Test of Digi Intenational XLRP

To: FCC 47 CFR Part 15.247 & IC RSS-210

Test Report Serial No.: DIGI44-U2 Rev A

Test of Digi Intenational XLRP

To FCC 47 CFR Part 15.247 & IC RSS-210

Test Report Serial No.: DIGI44-U2 Rev A

This report supersedes: NONE

Applicant:

Digi International 355 South 520 West, Suite 180 Lindon Utah, 84042 USA

Product Function: General purpose wireless communication link

Copy No: pdf Issue Date: 22th April 2014

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

575 Boulder Court Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

This page has been left intentionally blank

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: DIGI44-U2 Rev A Issue Date: 22th April 2014 Page: 4 of 109

TABLE OF CONTENTS

AC	CREDITATION, LISTINGS & RECOGNITION	5
	TESTING ACCREDITATION	5
	RECOGNITION	6
	PRODUCT CERTIFICATION	7
1.	TEST RESULT CERTIFICATE	9
2.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	2.1. Normative References	.10
	2.2. Test and Uncertainty Procedures	.11
3.	PRODUCT DETAILS AND TEST CONFIGURATIONS	12
	3.1. Technical Details	.12
	3.2. Scope of Test Program	.13
	3.3. Equipment Model(s) and Serial Number(s)	.16
	3.4. Antenna Details	.16
	3.5. Cabling and I/O Ports	.19
	3.6. Lest Configurations	.19
	3.7. Equipment Modifications	10
		. 19
4.	1EST EQUIPMENT CONFIGURATION(S)	20
	4.1. Conducted RF Emission Test Set-up	.20
	4.3. Digital Emissions Test Set-up $(0.03 - 1 \text{ GHz})$.22
	4.4. ac Wireline Emission Test Set-up.	.23
5.		24
6		26
0.	6 1 Device Characteristics	20
	6.1.1 Conducted Testing	26
	6.1.2. Radiated Emission Testing	.48
	6.1.3. AC Wireline Conducted Emissions (150 kHz – 30 MHz)	.65
7.	PHOTOGRAPHS	67
	7.1. Conducted Test Setup	.67
	7.2. Test Setup - Digital Emissions below 1 GHz	.68
	7.3. Radiated Emissions Test Setup >1 GHz	.71
8.	TEST EQUIPMENT	73
AP	PENDIX	74
Α.	SUPPORTING INFORMATION	74
	A.1. CONDUCTED TEST PLOTS	.74
	A.1.1. 6 dB & 99% Bandwidth	.75
	A.1.2. Peak Output Power	.82
	A.1.3. Power Spectral Density	.89
	A.1.4. Conducted Spurious Emissions	.96

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:5 of 109

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:6 of 109

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	САВ	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	САВ	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:7 of 109

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC 17065. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

<u>United States of America – Telecommunication Certification Body (TCB)</u> TCB Identifier – US0159

Industry Canada – Certification Body CAB Identifier – US0159

Europe – Notified Body

Notified Body Identifier - 2280

Japan – Recognized Certification Body (RCB)

RCB Identifier - 210

DOCUMENT HISTORY

Document History							
Revision	Date	Comments					
Draft							
Rev A	22 nd April 2014	Initial release.					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:9 of 109

1. TEST RESULT CERTIFICATE

Digi International	Tested By:	MiCOM Labs, Inc.
355 South 520 West, Suite 180		440 Boulder Court
Lindon		Suite 200
Utah, 84042 USA		Pleasanton
		California, 94566, USA
General purpose wireless communication link	Telephone:	+1 925 462 0304
XLRP	Fax:	+1 925 462 0306
B17		
20th - 26th March 2014	Website:	www.micomlabs.com
	Digi International 355 South 520 West, Suite 180 Lindon Utah, 84042 USA General purpose wireless communication link XLRP B17 20th - 26th March 2014	Digi InternationalTested By:355 South 520 West, Suite 180LindonLindonTelephone:Utah, 84042 USATelephone:General purpose wirelessFax:XLRPFax:B1720th - 26th March 2014Website:

STANDARD(S)

FCC 47 CFR Part 15.247 & IC RSS-210

EQUIPMENT COMPLIES

TEST RESULTS

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs,

ACCREDITED TESTING CERT #2381.01 Gordon Hurst

President & CEO MiCOM Labs, Inc.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:10 of 109

