

FCC Test Report

Equipment	:	5G Wireless Audio Transceiver Module ; 5G Wireless Audio Receiver Module
Brand Name	:	AMTRAN
Model No.	:	WLL7010-D113 ; WLL7011-D113
FCC ID	:	MDZ-WLL701X
Standard	:	47 CFR FCC Part 15.407
Frequency Range	:	5150 MHz – 5250 MHz
Equipment Class	:	NII
Applicant	:	Amtran Technology Co. Ltd 17F, No. 268, Lien Chen Rd. Chung Ho City, Taipei County 235 Taiwan
Manufacturer	:	Askey Computer Corp. 10F, No. 119, Chienkang Rd., Chung-Ho, Taiwan, R.O.C.
		ASKEY TECHNOLOGY (JIANG SU) LTD. No. 1388, Jiao Tong Road, Wujiang Economic-Technological Development Area, Jiangsu Province, P.R. China

The product sample received on Nov. 21, 2012 and completely tested on Dec. 10, 2012. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Wayne Hsu // Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	7
1.5	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	Test Channel Frequencies Configuration	9
2.3	The Worst Case Power Setting Parameter	9
2.4	The Worst Case Measurement Configuration	10
2.5	Test Setup Diagram	11
3	TRANSMITTER TEST RESULT	13
3.1	AC Power-line Conducted Emissions	13
3.2	Emission Bandwidth	16
3.3	RF Output Power	19
3.4	Peak Power Spectral Density	22
3.5	Peak Excursion	25
3.6	Transmitter Radiated Bandedge Emissions	27
3.7	Transmitter Radiated Unwanted Emissions	
3.8	Frequency Stability	42
4	TEST EQUIPMENT AND CALIBRATION DATA	44
5	CERTIFICATION OF TAF ACCREDITATION	46
APPE	ENDIX A. TEST PHOTOS	A7
APPE	ENDIX B. PHOTOGRAPHS OF EUT	В3

Summary of	of Test	Result
------------	---------	--------

	Conformance Test Specifications					
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result	
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied	
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 0.15MHz 32.03 (Margin 23.97dB) - AV 55.56 (Margin 10.44dB) - QP	FCC 15.207	Complied	
3.2	15.407(a)	Emission Bandwidth	Bandwidth [MHz] 20M:16.23	Information only	Complied	
3.3	15.407(a)	RF Output Power (Maximum Conducted Output Power)	Power [dBm] 5150-5250MHz:11.05	Power [dBm] 5150-5250MHz:17 5250-5350MHz:24 5470-5725MHz:24	Complied	
3.4	15.407(a)	Peak Power Spectral Density	PPSD [dBm/MHz] 5150-5250MHz:0.75	PPSD [dBm/MHz] 5150-5250MHz:4 5250-5350MHz:11 5470-5725MHz:11	Complied	
3.5	15.407(a)	Peak Excursion	2.89 dB	13 dB	Complied	
3.6	15.407(b)	Transmitter Radiated Bandedge Emissions	Restricted Bands [dBuV/m at 1m]: 5147.50MHz 70.91 (Margin 12.63dB) - PK 59.77 (Margin 3.77dB) - AV	Non-Restricted Bands: ≤ -27dBm (68.3dBuV/m@3m) Restricted Bands: FCC 15.209	Complied	
3.7	15.407(b)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 1m]: 15540.00MHz: 66.42 (Margin 17.125dB) – PK 57.75 (Margin 5.79dB) - AV	Non-Restricted Bands: ≤ -27dBm (68.3dBuV/m@3m) Restricted Bands: FCC 15.209	Complied	
3.8	15.407(g)	Frequency Stability	7.72 ppm	Signal shall remain in-band	Complied	

Revision History

Report No.	Version	Description	Issued Date
FR2N2126	Rev. 01	Initial issue of report	Dec. 11, 2012
			<u> </u>

1 General Description

1.1 Information

1.1.1 RF General Information

	RF General Information					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{⊤x})	RF Output Power (dBm)	
5150-5250	а	5180-5240	36-48 [4]	1	11.05	
	S130-3230 a S130-3240 30-48 [4] 1 11.05 Note 1: RF output power specifies that Maximum Conducted Output Power. Note 2: 802.11a uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation. Image: Comparison of OFDM-BPSK and the second					

1.1.2 Antenna Information

	Antenna Category				
\boxtimes	External antenna (dedicated antennas)				
	Single power level with corresponding antenna(s).				
	Multiple power level and corresponding antenna(s).				
	RF connector provided				
	Unique antenna connector. (e.g., MMCX, U.FL, IPX, and RP-SMA, RP-N type)				
		Standard antenna connector. (e.g., SMA, N, BNC, and TNC type)			

Antenna General Information				
No.	No. Ant. Cat. Ant. Type Gain (dBi)			
1	Integral	РСВ	5.36	

1.1.3 Type of EUT

	Identify EUT			
EUT	Γ Serial Number	N/A		
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype		
		Type of EUT		
\square	Stand-alone			
	Combined (EUT where the radio part is fully integrated within another device)			
	Combined Equipment - Brand Name / Model No.:			
	Plug-in radio (EUT intended for a variety of host systems)			
	Host System - Brand Name / Model No.:			
	Other:			

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle		
Operated normally mode for worst duty cycle		
Operated test mode for worst duty cycle		
Test Signal Duty Cycle (x)	Power Duty Factor [dB] – (10 log 1/x)	
⊠ 100% - IEEE 802.11a	0	

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC DC	
Type of DC Source	Internal DC supply	External DC adapter	Battery

1.2 Support Equipment

	Support Equipment				
No.	No. Equipment Brand Name Model Name Serial No.				
1	Test Fixture	-	-	-	
2	AC Adapter	AMIGO	AMS9-0502000FU2	-	

Reminder: The support equipment provide by customer.

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 789033
- FCC KDB 662911
- FCC KDB 412172

1.4 Testing Location Information

	Testing Location							
\boxtimes	HWA YA ADD : No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.							
		TEL	L :	886-3-327-34	56 FAX : 3	886-3-327-0973		
Те	st Conditio	n	Те	st Site No.	Test Engineer	Test Environment	Test Date	
R	RF Conducted		٦	TH01-HY	lan Lee	25.6°C / 45%	27-Nov-12	
AC Conduction CO04-HY		Bill Hsiao 24.5°C / 53%		10-Dec-12				
Radiated Emission 03CH02-HY			3CH02-HY	Daniel Hsu	26.5°C / 58%	23-Nov-12 24-Nov-12		

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

	Measurement Uncertainty						
Test Item		Uncertainty	Limit				
AC power-line conducted emissions	±2.26 dB	N/A					
Emission bandwidth	±1.42 %	N/A					
RF output power, conducted		±0.63 dB	N/A				
Power density, conducted		±0.81 dB	N/A				
Unwanted emissions, conducted	30 – 1000 MHz	±0.51 dB	N/A				
	1 – 18 GHz	±0.67 dB	N/A				
	18 – 40 GHz	±0.83 dB	N/A				
	40 – 200 GHz	N/A	N/A				
All emissions, radiated	30 – 1000 MHz	±2.56 dB	N/A				
	1 – 18 GHz	±3.59 dB	N/A				
	18 – 40 GHz	±3.82 dB	N/A				
	40 – 200 GHz	N/A	N/A				
Temperature	·	±0.8 °C	N/A				
Humidity		±3 %	N/A				
DC and low frequency voltages		±3 %	N/A				
Time		±1.42 %	N/A				
Duty Cycle		±1.42 %	N/A				

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

	Worst Modulation Used for Conformance Testing							
Frequency Band								
5.2G	11a	1	6-54 Mbps	6 Mbps	11.05			

