth (Hz):10

PLOT 3-5: BAND EDGE: AVERAGE MEASUREMENT FOR CHANNEL 9 HIGH GAIN

Franck Schuppius	Frank Juins	09/12/02
Test Technician/Engineer	Signature	Date Of Test

Channel Number:	9
Frequency (MHz):	2452
Resolution Bandwidth (MHz):	1
Video Bandwidth (Hz):	10

PLOT 3-6: BAND EDGE: AVERAGE MEASUREMENT FOR CHANNEL 9 LOW GAIN

Franck Schuppius	Frank Juis	09/12/02
Test Technician/Engineer	Signature	Date Of Test

Channel Number:	9
Frequency (MHz):	2452
Resolution Bandwidth (MHz):	1
Video Bandwidth (Hz):	10

PLOT 3-7: BAND EDGE: DELTA MEASUREMENT FOR CHANNEL 9 HIGH GAIN

Channel Number:9Frequency (MHz):2452Resolution Bandwidth (MHz):1Video Bandwidth (Hz):10

PLOT 3-8: BAND EDGE: DELTA MEASUREMENT FOR CHANNEL 9 LOW GAIN

4 ANTENNA CONDUCTED SPURIOUS EMISSIONS - §15.247(C)

4.1 ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST PROCEDURES

Antenna spurious emission per FCC 15.247(c) was measured from the EUT antenna port using a 50 ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 300 kHz. The modulated carrier was identified at 2.422 GHz for Channel 3, 2.437 GHz for Channel 6 and 2.452 GHz for Channel 9. No other harmonics or spurs were found within 20 dB of the carrier level, and from 9kHz to the carriers 10th harmonic. See the antenna conducted spurious noise table below. Channels 3, 6, and 9 were investigated and tested.

4.2 ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST DATA

Operating Frequency (MHz): 2422 Channel: 3 Peak@100KHz(dBm): 10.5 Limit (dBm): --9.5

TABLE 4-1: ANTENNA CONDUCTED SPURIOUS EMISSIONS CHANNEL 3

Frequency (MHz)	Measured Level (dBm)	Notch Filter Insertion Loss (dB)	Corrected Measured Level (dBm)	Margin (dB)
4844	-33.3	2.2	-31.1	41.6
7266	-53	1.5	-51.5	62.0
9688	-72.1	6.8	-65.3	75.8
12110	-73.8	7.8	-66.0	76.5

Franck Schuppius	- Frank Juins	09/05/2002	
Test Technician/Engineer	Signature	Date Of Test	

Report number:2002124FCC:Part 15.247Industry Canada:RSS-210FCC ID:MFMSAMP24SM/N:Extended AmplifiedWLAN System (1W)

Operating Frequency (MHz): 2437 Channel: 6 Peak@100KHz(dBm): 10.3 Limit (dBm): -9.7

TABLE 4-2: ANTENNA CONDUCTED SPURIOUS EMISSIONS CHANNEL 6

Frequency (MHz)	Measured Level (dBm)	Notch Filter Insertion Loss (dB)	Corrected Measured Level (dBm)	Margin (dB)
4874	-51.4	1.8	-49.6	59.9
7311	-47.5	4.2	-43.3	53.6
9748	-64.3	3.5	-60.8	71.1
12185	-69.5	9.8	-59.7	70.0
14622	-58.3	7.8	-50.5	60.8
17059	-57.6	8.8	-48.8	59.1

Franck Schuppius	- frang jins	09/05/2002
Test Technician/Engineer	Signature	Date Of Test

Report number:2002124FCC:Part 15.247Industry Canada:RSS-210FCC ID:MFMSAMP24SM/N:Extended AmplifiedWLAN System (1W)

 Operating Frequency (MHz):
 2452

 Channel:
 9

 Peak@100KHz(dBm):
 9.9

 Limit (dBm):
 -10.1

TABLE 4-3: ANTENNA CONDUCTED SPURIOUS EMISSIONS CHANNEL 9

Frequency (MHz)	Measured Level (dBm)	Notch Filter Insertion Loss (dB)	Corrected Measured Level (dBm)	Margin (dB)
4927.74	-54.6	1.5	-53.1	63.0
7388.55	-66.3	4.5	-61.8	71.7
9848.08	-71.4	8.8	-62.6	72.5
12312.95	-72.1	12.0	-60.1	70.0