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
i.	FCC 47 CFR Part 15, Subpart C	2012	Title 47: Telecommunication PART 15—RADIO FREQUENCY DEVICES Subpart C—Intentional Radiators
ii.	RSS-210 Annex 8	2010	Radio Standards Specification 210, Issue 8, Low- power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment
iii.	FCC OET KDB 662911	4 th April 2011	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
iv.	DA 00-705	2000	FCC DA 00-705 "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" released March 30, 2000
v.	RSS-GEN	2010	Radio Standards Specification-Gen, Issue 3, General Requirements and Information for the Certification of Radiocommunication Equipment
vi.	FCC 47 CFR Part 15, Subpart B	2012	47 CFR Part 15, SubPart B; Unintentional Radiators
vii.	ICES-003	2004	Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard Digital Apparatus; Issue 4
viii.	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ix.	CISPR 22/ EN 55022	2008 2006+A1:20 07	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
х.	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
xi.	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
xii.	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
xiii.	A2LA	July 2012	Reference to A2LA Accreditation Status – A2LA Advertising Policy

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:11 of 109

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:12 of 109

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the Digi Intenational XLRP operating in W-Fi mode to FCC Part 15.247 and Industry Canada RSS-
	210 regulations.
Applicant:	Digi International
	355 South 520 West, Suite 180
	Lindon
	Utah, 84042 USA
Manufacturer:	As applicant.
Laboratory performing the tests:	MiCOM Labs, Inc.
	440 Boulder Court, Suite 200
	Pleasanton, California 94566 USA
Test report reference number:	DIGI44-U2 Rev A
Date EUT received:	17 th March 2014
Standard(s) applied:	FCC 47 CFR Part 15.247 & IC RSS-210
Dates of test (from - to):	20th - 26th March 2014
No of Units Tested:	One
Type of Equipment:	DSSS Module
Manufacturers Trade Name:	Digi International
Model(s):	XLRP
Location for use:	Indoor and Outdoor
Declared Frequency Range(s):	902 - 928 MHz
Hardware Rev	A
Software Rev	28000
Type of Modulation:	DSSS
Declared Nominal Average	Maximum Power : +30 dBm
Output Power:	Minimum Power : -10 dBm
EUT Modes of Operation:	10 and 20 MHZ Bandwidth
I ransmit/Receive Operation:	Time Division Duplex
System Beam Forming:	EUT has no capability for antenna beam forming
Rated Input Voltage and Current:	5 VCC
Operating Temperature Range:	Manufacturer declared range -400 to +75°C at 95%
	numidity non condensing up to 45°C; linear decrease to
ITH Emission Designator	
	10 IVITIZ. 20 MHz·
Equipment Dimensions:	20 IVII 12. 52x35x6 5mm
Woight:	10 grame
Deire and for all	
Primary function of equipment:	General purpose wireless communication link

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:13 of 109

3.2. Scope of Test Program

Digi Intenational XLRP RF Testing

The scope of the test program was to test the Digi Intenational XLRP (10 and 20 MHz bandwidths) in the frequency range 902 - 928 MHz for compliance against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications.

Digi Intenational XLRP Module

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: DIGI44-U2 Rev A **Issue Date:** 22th April 2014 Page: 14 of 109

Digi Intenational XLRP Module

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: DIGI44-U2 Rev A Issue Date: 22th April 2014 Page: 15 of 109

Digi Intenational XLRP Module Test Fixure

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.3. Equipment Model(s) and Serial Number(s)

Equipment Type	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	915 MHz DSSS Wireless Module	Digi International	XLRP	B17
Support	Laptop PC	IBM	Thinkpad	None