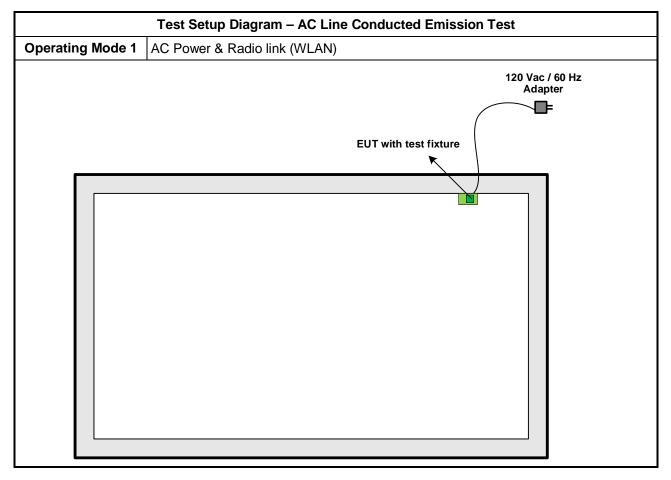
2.2 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration					
Frequency Range (MHz)	IEEE Std. 802.11	Test Channel Freq. (MHz) – FX (Frequencies Abbreviations)			
5150-5250	а	5180-(F1), 5210-(F2), 5240-(F3)			

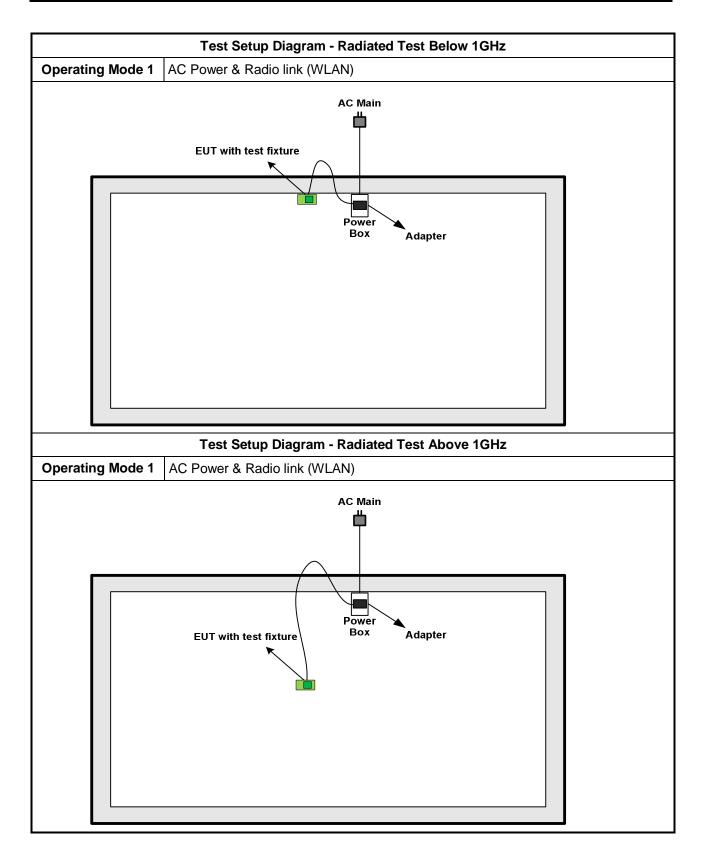
2.3 The Worst Case Power Setting Parameter

т	The Worst Case Power Setting Parameter					
Test Software Version	Test Software Version Transmitter continuous					
Modulation N	ode of Power Setting for 20MHz Channel Bandwidth					
Frequency (MHz)	Frequency (MHz) 11a					
5180	12					
5210	5210 12					
5240	12					

2.4 The Worst Case Measurement Configuration


Th	The Worst Case Mode for Following Conformance Tests			
Tests Item AC power-line conducted emissions				
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz			
Operating Mode	Operating Mode Description			
1	AC Power & Radio link (WLAN)			

The Worst Case Mode for Following Conformance Tests				
Tests Item	RF Output Power, Peak Power Spectral Density, Emission Bandwidth, Peak Excursion			
Test Condition	Conducted measurement at transmit chains			
Modulation Mode	11a			


Th	e Worst Case Mode for Fo	bllowing Conformance Te	sts			
Tests Item	Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions					
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.					
	EUT will be placed in	fixed position.				
User Position	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed two orthogonal planes. The worst planes is Z.					
	EUT will be a hand-held or body-worn battery-powered devices an operating multiple positions. EUT shall be performed two or three orthogonal planes. The worst planes is X.					
Operating Mode < 1GHz	1. AC Power & Radio link (WLAN)					
Modulation Mode	11a					
	X Plane	Y Plane	Z Plane			
Orthogonal Planes of EUT						

2.5 Test Setup Diagram

Transmitter Test Result 3

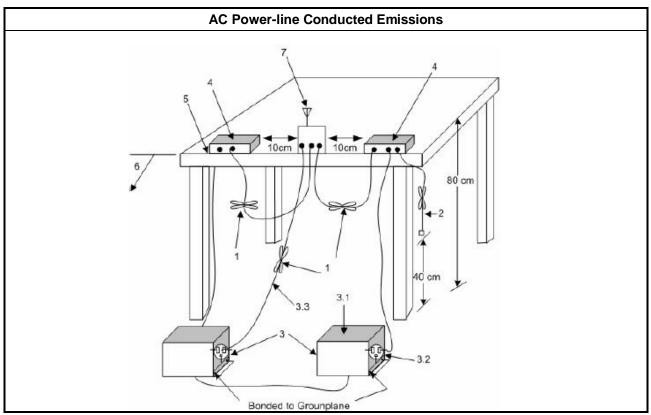
3.1 **AC Power-line Conducted Emissions**

AC Power-line Conducted Emissions Limit 3.1.1

AC Power-line Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5 66 - 56 * 56 - 46 *						
0.5-5	56	46				
5-30 60 50						
5-30 Note 1: * Decreases with the logarithm c		50				

