

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-0596/20-02-13

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com

e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

m&h Inprocess Messtechnik GmbH

Am Langholz 11

88289 Waldburg / GERMANY Phone: +49 7529 9733 886 Contact: Max Schweigert

e-mail: <u>max.schweigert@hexagon.com</u>

Manufacturer

m&h Inprocess Messtechnik GmbH

Am Langholz 11

88289 Waldburg / GERMANY

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Radio Wave Receiver

 Model name:
 RC-R-100

 FCC ID:
 MFFRCR100

 IC:
 5782A-RCR100

Frequency: DTS band 2400 MHz to 2483.5 MHz,

U-NII-1 band 5150 MHz to 5250 MHz

Technology tested: ZigBee, WLAN

Antenna: Integrated antennas

Power supply: 24.0 V DC by external power supply

Temperature range: +10°C to +50°C

Radio Communications

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:		
Michael Dorongovski	David Lang		
Lab Manager	Lab Manager		

Radio Communications

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1	Notes and disclaimer	
	2.2	Application details	
	2.3	Test laboratories sub-contracted	3
3	Test s	tandard/s, references and accreditations	
4	Repor	ting statements of conformity – decision rule	5
5	Test e	nvironment	е
6	Test it	em	6
•	6.1	General description	
	6.2	Additional information	
7	-	ption of the test setup	
•		Shielded semi anechoic chamber	
	7.1 7.2	Shielded fully anechoic chamber	
	7.1	Radiated measurements > 18 GHz.	
8	Seque	nce of testing	
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	12
	8.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	
	8.3	Sequence of testing radiated spurious 1 GHz to 18 GHz	
	8.4	Sequence of testing radiated spurious above 18 GHz	15
9	Meası	rement uncertainty	16
10	Sun	nmary of measurement results	17
11	Add	itional comments	18
12	Mea	surement results	20
	12.1	Band edge compliance radiated	20
	12.2	Spurious emissions radiated below 30 MHz	
	12.3	Spurious emissions radiated 30 MHz to 1 GHz	
	12.4	Spurious emissions radiated 1 GHz to 40 GHz	26
13	Obs	ervations	29
14	Glos	ssary	29
15	Doc	ument history	30
16	Acc	reditation Certificate – D-PL-12076-01-05	30
17	Acc	reditation Certificate - D-PL-12076-01-04	31

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2020-11-03

Date of receipt of test item: 2020-11-10

Start of test:* 2021-01-27

End of test:* 2021-01-29

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 31

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

DAKKS

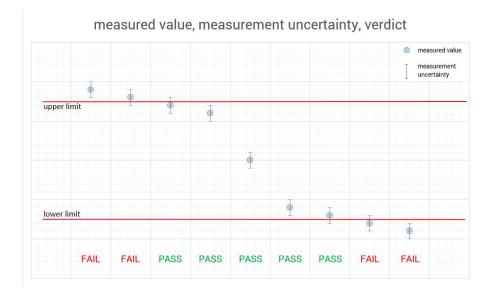
Deutsche
Akkreditierungsstelle
D-PL-12076-01-05

3 Test standard/s, references and accreditations

D-PL-12076-01-05

Test standard	Date	Description
FCC - Title 47 CFR Part 15	Fahman	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices Digital Transmission Systems (DTSs), Frequency Hopping
RSS - 247 Issue 2	February 2017	Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
Guidance	Version	Description
KDB 558074 D01	v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES Guidelines for Compliance Testing of Unlicensed National
KDB 789033 D02	v02r01	Information Infrastructure (U-NII) Devices - Part 15, Subpart E American National Standard for Methods of Measurement of
ANSI C63.4-2014	-/-	Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance
ANSI C63.10-2013	-/-	Testing of Unlicensed Wireless Devices
KDB 662911 D01	v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
KDB 996369 D04	v02	MODULAR TRANSMITTERINTEGRATION GUIDEGUIDANCE FOR HOSTPRODUCTMANUFACTURERS
Accreditation	Description	n
D-PL-12076-01-04		unication and EMC Canada dakks.de/as/ast/d/D-PL-12076-01-04e.pdf DakkS Deutsche Akkreditierungsstelle D-PL-12076-01-04

© CTC advanced GmbH Page 4 of 31


Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf

4 Reporting statements of conformity - decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 5 of 31

5 Test environment

Temperature	:	T _{nom} T _{max}	+20 °C during room temperature tests No tests under extreme environmental conditions required.
		T _{min}	No tests under extreme environmental conditions required.
Relative humidity content	:		35 %
Barometric pressure	:		1021 hpa
		V_{nom}	24.0 V DC by external power supply
Power supply	:	V_{max}	No tests under extreme environmental conditions required.
		V_{min}	No tests under extreme environmental conditions required.