3.4. Antenna Details

OMNI Antennas

Part Number	Connector Type	Antenna Gain (dBi)	Application	Minimum Cable Loss or Power Reduction Required (dB)
A09-F0	RPN	0.0	Fixed	0
A09-F1	RPN	1.0	Fixed	0
A09-F2	RPN	2.1	Fixed	0
A09-F3	RPN	3.1	Fixed	0
A09-F4	RPN	4.1	Fixed	0
A09-F5	RPN	5.1	Fixed	0
A09-F6	RPN	6.1	Fixed	0.1
A09-F7	RPN	7.1	Fixed	1.1
A09-F8	RPN	8.1	Fixed	2.1
A09-W7	RPN	7.1	Fixed	1.1
A09-F0	RPSMA	0.0	Fixed	0
A09-F1	RPSMA	1.0	Fixed	0
A09-F2	RPSMA	2.1	Fixed	0
A09-F3	RPSMA	3.1	Fixed	0
A09-F4	RPSMA	4.1	Fixed	0
A09-F5	RPSMA	5.1	Fixed	0
A09-F6	RPSMA	6.1	Fixed	0.1
A09-F7	RPSMA	7.1	Fixed	1.1
A09-F8	RPSMA	8.1	Fixed	2.1
A09-M7	RPSMAF	7.2	Fixed	1.2
A09-W7SM	RPSMA	7.1	Fixed	1.1
A09-F0TM	RPTNC	0.0	Fixed	0
A09-F1TM	RPTNC	1.0	Fixed	0

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:17 of 109

OMNI Antenna List (Cont'd)

Part Number	Connector Type	Antenna Gain (dBi)	Application	Minimum Cable Loss or Power Reduction Required (dB)
A09-F2TM	RPTNC	2.1	Fixed	0
A09-F3TM	RPTNC	3.1	Fixed	0
A09-F4TM	RPTNC	4.1	Fixed	0
A09-F5TM	RPTNC	5.1	Fixed	0
A09-F6TM	RPTNC	6.1	Fixed	0.1
A09-F7TM	RPTNC	7.1	Fixed	1.1
A09-F8TM	RPTNC	8.1	Fixed	2.1
A09-W7TM	RPTNC	7.1	Fixed	1.1
A09-HSM-7	RPSMA	3.0	Fixed / Mobile	0
A09-HASM-675	RPSMA	2.1	Fixed / Mobile	0
A09-HABMM-P6I	MMCX	2.1	Fixed / Mobile	0
A09-HABMM-6-P6I	MMCX	2.1	Fixed / Mobile	0
A09-HBMM-P6I	MMCX	2.1	Fixed / Mobile	0
A09-HRSM	RPSMA	2.1	Fixed	0
A09-HASM-7	RPSMA	2.1	Fixed	0
A09-HG	RPSMA	2.1	Fixed	0
A09-HATM	RPTNC	2.1	Fixed	0
A09-HATM-10	RPTNC	2.1	Fixed/Mobile	0
A09-H	RPSMA	2.1	Fixed	0
A09-HBMMP6I	MMCX	2.1	Fixed/Mobile	0
A09-QBMMP6I	MMCX	1.9	Fixed/Mobile	0
A09-QSM-3	RPSMA	1.9	Fixed / Mobile	0
A09-QSM-3H	RPSMA	1.9	Fixed / Mobile	0
A09-QBMM-P6I	MMCX	1.9	Fixed / Mobile	0

Highlighted OMNI Antenna is the highest gain 8.1 dBi. This was a test candidate for radiated testing

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:18 of 109

Yagi Antenna Selection

Part Number	Туре	Connector Type	Antenna Gain (dBi)	Application	Minimum Cable Loss or Power Reduction Required (dB)
A09-Y6	2 Element Yagi	RPN	6.1	Fixed / Mobile	0.1
A09-Y7	3 Element Yagi	RPN	7.1	Fixed / Mobile	1.1
A09-Y8	4 Element Yagi	RPN	8.1	Fixed / Mobile	2.1
A09-Y9	4 Element Yagi	RPN	9.1	Fixed / Mobile	3.1
A09-Y10	5 Element Yagi	RPN	10.1	Fixed / Mobile	4.1
A09-Y11	6 Element Yagi	RPN	11.1	Fixed / Mobile	5.1
A09-Y12	7 Element Yagi	RPN	12.1	Fixed / Mobile	6.1
A09-Y13	9 Element Yagi	RPN	13.1	Fixed / Mobile	7.1
A09-Y14	10 Element Yagi	RPN	14.1	Fixed / Mobile	8.1
A09-Y14	12 Element Yagi	RPN	14.1	Fixed / Mobile	8.1
A09-Y15	13 Element Yagi	RPN	15.1	Fixed / Mobile	9.1
A09-Y15	15 Element Yagi	RPN	15.1	Fixed / Mobile	9.1
A09-Y6TM	2 Element Yagi	RPTNC	6.1	Fixed / Mobile	0.1
A09-Y7TM	3 Element Yagi	RPTNC	7.1	Fixed / Mobile	1.1
A09-Y8TM	4 Element Yagi	RPTNC	8.1	Fixed / Mobile	2.1
A09-Y9TM	4 Element Yagi	RPTNC	9.1	Fixed / Mobile	3.1
A09-Y10TM	5 Element Yagi	RPTNC	10.1	Fixed / Mobile	4.1
A09-Y11TM	6 Element Yagi	RPTNC	11.1	Fixed / Mobile	5.1
A09-Y12TM	7 Element Yagi	RPTNC	12.1	Fixed / Mobile	6.1
A09-Y13TM	9 Element Yagi	RPTNC	13.1	Fixed / Mobile	7.1
A09-Y14TM	10 Element Yagi	RPTNC	14.1	Fixed / Mobile	8.1
A09-Y14TM	12 Element Yagi	RPTNC	14.1	Fixed / Mobile	8.1
A09-Y15TM	13 Element Yagi	RPTNC	15.1	Fixed / Mobile	9.1
A09-Y15TM	15 Element Yagi	RPTNC	15.1	Fixed / Mobile	9.1