Note 1: Decreases with the logarithm of the frequency

3.1.2 Measuring Instruments

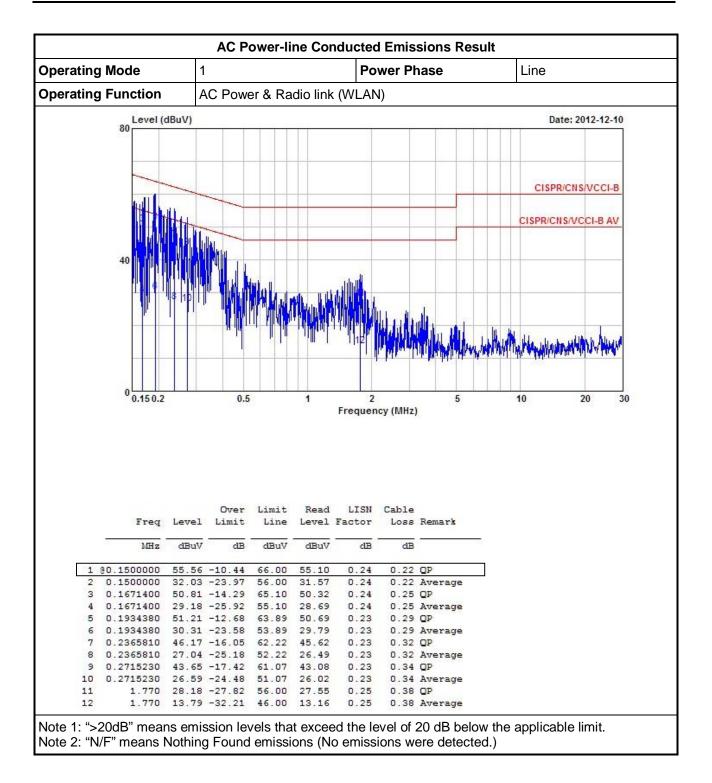

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



erating Mode	1		Po	wer Ph	nase		Neut	ral	
perating Function	AC Powe	er & Radio	link (WLAN	۷)					
80	BuV)	/) Date: 2012-12							2-12-10
							CIS	SPR/CNS/	/CCI-B
BI-IN								CNS/VCC	
40									
0.150.2	0.5	1 1	2 Frequer	ncy (MHz)	5	UNITAL	10	20	3
0 0.150.2	Over	Limit Re	Frequer	ncy (MHz) Cable		1444	10	20	30
	Over	Limit Re Line Let	Frequer	ncy (MHz) Cable			10	20	30
Freq	Over Level Limit dBuV dB	Limit Re Line Let	Frequer and LISN vel Factor BuV dB	Cable Loss	Remark		10	20	3
Freq 1 MHz 1 00.1500000 0 2 0.1500000 0	Over Level Limit dBuV dB 54.52 -11.48 30.98 -25.02	Limit Re Line Lev dBuV dE 66.00 54. 56.00 30.	Frequer ead LISN zel Factor BuV dB .19 0.11 .65 0.11	Cable Loss dB 0.22 0.22	Remark OP Average		10	20	30
Freq 1 MHz 1 80.1500000 8 2 0.1500000 3 3 0.1564950 8	Over Level Limit dBuV dB 54.52 -11.48 30.98 -25.02 53.73 -11.92	Limit Re Line Lev dBuV dE 66.00 54. 56.00 30. 65.65 53.	Frequer Frequer Ead LISN rel Factor BuV dB .19 0.11 .65 0.11 .39 0.11	Cable Loss dB 0.22 0.22 0.23	Remark OP Average OP		10	20	30
Freq 1 MHz 1 @0.1500000 9 2 0.1500000 3 3 0.1564950 9 4 0.1564950 9	Over Level Limit dBuV dB 54.52 -11.48 30.98 -25.02	Limit Re Line Lev dBuV dE 66.00 54. 56.00 30. 65.65 53.	Frequer Frequer Ead LISN rel Factor BuV dB 19 0.11 65 0.11 39 0.11 19 0.11	Cable Loss dB 0.22 0.22 0.23	Remark OP Average OP Average		10	20	30
Freq 1 MHz 1 00.1500000 0 2 0.1500000 0 3 0.1564950 0 4 0.1564950 0 5 0.1815220 0	Over Level Limit dBuV dB 54.52 -11.48 30.98 -25.02 53.73 -11.92 29.53 -26.12	Limit Re Line Lev dBuV dE 66.00 54. 56.00 30. 65.65 53. 55.65 29. 64.42 50.	Frequer Frequer Ead LISN vel Factor BuV dB .19 0.11 .65 0.11 .39 0.11 .19 0.11 .19 0.11	Cable Loss dB 0.22 0.23 0.23 0.23 0.27	Remark OP Average OP Average		10	20	30
Freq 1 MHz 1 @0.1500000 3 2 0.1500000 3 3 0.1564950 3 4 0.1564950 3 5 0.1815220 3 6 0.1815220 3 7 0.2139240 4	Over Level Limit dBuV dB 54.52 -11.48 30.98 -25.02 53.73 -11.92 29.53 -26.12 50.52 -13.90 28.34 -26.08 45.84 -17.21	Limit Re Line Lev dBuV dE 66.00 54. 56.00 30. 65.65 53. 55.65 29 64.42 50. 54.42 27. 63.05 45.	Frequer Frequer Factor Factor BuV dB 19 0.11 39 0.11 19 0.11 14 0.11 96 0.11 42 0.11	Cable Loss dB 0.22 0.22 0.23 0.23 0.27 0.27 0.31	Remark OP Average OP Average OP Average OP		10	20	30
Freq 1 MHz 1 @0.1500000 3 2 0.1500000 3 3 0.1564950 3 4 0.1564950 3 5 0.1815220 3 6 0.1815220 3 6 0.1815220 3 7 0.2139240 4 8 0.2139240 3	Over Level Limit dBuV dB 54.52 -11.48 30.98 -25.02 53.73 -11.92 29.53 -26.12 29.53 -26.12 29.54 -13.90 28.34 -26.08 45.84 -17.21 26.14 -26.91	Limit Re Line Let dBuV dE 66.00 54. 56.00 30. 65.65 53. 55.65 29. 64.42 50. 54.42 50. 54.42 50. 54.42 50. 54.42 50.	Frequer and LISN rel Factor BuV dB .19 0.11 .65 0.11 .19 0.11 .19 0.11 .14 0.11 .96 0.11 .42 0.11 .72 0.11	Cable Loss dB 0.22 0.23 0.23 0.27 0.27 0.31 0.31	Remark OP Average OP Average OP Average OP		10	20	30
Freq 1 MHz 1 80.1500000 8 2 0.1500000 3 3 0.1564950 8 4 0.1564950 8 5 0.1815220 8 6 0.1815220 8 6 0.1815220 8 7 0.2139240 8 8 0.2139240 8 9 0.2908840 8	Over Level Limit dBuV dB 54.52 -11.48 30.98 -25.02 53.73 -11.92 29.53 -26.12 50.52 -13.90 28.34 -26.08 45.84 -17.21 26.14 -26.91 41.12 -19.38	Limit Re Line Lev dBuV dE 66.00 54 56.00 30 65.65 53 55.65 29 64.42 50 54.42 57 63.05 45 53.05 25 60.50 40	Frequer and LISN rel Factor BuV dB .19 0.11 .65 0.11 .39 0.11 .19 0.11 .14 0.11 .14 0.11 .14 0.11 .42 0.11 .72 0.11 .67 0.10	Cable Loss dB 0.22 0.23 0.23 0.27 0.27 0.31 0.31 0.35	Remark OP Average OP Average OP Average OP Average OP		10	20	30
Freq 1 MHz 1 00.1500000 0 2 0.1500000 0 3 0.1564950 0 4 0.1564950 0 5 0.1815220 0 6 0.1815220 0 7 0.2139240 0 8 0.2139240 0 9 0.2908840 0	Over Level Limit dBuV dB 54.52 -11.48 30.98 -25.02 53.73 -11.92 29.53 -26.12 29.53 -26.12 29.54 -13.90 28.34 -26.08 45.84 -17.21 26.14 -26.91	Limit Re Line Lev dBuV dE 66.00 54 56.00 30 65.65 53 55.65 29 64.42 50 54.42 27 63.05 45 53.05 25 60.50 40 50.50 23	Frequer and LISN rel Factor BuV dB 19 0.11 .65 0.11 .39 0.11 .19 0.11 .19 0.11 .19 0.11 .19 0.11 .19 0.11 .19 0.11 .19 0.11 .19 0.11 .65 0.11 .39 0.11 .65 0.11 .66 0.11 .65 0.11 .67 0.10 .67 0.10 .67 0.10	Cable Loss dB 0.22 0.23 0.23 0.27 0.27 0.31 0.31 0.35	Remark QP Average QP Average QP Average QP Average QP Average		10	20	30

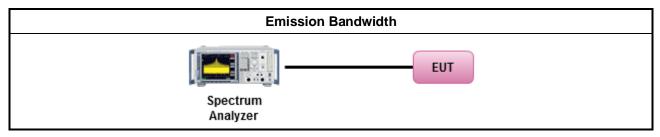
3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth (EBW) Limit

Emission Bandwidth (EBW) Limit						
UNII Devices						
For the 5.15-5.25 GHz band, the maximum conducted output power shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.						
For the 5.25-5.35 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.						
For the 5.47-5.725 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.						
For the 5.725-5.825 GHz band, the maximum conducted output power shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz						
_AN Devices						
For the band 5.15-5.25 GHz, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.						
For the 5.25-5.35 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz						
For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz						
For the 5.725-5.825 GHz band, the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.						

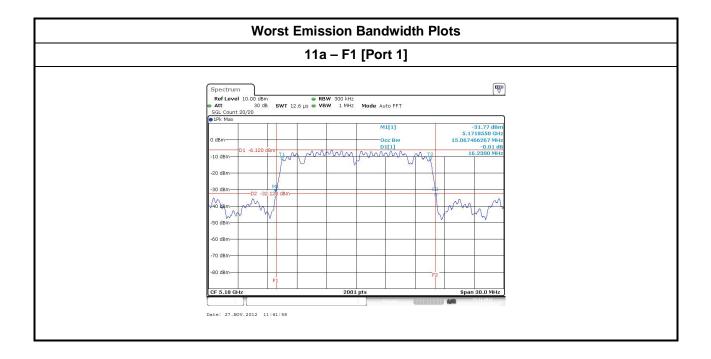
3.2.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method								
\boxtimes	For	the emission bandwidth shall be measured using one of the options below:							
	\boxtimes	Refer as FCC KDB 789033, clause D for EBW measurement.							
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.							
	\boxtimes	Refer as IC RSS-Gen, clause 4.6 for bandwidth testing.							
\boxtimes	For	conducted measurement.							
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain.							
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.							
		The EUT supports multiple transmit chains using options given below:							
		Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.							
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.							