6 Test item

6.1 General description

Kind of test item :	Radio Wave Receiver
Model name :	RC-R-100
HMN :	-/-
PMN :	RC-R-100
HVIN :	01
FVIN :	-/-
S/N serial number :	Radiated unit: #10021
Hardware status :	0
Software status :	1.0
Firmware status :	1.0
Frequency band :	DTS band 2400 MHz to 2483.5 MHz, U-NII-1 band 5150 MHz to 5250 MHz
Type of radio transmission: Use of frequency spectrum:	DSSS, OFDM
Type of modulation :	O-QPSK, CCK, (D)BPSK, (D)QPSK, 16 – QAM, 64 – QAM
Number of channels :	ZigBee: 16 WLAN: 7
Antenna :	Integrated antennas
Power supply :	24.0 V DC by external power supply (goobay NTS 1500 9-24V EuP /NO 54799)
Temperature range :	+10°C to +50°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-0596/20-02-01_AnnexA

1-0596/20-02-01_AnnexB 1-0596/20-02-01_AnnexD

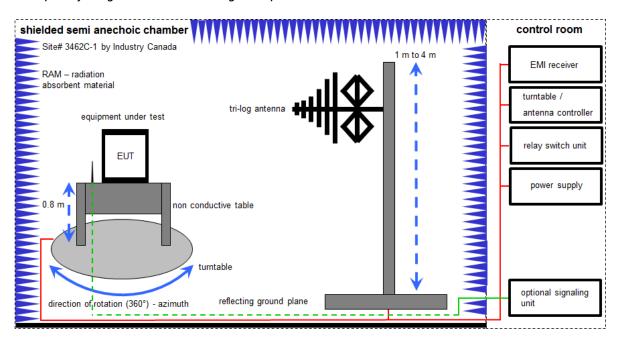
© CTC advanced GmbH Page 6 of 31

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlk!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 31

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

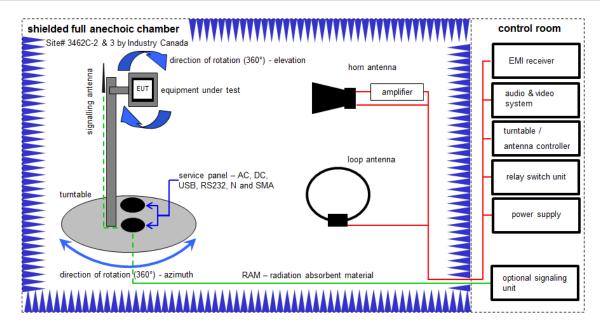
Example calculation:

 $FS \left[dB\mu V/m \right] = 12.35 \left[dB\mu V/m \right] + 1.90 \left[dB \right] + 16.80 \left[dB/m \right] = 31.05 \left[dB\mu V/m \right] (35.69 \ \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	Α	Semi anechoic chamber	3000023	MWB AG		300000551	ne	-/-	-/-
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-

© CTC advanced GmbH Page 8 of 31



7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vIKI!	19.02.2019	18.02.2021
8	Α	Turntable	2089-4.0	EMCO		300004394	ne	-/-	-/-
9	Α	PC	TecLine	F+W		300004388	ne	-/-	-/-
10	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	10.12.2020	09.06.2022