Highlighted Yagi antenna is the highest gain 8.1 dBi. This was a test candidate for radiated testing

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. 1 x SMB (RF antenna port)

3.6. Test Configurations

Testing was performed on the following variants

Operational Mode(s)	Variant	Data Rate(s)	Frequencies (MHz)
10 MHz	DSSS	9.77 kBit/s 3.32 Mbit/s	909.0 915.0 921.0
20 MHz	DSSS	None	915.0

Measurement results for the above configurations are provided in this report.

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

4. TEST EQUIPMENT CONFIGURATION(S)

4.1. Conducted RF Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Section 6.1.1.1. 6 dB and 99% Bandwidth
- 2. Section 6.1.1.2. Peak Output Power
- 3. Section 6.1.1.3. Power Spectral Density
- 4. Section 6.1.1.4. Conducted Spurious Emissions

Conducted Test Set-Up Pictorial Representation

Test Measurement set up

Conducted Test Measurement Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4.2. Radiated Spurious Emission Test Set-up > 1 GHz

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Section 6.1.2.1. OMNI Antenna
- 2. Section 6.1.2.3. Yagi Antenna

Radiated Emission Measurement Setup – Above 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4.3. Digital Emissions Test Set-up (0.03 – 1 GHz)

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.2.3

Digital Emission Measurement Setup – Below 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4.4. ac Wireline Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.3 ac Wireline Conducted Emissions

Measurement Setup for Conducted Emissions Test

ac Wieline Emission test not required as the device is dc powered

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:24 of 109

5. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(2) A8.2(1) 4.4	6 dB and 99 % Bandwidths	≥500 kHz	Conducted	Complies	6.1.1
15.247(b)(3) 15.31(e) A8.4(4)	Peak Output Power Voltage Variation	Shall not exceed 1W Variation of supply voltage 85 % -115 %	Conducted	Complies	6.1.2
15.247(e) A8.2	Peak Power Spectral Density	Shall not be greater than +8 dBm in any 3 kHz band	Conducted	Complies	6.1.3
15.247(d) 15.205 / 15.209 A8.5 2.2 4.7	Spurious Emissions (30MHz - 26 GHz b/g and 30 MHz – 40 GHz a)	The radiated emission in any 100 kHz of out- band shall be at least 20 dB below the highest in- band spectral density	Conducted	Complies	6.1.4

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:25 of 109

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210, and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 / 15.209 A8.5 2.2 2.6 4.7	Radiated Emissions	Restricted Bands	Radiated	Complies	6.1.2.1- 6.1.2.8
	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	6.1.2.1- 6.1.2.8
	Radiated Band Edge	Band-edge results Peak Emissions		Complies	6.1.2.1- 6.1.2.8
15.205 / 15.209 2.2	Radiated Spurious Emissions	Emissions <1 GHz (30M- 1 GHz)	Radiated	Complies	6.1.2.9
15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	N/A EUT is DC powered	6.1.3

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:26 of 109

6. TEST RESULTS

6.1. Device Characteristics

6.1.1. Conducted Testing

6.1.1.1. 6 dB and 99 % Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth						
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5			
Test Heading:	6 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (a)(2)	999 - 1001				
Reference Document(s):	KDB 558074 - D01 DTS Measurement Guidance v01: Section 5.1 Emission Bandwidth					

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate centre frequency.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:27 of 109

Equipment Configuration for 6 dB & 99% Bandwidth					
Variant: 10 MHz (Low Data Rate)	Duty Cycle (%):	40			

valialit.		Duty Cycle (78).			
Data Rate:	9.77 KBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable Tested By: SB				
Engineering Test Notes:	No software version listed. X-CTU was used to operate and communicate with the EUT.				