3.2.4 Test Setup



3.2.5 Test Result of Emission Bandwidth

UNII Emission Bandwidth Result										
Condi	tion				Emis	sion Ban	dwidth (MHz)			
Modulation		Erog		26dB Ba	ndwidth		Conducted Pov	wer Limit (dBm)		
Mode	Ντχ	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4	Calculation Power Limit	Final Power Limit		
11a	1	5180	16.23	-	-	-	16.10	16.10		
11a	1	5210	16.20	-	-	-	16.10	16.10		
11a	1	5240	16.18	-	-	-	16.09	16.09		
Resi	Complied									
Note 1: N _{TX} = Nur	Note 1: N _{TX} = Number of Transmit Chains									

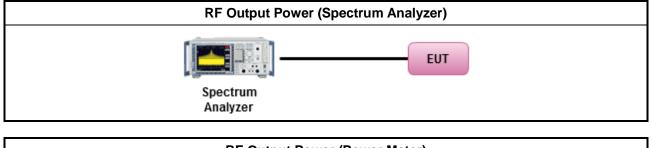
LE-LAN Emission Bandwidth Result										
Condi	tion				Emis	sion Ban	dwidth (MHz)			
Modulation		Erog		99% Ba	ndwidth		e.i.r.p. Powe	r Limit (dBm)		
Modulation	Ντχ	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4	Calculation Power Limit	Final Power Limit		
11a	1	5180	15.06	-	-	-	15.78	16.10		
11a	1	5210	15.05	-	-	-	15.78	16.10		
11a 1		5240	15.05	-	-	-	15.78	16.09		
Res	Complied									
Note 1: N_{TX} = Number of Transmit Chains										

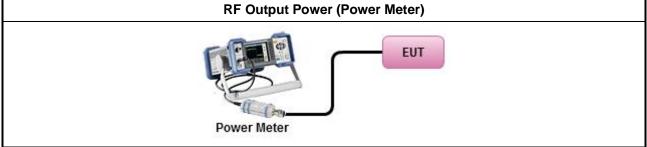
3.3 RF Output Power

3.3.1 RF Output Power Limit

	Maximum Conducted Output Power Limit								
UN	I Devices								
	For the 5.15-5.25 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 17 - (G_{TX} - 6)$.								
	For the 5.25-5.35 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 24 - (G_{TX} - 6)$.								
	For the 5.47-5.725 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If G_{TX} > 6 dBi, then $P_{Out} = 24 - (G_{TX} - 6)$.								
	For the 5.725-5.825 GHz band:								
	Point-to-multipoint systems (P2M): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$.								
	Point-to-point systems (P2P): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 23$ dBi, then $P_{Out} = 30 - (G_{TX} - 23)$.								
LE-	LAN Devices								
\square	For the 5.15-5.25 GHz band, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.								
	For the 5.25-5.35 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz								
	For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz								
	For the 5.725-5.825 GHz band, the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.								
	Point-to-multipoint systems (P2M): the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.								
	$\label{eq:point-to-point systems (P2P): the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. If e.i.r.p. > 36 dBm, G_{TX} \leq P_{Out}$								
	t = maximum conducted output power in dBm, = the maximum transmitting antenna directional gain in dBi.								

3.3.2 Measuring Instruments

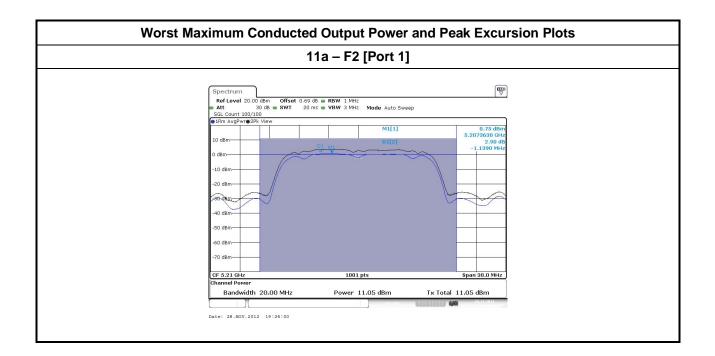

Refer a test equipment and calibration data table in this test report.



3.3.3 Test Procedures

		Test Method							
\square	Мах	ximum Conducted Output Power							
	[dut	y cycle ≥ 98% or external video / power trigger]							
	Refer as FCC KDB 789033, clause C Method SA-1 (spectral trace averaging).								
		Refer as FCC KDB 789033, clause C Method SA-1 Alt. (RMS detection with slow sweep speed)							
	duty	v cycle < 98% and average over on/off periods with duty factor							
		Refer as FCC KDB 789033, clause C Method SA-2 (spectral trace averaging).							
		Refer as FCC KDB 789033, clause C Method SA-2 Alt. (RMS detection with slow sweep speed)							
	Wid	and RF power meter and average over on/off periods with duty factor							
		Refer as FCC KDB 789033, clause C Method PM (using an RF average power meter).							
\square	For	conducted measurement.							
	\square	The EUT supports single transmit chain and measurements performed on this transmit chain.							
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.							
		The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.							
		If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG							

3.3.4 Test Setup



3.3.5	Test Result of Maximum Conducted Output Power	
-------	---	--

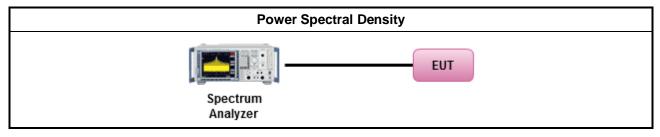
	Maximum Conducted (Average) Output Power											
Condi	tion					RF Outp	out Pow	er (dBm))			
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1			Chain Port 4	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit	
11a	1	5180	9.37	-	-	-	9.37	16.10	5.36	14.73	23.0	
11a	1	5210	11.05	-	-	-	11.05	16.10	5.36	16.41	23.0	
11a	1	5240	9.04	-	-	-	9.04	16.09	5.36	14.40	23.0	
Resu	Result					C	Complie	d				

3.4 Peak Power Spectral Density

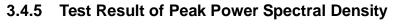
3.4.1 Peak Power Spectral Density Limit

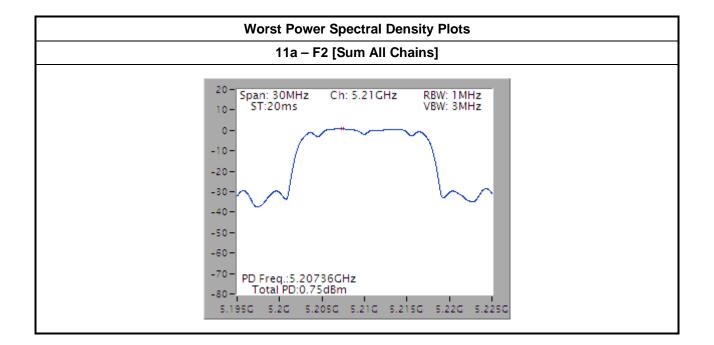
Peak Power Spectral Density Limit						
UNII Devices						
For the 5.15-5.25 GHz band, the peak power spectral density (PPSD) \leq 4 dBm/MHz. If G _{TX} > 6 dBi, the PPSD = 4 - (G _{TX} - 6).						
□ For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) ≤ 11 dBm/MHz. If $G_{TX} > 6$ dB then PPSD= 11 – ($G_{TX} - 6$).						
□ For the 5.47-5.725 GHz band, the peak power spectral density (PPSD) ≤ 11 dBm/MHz. If $G_{TX} > 6$ dE then PPSD= 11 – ($G_{TX} - 6$).						
For the 5.725-5.825 GHz band:						
Point-to-multipoint systems (P2M): the peak power spectral density (PPSD) \leq 17 dBm/MHz. If G > 6 dBi, then PPSD= 17 – (G _{TX} – 6).						
Point-to-point systems (P2P): the peak power spectral density (PPSD) \leq 17 dBm/MHz. If G _{TX} > 2 dBi, then PPSD = 17 - (G _{TX} - 23).						
LE-LAN Devices						
➢ For the 5.15-5.25 GHz band, the peak power spectral density (PPSD) ≤ 4 dBm/MHz and the e.i.r. peak power spectral density (PPSD) ≤ 10 dBm/MHz.						
□ For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) ≤ 11 dBm/MHz and the e.i.r. peak power spectral density (PPSD) ≤ 17 dBm/MHz.						
For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the peak power spectral density (PPSD) ≤ 1 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) ≤ 17 dBm/MHz.						
For the 5.725-5.825 GHz band, the peak power spectral density (PPSD) ≤ 17 dBm/MHz and the e.i.r. peak power spectral density (PPSD) ≤ 23 dBm/MHz.						
PPSD = peak power spectral density that he same method as used to determine the conducted output power shall be used to determine the power spectral density. And power spectral density in dBm/MHz G_{TX} = the maximum transmitting antenna directional gain in dBi.						