© CTC advanced GmbH Page 9 of 31

7.2 Shielded fully anechoic chamber

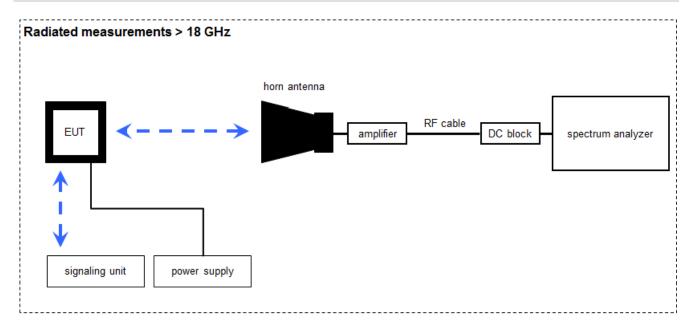
Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A+B	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKI!	09.12.2020	08.12.2023
2	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	13.06.2019	12.06.2021
3	A+B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vlKI!	27.02.2019	26.02.2021
5	A+B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
6	В	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
7	A+B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2020	10.12.2021
8	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
9	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
10	В	High Pass Filter	VHF-3500+	Mini Circuits	-/-	400000193	ne	-/-	-/-
11	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
12	В	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
13	В	NEXIO EMV- Software	BAT EMC V3.20.0.13	EMCO		300004682	ne	-/-	-/-
14	В	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

© CTC advanced GmbH Page 10 of 31

7.1 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \text{ }\text{μV/m})$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vlKI!	21.01.2020	20.01.2022
3	А	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vlKI!	23.01.2020	22.01.2022
4	А	Broadband Low Noise Amplifier 18- 50 GHz	CBL18503070-XX	CERNEX	19338	300004273	ev	-/-	-/-
5	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	17.12.2019	06.12.2021
6	А	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
7	А	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
8	А	DC-Blocker 0.1-40 GHz	8141A	Inmet		400001185	ev	-/-	-/-

© CTC advanced GmbH Page 11 of 31

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 12 of 31

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
 angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 31

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna
 polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 14 of 31

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 15 of 31

9 Measurement uncertainty

Measurement uncertainty			
Test case	Uncertainty		
Antenna gain	± 3 dB		
Power spectral density	± 1.15 dB		
Spectrum bandwidth	± 100 kHz (depe	nds on the used RBW)	
Occupied bandwidth	± 100 kHz (depe	nds on the used RBW)	
Maximum output power	± 1.15 dB condu ± 3 dB radiated	cted	
Minimum emissions bandwidth	± 100 kHz (depends on the used RBW)		
Band edge compliance radiated	± 3 dB		
	> 3.6 GHz	± 1.15 dB	
Spurious emissions conducted	> 7 GHz	± 1.15 dB	
Sparious emissions conducted	> 18 GHz	± 1.89 dB	
	≥ 40 GHz	± 3.12 dB	
Spurious emissions radiated below 30 MHz	± 3 dB		
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB		
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB		
Spurious emissions radiated above 12.75 GHz	± 4.5 dB		
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB		

© CTC advanced GmbH Page 16 of 31

10 Summary of measurement results

	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
\boxtimes	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Title 47 Part 15 RSS 247. Issue 2	See table	2021-03-11	-/-

Test specification clause	Test case	С	NC	NA	NP	Remark
§15.205 RSS - 247	Band edge compliance radiated	\boxtimes				-/-
§15.109 §15.247(d) §15.407(b) RSS - 247	TX spurious emissions radiated	\boxtimes				-/-
§15.209(a) RSS-Gen	Spurious emissions radiated < 30 MHz	\boxtimes				-/-

Notes:

C: Compliant NC: Not compliant NA: Not applicable NP: Not performed

© CTC advanced GmbH Page 17 of 31

11 Additional comments

Reference documents: Customer Questionnaire WLAN_Receiver_01

Sirius Operational Description

Testinstructions_NormalOperation_0

TestsoftwareInstructions_0

Special test descriptions: None

Configuration descriptions: The DUT has been configured to work as an WLAN access-point on channel 36

and a laptop has been connected to the DUT. The laptop is only working in a-Mode. Iperf has been used to create WLAN traffic form the DUT to the laptop.

For ZigBee a special software version is used that enables continuous

transmission on channel 18.