Test Measurement Results

Test Frequency	M	easured 6 dB I Por	Bandwidth (MH rt(s)	łz)	6 dB Bandv	width (MHz)	Limit	Lowest Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
909.0	<u>9.303</u>				9.303	9.303	≥500.0	-8.80
915.0	<u>8.818</u>				8.818	8.818	≥500.0	-8.32
921.0	<u>8.818</u>				8.818	8.818	≥500.0	-8.32

Test		Measured 99% E	Bandwidth (MHz)	Maximum		
Frequency		Por	t(s)	99% Bandwidth		
MHz	а	b	c	d	(MHz)	
909.0	<u>9.170</u>				9.170	
915.0	<u>9.082</u>				9.082	
921.0	<u>9.082</u>				9.082	

Traccobility to Inductry Pacagnized Test Methodologies					
Traceability to industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:28 of 109

Equipment Configuration for 6 dB & 99% Bandwidth						
Variant:	10 MHz (High Data Rate)	Duty Cycle (%):	99			
Data Rate:	3.32 MBit/s	Antenna Gain (dBi):	Not Applicable			
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable Tested By: SB					
Engineering Test Notes:	No software version listed. X-CTU was used to operate and communicate with the EUT.					

Test Measurement Results

Test Frequency	M	easured 6 dB l Poi	Bandwidth (Mł rt(s)	Hz)	6 dB Bandy	width (MHz)	Limit	Lowest Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
909.0	<u>9.611</u>				9.611	9.611	≥500.0	-9.11
915.0	<u>9.611</u>				9.611	9.611	≥500.0	-9.11
921.0	<u>9.567</u>				9.567	9.567	≥500.0	-9.07

Test		Measured 99% E	Bandwidth (MHz	Maximum 99%		
Frequency		Por	rt(s)	Bandwidth		
MHz	а	b	С	d	(MHz)	
909.0	<u>9.523</u>				9.523	
915.0	<u>9.523</u>				9.523	
921.0	<u>9.523</u>				9.523	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:29 of 109

Equipment Configuration for 6 dB & 99% Bandwidth							
Variant:	20 MHz	Duty Cycle (%):	93				
Data Rate:	None	Antenna Gain (dBi):	Not Applicable				
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:	No software version listed. X-CTU was used to operate and communicate with the EUT.						

Test Measurement Results

Test Frequency	Me	easured 6 dB I Por	Bandwidth (MH rt(s)	łz)	6 dB Bandy	vidth (MHz)	Limit	Lowest Margin
MHz	а	b	с	d	Highest	Lowest	KHz	MHz
915.0	<u>18.517</u>				18.517	18.517	≥500.0	-18.02

Test	I	Measured 99% E	Bandwidth (MHz)	Maximum		
Frequency		Por	rt(s)	99% Bandwidth		
MHz	а	b	С	d	(MHz)	
915.0	<u>18.277</u>				18.277	

Traceability to Industry Recognized Test Methodologies Work Instruction: WI-03 MEASURING RF SPECTRUM MASK

Measurement Uncertainty:

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:30 of 109

Specification

Limits

§15.247 (a)(2) & RSS-210 §A8.2(1) The minimum 6 dB bandwidth shall be at least 500 kHz.

§ IC RSS-Gen 4.4.1 Occupied Bandwidth When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

§ IC RSS-Gen 4.4.2 6 dB Bandwidth Where indicated, the 6 dB bandwidth is measured at the points when the spectral density of the signal is 6 dB down from the in –band spectral density of the modulated signal, with the transmitter modulated by a representative signal.

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.1.2. Peak Output Power

Conducted Test Conditions for Fundamental Emission Output Power					
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5		
Test Heading:	Emission Output Power	32 - 45			
Standard Section(s):	15.247 (a)(2)	Pressure (mBars):	999 - 1004		
Reference Document(s):	KDB 558074 - D01 DTS Measurement Guidance v01: Section 5.2 Fundamental Emission Output Power KDB 662911 was implemented for In-band power measurements. The measure and sum				
	technique was implemented in all cases.				