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures


		Test Method									
\boxtimes	outp func	a power spectral density procedures that the same method as used to determine the conducted ut power shall be used to determine the peak power spectral density and use the peak search ion on the spectrum analyzer to find the peak of the spectrum. For the peak power spectral density be measured using below options:									
	[duty cycle ≥ 98% or external video / power trigger]										
	\boxtimes	Refer as FCC KDB 789033, clause C Method SA-1 (spectral trace averaging).									
		Refer as FCC KDB 789033, clause C Method SA-1 Alt. (RMS detection with slow sweep speed)									
	duty	cycle < 98% and average over on/off periods with duty factor									
		Refer as FCC KDB 789033, clause C Method SA-2 (spectral trace averaging).									
		Refer as FCC KDB 789033, clause C Method SA-2 Alt. (RMS detection with slow sweep speed)									
\square	For	conducted measurement.									
	\square	The EUT supports single transmit chain and measurements performed on this transmit chain.									
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.									
		The EUT supports multiple transmit chains using options given below:									
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.									
		□ Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.									
		If multiple transmit chains, EIRP PPSD calculation could be following as methods: $PPSD_{total} = PPSD_1 + PPSD_2 + + PPSD_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) $EIRP_{total} = PPSD_{total} + DG$									
		Each individually PPSD plots refer as test report clause 3.3.5 with each individually PPSD plots.									


3.4.4 Test Setup

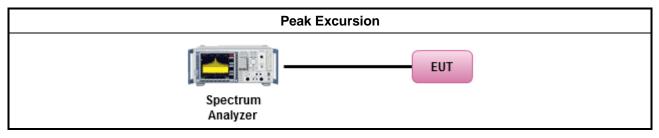
	Peak Power Spectral Density Result										
Cond	ition			Peak Power S	Spectral Densi	ity (dBm/MHz)					
Modulation Mode N _{TX} Freq. (MHz)		Option 1 Sum Chain	PSD Limit	DG (dBi)	EIRP PSD	EIRP Limit					
11a	1	5180	-0.91	4.00	5.36	5.36	23.0				
11a	1	5210	0.75	4.00	5.36	6.11	23.0				
11a	1	5240	-1.30	4.00	5.36	5.36	23.0				
Result					Complied						

3.5 Peak Excursion

3.5.1 Peak Excursion Limit

	Peak Excursion Limit							
UN	UNII Devices							
	Peak excursion \leq 13 dB. The ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission does not exceed 13 dB. (Earlier procedures that required computing the ratio of the two spectra at each frequency across the emission bandwidth can lead to unintended failures at band edges and will no longer be required.)							
LE-	LE-LAN Devices							

N/A

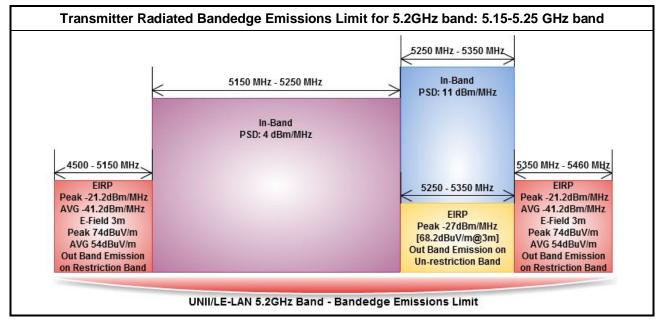

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

	Test Method								
\square	Refer as FCC KDB 789033, clause F peak excursion method.								
\boxtimes	Testing each modulation mode on a single channel is sufficient to demonstrate compliance with the peak excursion requirement								
\square	For	conducted measurement.							
	\square	The EUT supports single transmit chain and measurements performed on this transmit chain.							
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.							
		The EUT supports multiple transmit chains using given below method: Refer as FCC KDB 662911, when testing in-band (peak to average ratio) against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N).							
		Test result plots refer as test report clause 3.3.5 with peak excursion ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum.							

3.5.4 Test Setup


3.5.5 Test Result of Peak Excursion

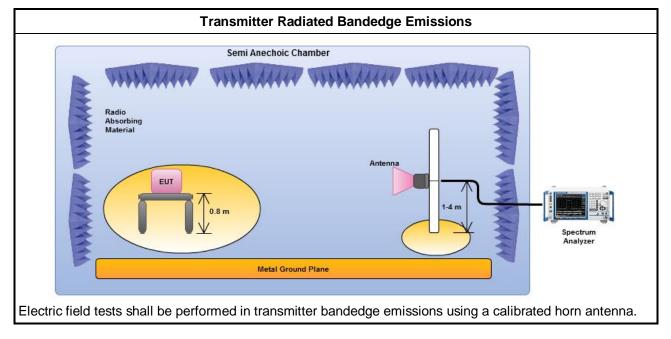
UNII Peak Excursion Result										
Condi	tion			Pea	ak Excursion (dB)				
		Freq. (MHz)	Chain- Port 1 Port 2		Chain- Port 3	Chain- Port 4	Limit			
11a	1	5180	2.89	-	-	-	13.0			
11a	1	5210	2.90	-	-	-	13.0			
11a	1	5240	2.85	-	-	-	13.0			
Result					Complied					

3.6 Transmitter Radiated Bandedge Emissions

3.6.1 Transmitter Radiated Bandedge Emissions Limit

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.6.3 Test Procedures

		Test Method
	perf equi extra dista mea	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement ipment. When performing measurements at a distance other than that specified, the results shall be apolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density asurements). Measurements in the bandedge are typically made at a closer distance 1m, because instrumentation noise floor is typically close to the radiated emission limit.
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
		er as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency neel and highest frequency channel within the allowed operating band.
		If EUT operate in adjacent contiguous bands, bandedge testing performed at the lowest frequency channel at lower-band and highest frequency channel at higher-band. Transmitter in-band emissions will consist of adjacent contiguous bands (e.g., IEEE 802.11ac VHT160 The lowest frequency channel at lower-band and highest frequency channel at higher-band in-band emissions will consist of two adjacent contiguous bands.)
		Operating in 5.15-5.25 GHz band (lower-band) and 5.25-5.35 GHz band (higher-band).
		Operating in 5.47-5.725 GHz band (lower-band) and 5.725-5.825 GHz band (higher-band).
		If EUT operate in individual non-contiguous bands, bandedge testing performed at the lowest frequency channel and highest frequency channel within lower-band and higher-band. (e.g., (e.g., IEEE 802.11ac VHT160)
		Operating in 5.25-5.35 GHz band (lower-band) and 5.47-5.725 GHz band (higher-band).
		Operating in 5.15-5.25 GHz band (lower-band) and 5.725-5.825 GHz band (higher-band).
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands.
		Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging).
		Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW).
		□ Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW) - Duty cycle \ge 98%.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 789033, clause G)5) measurement procedure peak limit.
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.
\square	For	the transmitter bandedge emissions shall be measured using following options below:
		Refer as FCC KDB 789033, clause G)3)d) marker-delta method for band-edge measurements.
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.
\boxtimes	For	radiated measurement, refer as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.