EUT selection: \square Only one device available

 $\ \square$ Devices selected by the customer

☐ Devices selected by the laboratory (Randomly)

Provided channels:

WLAN: Channels with 20 MHz channel bandwidth:

U-NII-1 (5150 MHz to 5250 MHz) channel number & center frequency							
Charmer number & center frequency							
channel	36	40	44	48			
f _c / MHz	5180	5200	5220	5240			

ZigBee:

ZigBee channel number & center frequency								
channel	11	12	13	14	15	16	17	18
f _c / MHz	2405	2410	2415	2420	2425	2430	2435	2440
channel	19	20	21	22	23	24	25	26
f _c / MHz	2445	2450	2455	2460	2465	2470	2475	2480

© CTC advanced GmbH Page 18 of 31

Test mode:		No test mode available. Iperf is used to transmit data to a companion device
	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit o	operating m	odes:
		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

© CTC advanced GmbH Page 19 of 31

12 Measurement results

12.1 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. Measurement distance is 3m.

Measurement:

Measurement parameter				
Detector:	Peak / RMS			
Sweep time:	Auto			
Resolution bandwidth:	1 MHz			
Video bandwidth:	≥ 3 x RBW			
Span:	See plots!			
Trace mode:	Max Hold			
Test setup:	See sub clause 7.2 – B			
Measurement uncertainty:	See chapter 10			

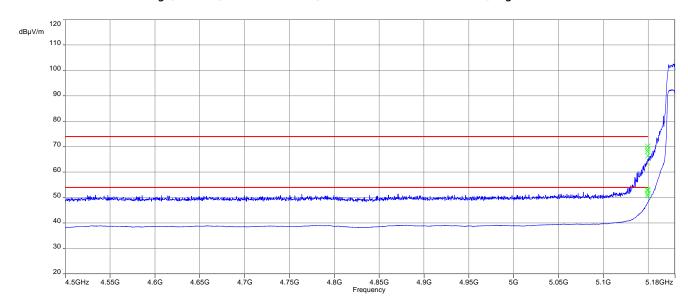
Limits:

Band Edge Compliance Radiated

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

74 dBμV/m (peak) 54 dBμV/m (average)

Result:


Scenario	Band Edge Compliance Radiated [dBµV/m]
band edge	70.2 dBμV/m (peak) 53.3 dBμV/m (average)

© CTC advanced GmbH Page 20 of 31

Plots:

Plot 1: lower band edge; U-NII-1; lowest channel; 20 MHz channel bandwidth, ZigBee active on channel 18

© CTC advanced GmbH Page 21 of 31

12.2 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are re-calculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

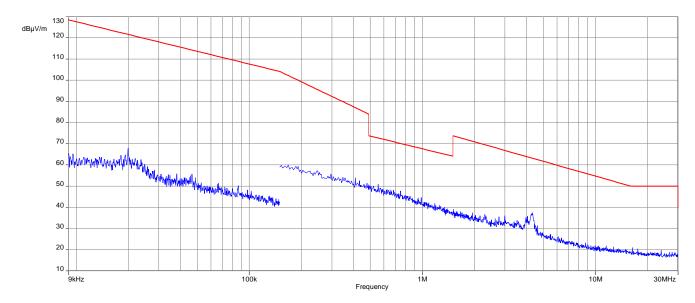
Measurement:

Measurement parameter				
Detector:	Peak / Quasi Peak			
Sweep time:	Auto			
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span:	9 kHz to 30 MHz			
Trace mode:	Max Hold			
Test setup:	See sub clause 7.2 – A			
Measurement uncertainty:	See chapter 10			

Limits:

Spurious Emissions Radiated < 30 MHz					
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance			
0.009 - 0.490	2400/F(kHz)	300			
0.490 - 1.705	24000/F(kHz)	30			
1.705 – 30.0	30	30			

Results:


Spurious Emissions Radiated < 30 MHz [dBµV/m]					
F [MHz] Detector Level [dBµV/m]					
All detected emissions are more than 20 dB below the limit.					