TEST PERSONNEL:

Franck Schuppius	- Frank Juis	09/05/2002
Test Technician/Engineer	Signature	Date Of Test

Report number: 2002124 FCC: Part 15.247 Industry Canada: RSS-210 FCC ID: MFMSAMP24S M/N: Extended Amplified WLAN System (1W)

5 RADIATED EMISSION LIMITS RADIATED HARMONICS - §15.247

5.1 RADIATED EMISSION LIMITS TEST PROCEDURE

The unit has been tested as shown below:

350 Series	DC		AGC	
Radio	Injector	250' LMR 600	amplifier	LMR 600

Radiated Spurious Emissions applies to harmonics and spurious emissions that fall in the restricted and non-restricted bands. The restricted bands are listed in Part 15.205. The maximum permitted average field strength for the restricted band is listed in Part 15.209. The EUT was tested in the X-Y, X-Z and Y-Z orthogonal planes. The three channels have been investigated; only the worst-case channel is listed below for the highest antenna gain for all the family types.

The minimal cable length that could be used for each antenna is listed in Table 2-1. This is the length of cable that was used for the maximum amplification of the AGC.

Operating Frequency (MHz): 2422 Channel: 3 Antenna: ANT-RFLCTR-24

TABLE 5-1:RADIATED EMISSIONS HARMONICS/SPURIOUS (CHANNEL 3) (ANT-RFLCTR-24)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)
4844.00	Av	V	10	1.1	32.1	13.3	45.4	54.0
4844.00	Pk	V	10	1.1	45.4	13.3	58.7	

PEAK: RES. =1 MHz, VID= 1MHz; AVERAGE: RES. =1 MHz, VID= 10Hz; <20dB= 20dB below the limit

Franck Schuppius	Frank Juins	09/26/02	
Test Technician/Engineer	Signature	Date Of Test	

Report number:2002124FCC:Part 15.247Industry Canada:RSS-210FCC ID:MFMSAMP24SM/N:Extended AmplifiedWLAN System (1W)

Operating Frequency (MHz): 2422 Channel: 3 Antenna: ANT-OMN-12

TABLE 5-2:RADIATED EMISSIONS HARMONICS/SPURIOUS (CHANNEL 3) (ANT-OMN-12)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)
4844	Av	V	145	1.1	32.8	13.3	46.1	54
4844	Pk	V	145	1.1	45.2	13.3	58.5	

PEAK: RES. =1 MHz, VID= 1MHz; AVERAGE: RES. =1 MHz, VID= 10Hz; <20dB= 20dB below the limit

Franck Schuppius	Frand Juis	09/26/02
Test Technician/Engineer	Signature	Date Of Test

Report number:2002124FCC:Part 15.247Industry Canada:RSS-210FCC ID:MFMSAMP24SM/N:Extended AmplifiedWLAN System (1W)

Operating Frequency (MHz): 2422 Channel: 3 Antenna: ANT-PATCH-19

TABLE 5-3: RADIATED EMISSIONS HARMONICS/SPURIOUS (CHANNEL 3) (ANT-P-19)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)
4844	Av	V	0	1.1	32.7	13.3	46.0	54
4844	Pk	V	0	1.1	43.0	13.3	56.3	

PEAK: RES. =1 MHZ, VID= 1MHZ; AVERAGE: RES. =1 MHZ, VID= 10HZ; <20dB= 20dB BELOW THE LIMIT

Franck Schuppius	- Frank Jins	09/26/02
Test Technician/Engineer	Signature	Date Of Test

Report number:2002124FCC:Part 15.247Industry Canada:RSS-210FCC ID:MFMSAMP24SM/N:Extended AmplifiedWLAN System (1W)