3.6.4 Test Setup

3.6.5 Test Result of Transmitter Radiated Bandedge Emissions

Modulation	11a	l	Restricted Band Emissions								
Restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)		Level Type	Po note			
4500-5150	5180	113.71	5148.20	1	70.91	83.54	PK	Н			
4500-5150	5180	109.40	5147.50	1	59.77	63.54	AV	Н			
5350-5460	5240	113.15	5373.30	1	70.50	83.54	PK	Н			
5350-5460	5240	109.02	5374.50	1	59.62	63.54	AV	Н			
5.2GHz L	ower-band (Lov	west Ch.)		5.2GHz	Lower-band	(Highest	t Ch.)				
60		15.497.49V	-41EW 	The second s			15.407 3 15.407 AV				
0 5100 5120.	5140. 5160. Frequency (MHz)	5180.	5200 ⁰ 5	100 5160.	5220. Frequency (M	5280. Htz)	5340.	5400			
120 Level (dBuV m)		5180.	120 120	100 5160.	5220. Frequency (M	5280. Htz)	5340.	-11-24 -HEW			

3.7 Transmitter Radiated Unwanted Emissions

3.7.1 Transmitter Radiated Unwanted Emissions Limit

Unwanted emissions below 1 GHz and restricted band emissions above 1GHz limit									
Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)							
2400/F(kHz)	48.5 - 13.8	300							
24000/F(kHz)	33.8 - 23	30							
30	29	30							
100	40	3							
150	43.5	3							
200	46	3							
500	54	3							
	Field Strength (uV/m) 2400/F(kHz) 24000/F(kHz) 30 100 150 200	Field Strength (uV/m) Field Strength (dBuV/m) 2400/F(kHz) 48.5 - 13.8 24000/F(kHz) 33.8 - 23 30 29 100 40 150 43.5 200 46							

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

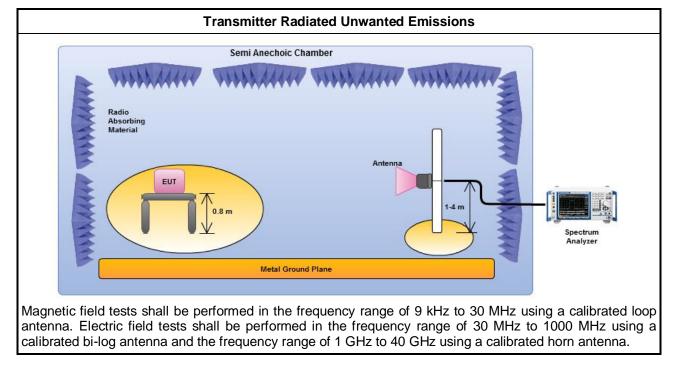
Un-restricted band emissions above 1GHz Limit									
Operating Band Limit									
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]								
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]								
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]								
5.725 - 5.825 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.825 5.835 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]								
performed in the near equipment. When performent when performent the performance of the p	be performed at a distance other than the limit distance provided they are not ar field and the emissions to be measured can be detected by the measurement erforming measurements at a distance other than that specified, the results sha he specified distance using an extrapolation factor of 20 dB/decade (inverse of								

linear distance for field-strength measurements, inverse of linear distance-squared for power-density

3.7.2 Measuring Instruments

measurements).

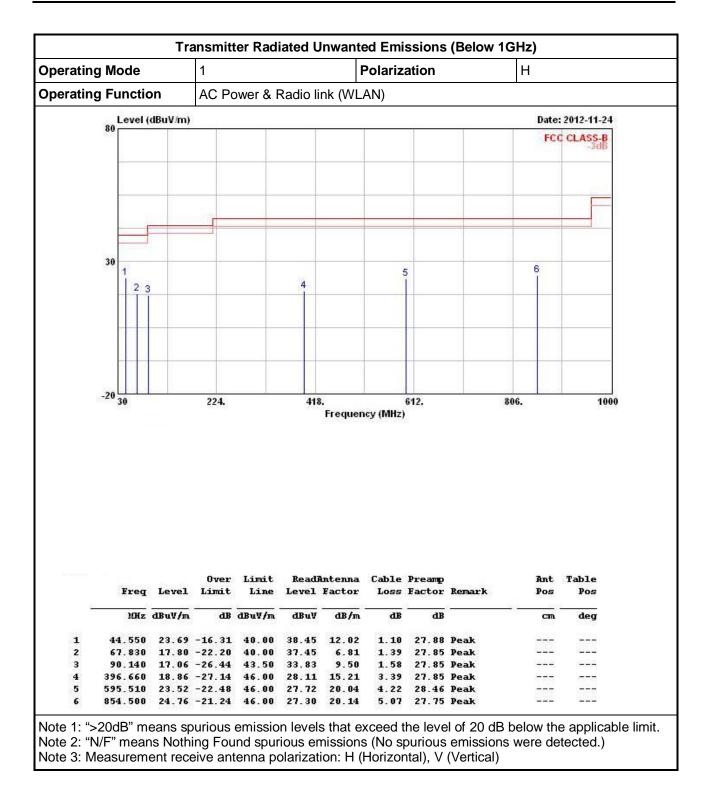
Refer a test equipment and calibration data table in this test report.



3.7.3 Test Procedures

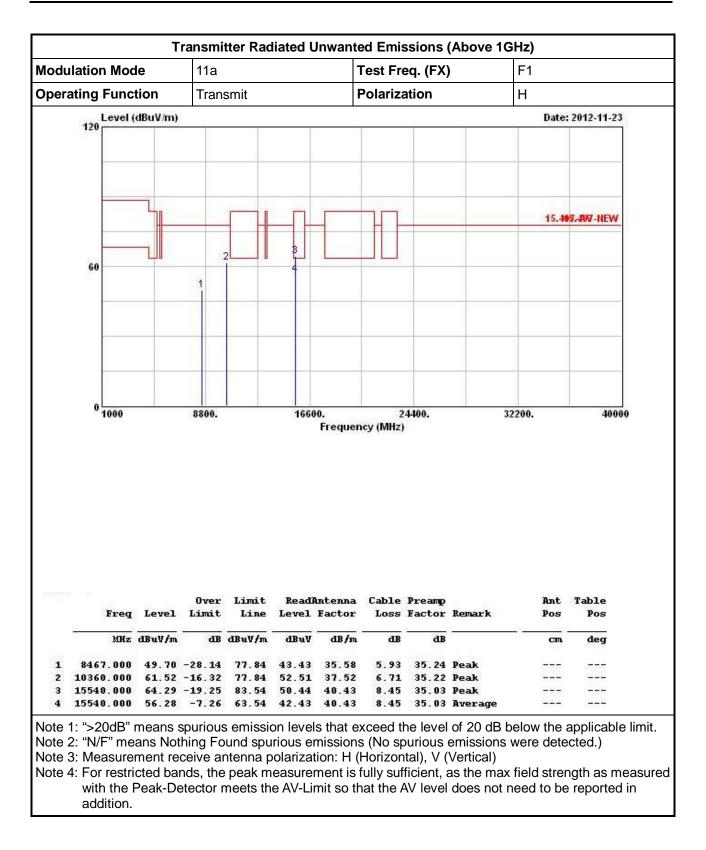
		Test Method
	perf equi abor are be e dista	asurements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement ipment. Measurements shall not be performed at a distance greater than 30 m for frequencies we 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less impractical. When performing measurements at a distance other than that specified, the results shall extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density asurements).
	\boxtimes	Measurements in the frequency range 5 GHz - 10GHz are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.
	\boxtimes	Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.
		Measurements in the frequency range above 18 GHz - 40GHz are typically made at a closer distance 0.5m, because the instrumentation noise floor is typically close to the radiated emission limit.
\boxtimes	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands.
	\square	Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands.
		Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging).
		Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW).
		□ Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW) – Duty \ge 98%.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 789033, clause G)5) measurement procedure peak limit.
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.
\square	For	radiated measurement.
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.
	\square	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.
	\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.