© CTC advanced GmbH Page 22 of 31

Plots:

Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel / ZigBee active on channel 18

© CTC advanced GmbH Page 23 of 31

12.3 Spurious emissions radiated 30 MHz to 1 GHz

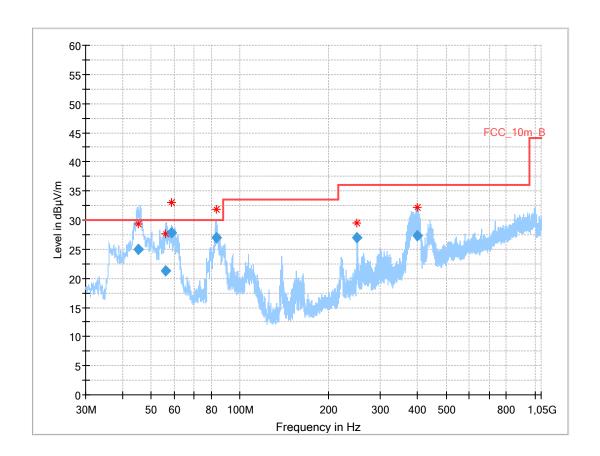
Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

Measurement:

Measurement parameter				
Detector:	Quasi Peak			
Sweep time:	Auto			
Resolution bandwidth:	120 kHz			
Video bandwidth:	500 kHz			
Span:	30 MHz to 1 GHz			
Test setup:	See sub clause 7.1 – A			
Measurement uncertainty:	See chapter 10			

Limits:


TX Spurious Emissions Radiated				
§15.209				
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance		
30 - 88	30.0	10		
88 – 216	33.5	10		
216 – 960	36.0	10		
Above 960	54.0	3		
§15.407				
Outside the restricted bands!	-27 dBm / MHz			

© CTC advanced GmbH Page 24 of 31

Plots: WLAN: 20 MHz channel bandwidth, U.NII-1 lowest channel / ZigBee: active on channel 18

Plot 1: 30 MHz to 1 GHz; vertical & horizontal polarization;

Results:

Frequency (MHz)	QuasiPe ak (dBµV/m	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimut h (deg)	Corr. (dB/m)
45.270	24.92	30.0	5.1	1000	120.0	98.0	V	255	14
56.174	21.22	30.0	8.8	1000	120.0	170.0	V	292	15
58.709	27.86	30.0	2.1	1000	120.0	170.0	٧	269	14
83.358	27.04	30.0	3.0	1000	120.0	170.0	٧	292	8
249.992	26.94	36.0	9.1	1000	120.0	101.0	٧	266	13
399.060	27.37	36.0	8.6	1000	120.0	101.0	٧	254	17

© CTC advanced GmbH Page 25 of 31

12.4 Spurious emissions radiated 1 GHz to 40 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations from 1 GHz to 40 GHz.

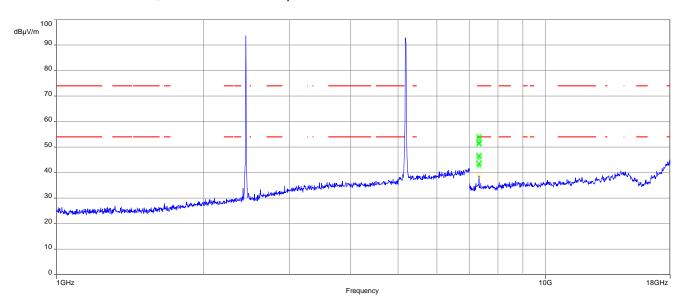
Measurement:

Measurement parameter				
	Quasi Peak below 1 GHz			
Detector:	(alternative Peak)			
	Peak above 1 GHz / RMS			
Sweep time:	Auto			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Span:	1 GHz to 40 GHz			
Trace mode:	Max Hold / Average with 100 counts + 20 log (1 / X) for duty cycle lower than 100 %			
Test setup:	See sub clause 7.2 – B See sub clause 7.3 – A			
Measurement uncertainty:	See chapter 10			

Limits:

TX Spurious Emissions Radiated				
§15.209				
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance		
Above 960	54.0	3		
§15.407				
Outside the restricted bands! -27 dBm / MHz				