Operating Frequency (MHz): 2422 Channel: 3 Antenna: ANT-D2421

TABLE 5-4:RADIATED EMISSIONS HARMONICS/SPURIOUS (CHANNEL 3) (ANT-
D2421)

Emission Frequency (MHz)	Test Detector	Antenna Polarity (H/V)	Turntable Azimuth (deg)	Antenna Height (m)	Analyzer Reading (dBuV)	Site Correction Factor (dB/m)	Emission Level (dBuV/m)	Limit (dBuV/m)
4844	Av	V	0	1.4	30.0	13.3	43.3	54
4844	Pk	V	0	1.4	41.2	13.3	54.5	

PEAK: RES. =1 MHz, VID= 1MHz; AVERAGE: RES. =1 MHz, VID= 10Hz; <20dB= 20dB below the limit

Franck Schuppius	- Frank Juins	09/26/02
Test Technician/Engineer	Signature	Date Of Test

6 POWER SPECTRAL DENSITY - §15.247(D)

6.1 POWER SPECTRAL DENSITY TEST PROCEDURE

The power spectral density per FCC 15.247(d) was measured using a 50 ohm spectrum analyzer with the resolution bandwidth set at 3kHz, the video bandwidth set at 30kHz, and the sweep time set at 1000 second. The spectral lines were resolved for the modulated carriers at 2.422GHz, 2.437GHz, and 2.452GHz respectively. These levels are well below the +8 dBm limit. See the power spectral density test data and plots.

6.2 TEST EQUIPMENT USED FOR TESTING

TABLE 6-1:POWER SPECTRAL DENSITY TEST EQUIPMENT

RTL ASSET #	MANUFACTURER	Model	PART TYPE	SERIAL NUMBER
900931	HP	8566B	Spectrum Analyzer (100Hz – 22 GHz)	3138A07771

6.3 POWER SPECTRAL DENSITY TEST DATA

Operating Frequency (MHz): 2422, 2437 & 2452 Channel: 3, 6 & 9 Limit (dBm): 8

TABLE 6-2:POWER SPECTRAL DENSITY DATA

CHANNEL	500mW-POWER SPECTRAL DENSITY LIMIT = +8dBm
3	-1.5
6	-1.8
9	-2.1

Franck Schuppius	- Frank Juis	10/03/02
Test Technician/Engineer	Signature	Date Of Test

Report number:2002124FCC:Part 15.247Industry Canada:RSS-210FCC ID:MFMSAMP24SM/N:Extended AmplifiedWLAN System (1W)

6.4 POWER SPECTRAL DENSITY PLOTS

Operating Frequency (MHz): 2422 Channel: 3 Bandwidth Resolution (kHz): 3 Bandwidth Video (kHz): 300 Sweep Time (s): 1000.0

PLOT 6-1: POWER SPECTRAL DENSITY: CHANNEL 3

Franck Schuppius	- Frank Juis	10/03/02
Test Technician/Engineer	Signature	Date Of Test

Report number: 2002124 FCC: Part 15.247 Industry Canada: RSS-210 FCC ID: MFMSAMP24S M/N: Extended Amplified WLAN System (1W)

Operating Frequency (MHz): 2437 Channel: 6 Bandwidth Resolution (kHz): 3 Bandwidth Video (kHz): 300 Sweep Time (s): 1000.0

PLOT 6-2: POWER SPECTRAL DENSITY: CHANNEL 6

TEST PERSONNEL:

Franck Schuppius10/03/02Test Technician/EngineerSignatureDate Of Test

Report number: 2002124 FCC: Part 15.247 Industry Canada: RSS-210 FCC ID: MFMSAMP24S M/N: Extended Amplified WLAN System (1W)

Operating Frequency (MHz): 2452 Channel: 9 Bandwidth Resolution (kHz): 3 Bandwidth Video (kHz): 300 Sweep Time (s): 1000.0

PLOT 6-3: POWER SPECTRAL DENSITY: CHANNEL 9

TEST PERSONNEL:

Franck Schuppius10/03/02Test Technician/EngineerSignatureDate Of Test