3.7.4 Test Setup



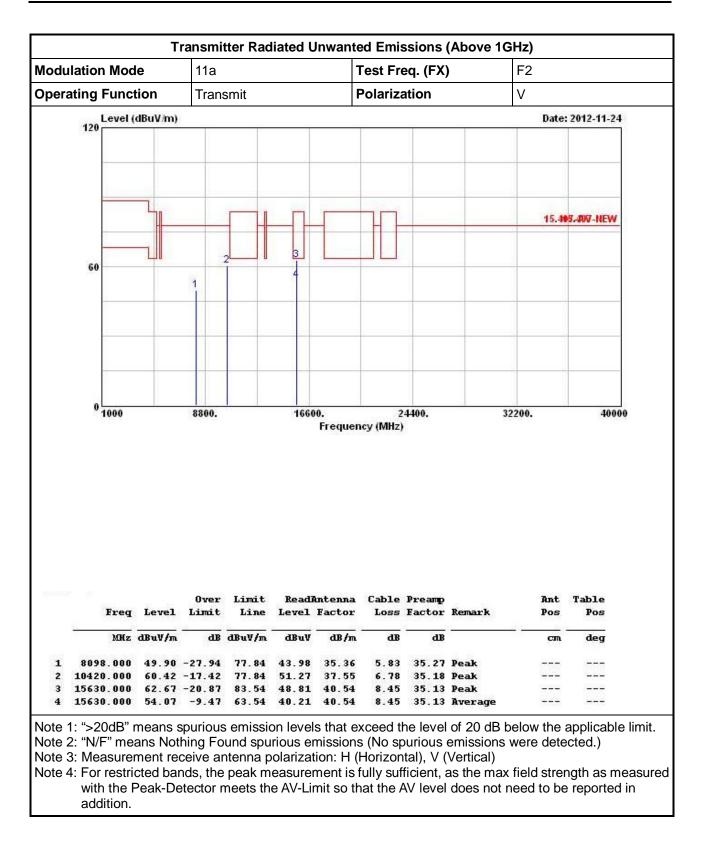
perating Mo	de	1			F	Polariz	ation		V			
perating Fu	nction	AC Po	ower & I	Radio li	nk (WL	AN)						
L	Level (dBuV/m) Date: 2012-11										2012-11	-24
80										FCO	CLASS-	B
_											-30	E.
_											-	
											1	_
							-					
-												
30	1 2 3									83		_
8,80)			4	5					E	5		
_												_
						-						
-20 3	0	224.		418). Frequen		612.		806.		1	1000
-20 3	0	224.		418					806.		,	1000
3	0 Freq Level	Over	Limit Line	Readi		cy(MHz) Cable	Preamp	Remark		Ant Pos	Table Pos	1000
3		Over Limit		Readi	Frequen	cy(MHz) Cable	Preamp	Remark			Table	1000
	Freq Level MHz dBuV/m	Over Limit	Line dBuV/m	Readf Level dBuV	Frequen Antenna Factor dB/m	Cable Loss dB	Preamp Factor dB			Pos cm	Table Pos deg	1000
1 44	Freq Level MHz dBuV/m .550 29.35	Over Limit dB -10.65	Line dBuV/m 40.00	Read Level dBu 44.11	Frequen Antenna Factor dB/m 12.02	Cable	Preamp Factor	Peak		Pos	Table Pos	1000
1 44 2 67 3 87	Егец Level MHz dBuV/л .550 29.35 .830 28.92 .230 30.07	Over Limit dB -10.65 -11.08 -9.93	Line dBuV/m 40.00 40.00 40.00	Read# Level dBuV 44.11 48.57 47.43	Frequen Intenna Factor dB/m 12.02 6.81 8.92	Cable Loss dB 1.10 1.39 1.57	Preamp Factor dB 27.88 27.85 27.85	Peak Peak Peak		Pos cm 	Table Pos deg]
1 44 2 67 3 87 4 307	Freq Level MHz dBuV/m .550 29.35 .830 28.92 .230 30.07 .420 21.77	Over Limit 	Line dBuV/m 40.00 40.00 40.00 40.00	ReadJ Level dBuV 44.11 48.57	Frequen Intenna Factor dB/m 12.02 6.81	Cable Loss dB 1.10 1.39	Preamp Factor dB 27.88 27.85	Peak Peak Peak Peak		Pos cm 	Table Pos deg]

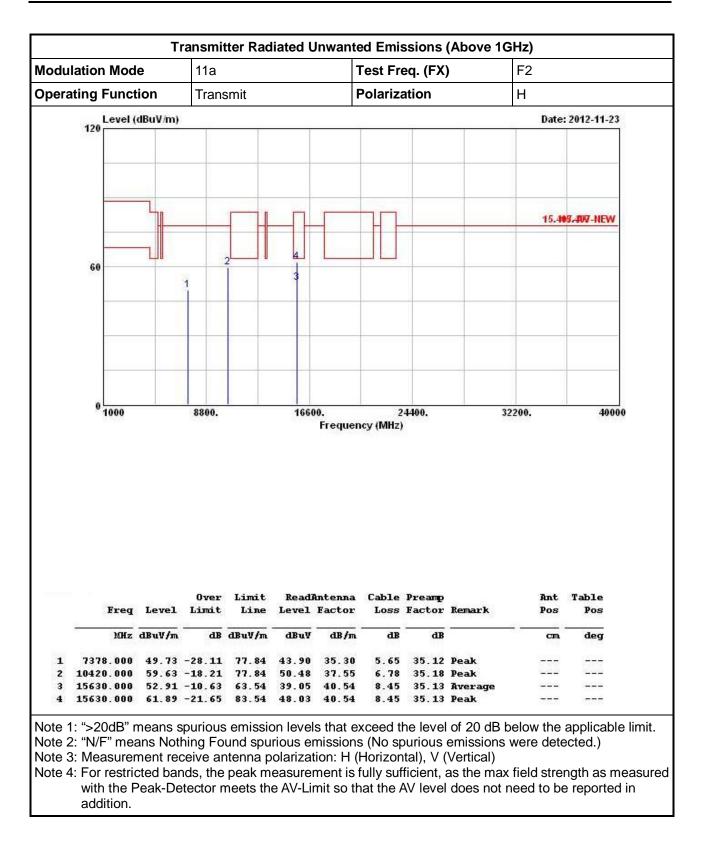
3.7.5 Transmitter Radiated Unwanted Emissions (Below 1GHz)