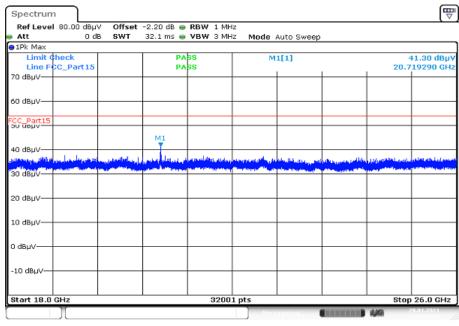
© CTC advanced GmbH Page 26 of 31



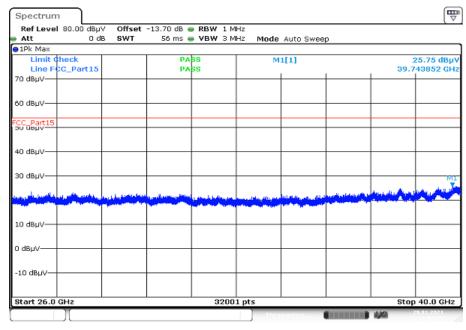
Results: WLAN: 20 MHz channel bandwidth, U.NII-1 lowest channel / ZigBee: active on channel 18

TX Spurious Emissions Radiated [dBμV/m] / dBm								
Lowest channel		Middle channel		Highest channel				
F [MHz]	Detector	Level [dBµV/m]	F [MHz] Detector Level [dBµV/m]		F [MHz]	Detector	Level [dBµV/m]	
7210	Peak	54.2						
7318	AVG	46.8						
	Peak			,			,	
	AVG		-/-			-/-		
For emissions above 18 GHz								
please take look at the plots.								

Plots:


Plot 1: 1 GHz to 18 GHz; vertical & horizontal polarization

© CTC advanced GmbH Page 27 of 31



Plot 2: 18 GHz to 26 GHz; vertical & horizontal polarization

Date: 29.JAN.2021 10:54:39

Plot 3: 26 GHz to 40 GHz; vertical & horizontal polarization

Date: 29.JAN.2021 11:02:56

© CTC advanced GmbH Page 28 of 31

13 Observations

No observations except those reported with the single test cases have been made.

14 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum

© CTC advanced GmbH Page 29 of 31

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2021-03-11

16 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken Is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)	Deutsche Akkreditierungsstelle GmbH Office Braunschweig Spittelmant 10 Europa-Allee 52 Bundesallee 100 3811e Braunschweig Bundesallee 100 3811e Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAMS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAMS.
The accreditation certificate shall only apply in connection with the notice of accreditation of O9.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of O5 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 By order Ossi-nag, (Firther Egner Head of Division The certificate together with its annex reflects the status of the time of the date of inser. The current status of the scope of accreditation can be found in the distalous of accreditation dates of Deviatche Aklarditineurograteric Grabit.	The accreditation was granted pursuant to the Act on the Accreditation Body (AkáScielles) of 31 July 2009 [Federa Law Gazette ja. 2623] and the Regulation (EJN 0-786/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union). 218 of 9 July 2008, p. 30) Dakks is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Formul (EA) and International Laboratory Accreditation Coperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.ilac.org IAF: www.ilac.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf

© CTC advanced GmbH Page 30 of 31

17 Accreditation Certificate - D-PL-12076-01-04

first page	last page
Dacks Dautsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee S2 101.17 Berlin Office Braunschweig Bundesallee 100 38116 Braunschweig 8116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 09.06.2020 by order planting the provided of Division The certificate together with its annex reflects the status at the time of the date of insur. The current status of the scape of accreditation can be found in the database of accreditate bodies of Division Albertifier-ungistede Gmbst. https://oww.dol.blde/en/content/accreditate-bodies-datas	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Alskreditierungsstelle GmbH (DA&S). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DA&S. The accreditation was granted pursuant to the Act on the Accreditation Body (AkiStelleG) of 31 July 2009 (Federal Law Gazette 1p. 2629) and the Regulation (EC) No 758/2008 of the European Parlaments and of the Council of 3 July 2008 sering out the requirements for accreditation and market surveillance relating to the marketing of products. Agreements for Mutual Recognition of the European cooperation for a Accreditation (EA), International Accreditation for a Accreditation (EA), International Accreditation for a Accreditation (EA). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.libc.org IAAC: www.libc.org IAF: www.libc.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf

© CTC advanced GmbH Page 31 of 31