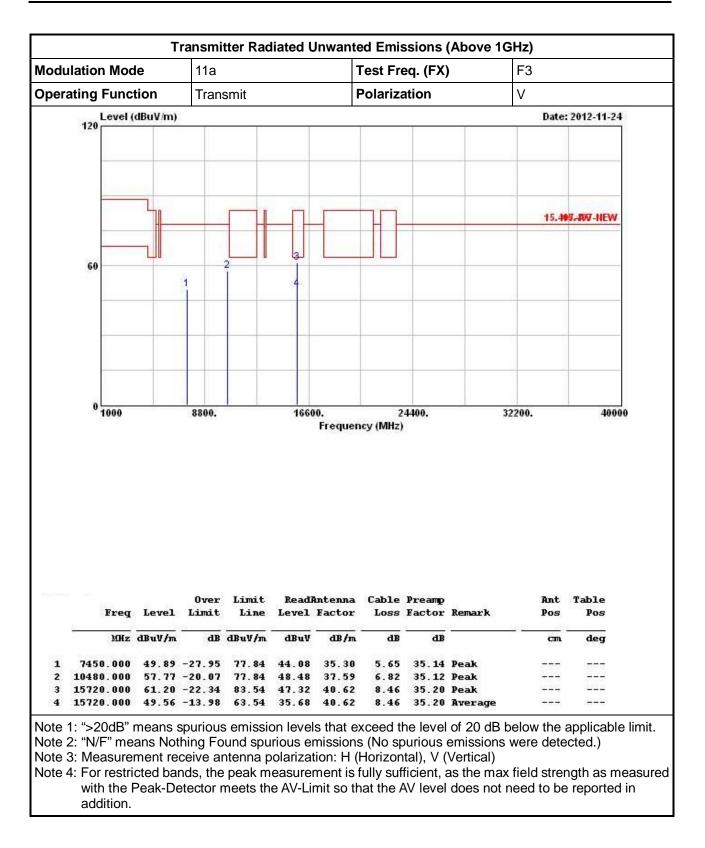


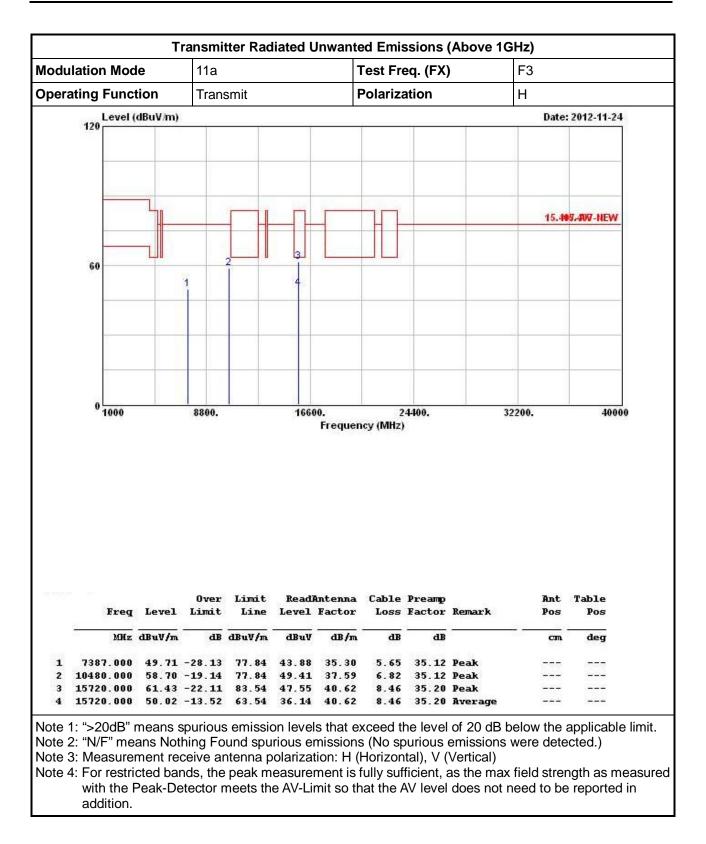
	le	11a			٦	Test Freq. (FX)			F1		
perating Func	tion	Transmit				Polarization			V		
Level (dBuV/m)								Date	: 2012-11-23	
120											
						-	_				
									15.4	S-ANT-NEW	
	-				-						
				8							
60		-	2 4	-	1	and the second de					
		1									
0 1000		8800.		166	00. Frequen		4400.		32200.	4000	
~ 1000	Level	Over	Limit Line	Read		cy (MHz) Cable	Preamp	Remark	32200. Ant Pos	4000 Table Pos	
~ 1000 Freq	Level dBuV/m	Over Limit	S-0007553	Read	Frequen Antenna Factor	cy (MHz) Cable	Preamp		Ant	Table	
- 1000 Freq 	dBuV/m	Over Limit dB	Line dBuV/m	Read Level dBuV	Antenna Factor dB/m	cy (MHz) Cable Loss dB	Preamp Factor dB	Remark	Ant Pos	Table Pos	
• 1000 Ereq MHz 1 7558.000	dBuV/m 50.44	Over Limit	Line dBuV/m 77.84	Read Level dBuV 44.63	Antenna Factor dB/m 35.30	cy (MHz) Cable Loss dB 5.67	Preamp Factor dB 35.16	Remark Peak	Ant Pos	Table Pos	
• 1000 Freq MHz 1 7558.000	dBuV/m 50.44 59.59	Over Limit dB -27.40	Line dBuV/m 77.84 77.84	Read Level dBuV	Antenna Factor dB/m 35.30 37.52	cy (MHz) Cable Loss dB	Preamp Factor dB 35.16	Remark Peak Peak	Ant Pos	Table Pos	

3.7.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a





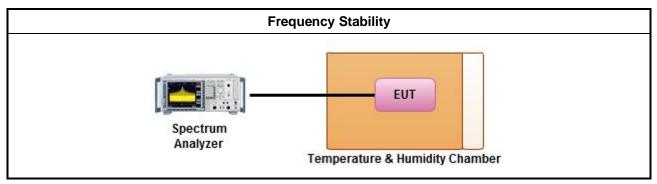




3.8 Frequency Stability

3.8.1 Frequency Stability Limit

	Frequency Stability Limit							
UN	II Devices							
\bowtie	In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.							
LE-	LAN Devices							
\boxtimes	N/A							
IEE	E Std. 802.11n-2009							
	The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band and \pm 25 ppm maximum for the 2.4 GHz band.							


3.8.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.8.3 Test Procedures

	Test Method							
\boxtimes	Refe	er as ANSI C63.10, clause 6.8 for frequency stability tests						
	\boxtimes	Frequency stability with respect to ambient temperature						
	\boxtimes	Frequency stability when varying supply voltage						
\boxtimes	For	conducted measurement.						
	\boxtimes	For conducted measurements on devices with multiple transmit chains: Measurements need only to be performed on one of the active transmit chains (antenna outputs)						
		radiated measurement. The equipment to be measured and the test antenna shall be oriented to in the maximum emitted power level.						

3.8.4 Test Setup

Мо	de	Frequency Stability (ppm)								
Condition	Freq. (MHz)	0 min	2 min	5 min	10 min	Limit				
T _{20°C} Vmax	5180	4.95	4.84	4.72	4.61	20.0				
T _{20°C} Vmin	5180	4.95	4.84	4.72	4.61	20.0				
T _{50°C} Vnom	5180	0.69	7.26	7.60	7.72	20.0				
T _{40°C} Vnom	5180	4.03	4.15	4.03	4.99	20.0				
T _{30℃} Vnom	5180	4.03	3.92	3.80	3.92	20.0				
T _{20°C} Vnom	5180	4.95	4.84	4.72	4.61	20.0				
T _{10℃} Vnom	5180	5.64	5.53	5.41	5.41	20.0				
$T_{0^{\circ}C}$ Vnom	5180	6.33	6.22	6.10	5.99	20.0				
T _{-10°C} Vnom	5180	6.68	6.91	6.79	6.79	20.0				
T _{-20°C} Vnom	5180	6.25	6.50	6.49	6.33	20.0				
Res	ult			Complied						

3.8.5 Test Result of Frequency Stability

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 23, 2012	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRO NIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Feb. 08, 2012	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9kHz ~ 30MHz	Apr. 20, 2012	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNE R	RG213/U	CB049	9kHz ~ 30MHz	Apr. 25, 2012	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP 40	100305	9kHz~40GHz	Feb. 21, 2012	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jun. 19, 2012	Conducted (TH01-HY)
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 02, 2012	Conducted (TH01-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP- SD	MAA1112-007	-20 ~ 100℃	Nov. 21, 2012	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 26, 2012	Conducted (TH01-HY)
Power Sensor	Anritsu	MA2411B	0917017	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
Power Meter	Anritsu	ML2495A	0949003	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
RF Cable-2m	HUBER+SUHNE R	SUCOFLEX_104	SN 345675/4	1 ~ 26.5GHz	NA	Conducted (TH01-HY)
RF Cable-3m	HUBER+SUHNE R	SUCOFLEX_104	SN 345669/4	1 ~ 26.5GHz	NA	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP40	100593	9kHz ~ 40GHz	Sep. 14, 2012	Radiation (03CH02-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30MHz ~ 1GHz 3m	May 10, 2012	Radiation (03CH02-HY)
Amplifier	Agilent	8447D	2944A11146	100kHz ~ 1.3GHz	Jul. 23, 2012	Radiation (03CH02-HY)
Amplifier	Agilent	8449B	3008A02373	1 ~ 26.5GHz	Aug. 10, 2012	Radiation (03CH02-HY)
Horn Antenna	ETS-LINDGREN	3117	00091920	1 ~ 18GHz	Nov. 16, 2012	Radiation (03CH02-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 ~ 40GHz	Jan.13, 2012	Radiation (03CH02-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Nov. 10, 2012	Radiation (03CH02-HY)
RF Cable-high	SUHNER	SUCOFLEX106	03CH02-HY	1 ~ 40GHz	Mar. 06, 2012	Radiation (03CH02-HY)
Bilog Antenna	SCHAFFNER	CBL61128	2723	30MHz ~ 2GHz	Oct. 22, 2012	Radiation (03CH02-HY)
Turn Table	HD	DS 420	420/649/00	0~ 360 degree	N/A	Radiation (03CH02-HY)
Antenna Mast	HD	MA 240	240/559/00	1 ~ 4 m	N/A	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5 ~ 40GHz	Apr. 19, 2011	Radiation (03CH02-HY)
Loop Antenna	R&S	HFH2-Z2	860004/0001	9 kHz - 30 MHz	Jul. 03, 2012	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is two year.

5 Certification of TAF Accreditation