Test Procedure for Fundamental Emission Output Power Measurement

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure peak power. The resolution filter bandwidth was set to 6 dB, peak detector selected and the analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Supporting Information

Calculated Power = $A + G + 10 \log (1/x) dBm$

A = Total Power [10 Log10 (10^{a/10} + 10^{b/10} + 10^{C/10} + 10^{d/10})], G = Antenna Gain,

x = Duty Cycle

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:32 of 109

Equipment Configuration for Peak Output Power					
Variant:	10 MHz (Low Data Rate)	Duty Cycle (%):	40		
Data Rate:	9.77 KBit/s	Antenna Gain (dBi):	8.10		
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:	No software version listed. X-CT	No software version listed. X-CTU was used to operate and communicate with the EUT.			

Test Measurement Results

Test	N	leasured Outp	out Power (dBn	n)	Calculated			
Frequency		Po	rt(s)		Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dBm	Ū
909.0	<u>29.67</u>				29.67	30.00	-0.33	23.15
915.0	<u>29.51</u>				29.51	30.00	-0.49	23.14
921.0	<u>29.57</u>				29.57	30.00	-0.43	23.55

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Peak Output Power

Variant:	10 MHz (High Data Rate)	Duty Cycle (%):	99	
Data Rate:	3.32 Mbit/s	Antenna Gain (dBi):	0 dBi	
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	Tested By:	SB	
Engineering Test Notes:	No software version listed. X-CTU was used to operate and communicate with the EUT.			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated	Lineit	Manain	
Frequency	Port(s)				Σ Port(s)	Limit	wargin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dBm	
909.0	<u>29.76</u>				29.76	30.00	-0.24	21.64
915.0	<u>29.45</u>				29.45	30.00	-0.55	21.91
921.0	<u>29.58</u>				29.58	30.00	-0.42	21.80

Traceability to Industry Recognized Test Methodologies

		Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
		Measurement Uncertainty:	±1.33 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:33 of 109

Equipment Configuration for Peak Output Power					
Variant:	20 MHz	Duty Cycle (%):	93		
Data Rate:	None	Antenna Gain (dBi):	8.10		
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:	No software version listed. X-CTU was used to operate and communicate with the EUT.				

Test Measurement Results

Test	Measured Output Power (dBm)					l imit	Margin	ELIT Power
Frequency	Port(s)						Setting	
MHz	а	b	С	d	dBm	dBm	dBm	octing
915.0	<u>29.85</u>				29.85	30.00	-0.15	20.25

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Measurement Uncertainty:				

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Lowest Power setting

As this test is representative of all data rates and bandwidths only the 10 MHz lowest data rate was examined

	Equipme	ent Configuration at Lov	west Output Power Setti	ing – Average Power
--	---------	--------------------------	-------------------------	---------------------

Variant:	10 MHz (Low Data Rate)	Duty Cycle (%):	40
Data Rate:	9.77 KBit/s	Antenna Gain (dBi):	8.10
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Fest Measured Output Power (dBm)			Calculated Total Power Σ Port(s)	Limit	Margin	EUT Power Setting	
Frequency	Port(s)							
MHz	а	b	С	d	dBm	dBm	dBm	J J
909.0	-15.48				-15.48	30.00	-45.48	
915.0	-15.51				-15.51	30.00	-45.51	
921.0	-15.62				-15.62	30.00	-45.62	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limits

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1.0 watt.

15.247 (b) (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

15.247 (c) Operation with directional antenna gains greater than 6 dBi.

- (1) Fixed point-to-point operation:
- (i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
- (ii) Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

§15.31 (e) For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

§ RSS-210 A8.4(4) For systems employing digital modulation techniques operating in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands the maximum peak conducted power shall not exceed 1 watt.

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:36 of 109

6.1.1.3. Power Spectral Density

Conducted Test Conditions for Power Spectral Density				
Standard:	FCC CFR 47:15.247	Ambient Temp. (ºC):	24.0 - 27.5	
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45	
Standard Section(s):	15.247 (e)	Pressure (mBars):	999 - 1001	
Reference Document(s):	KDB 558074 - D01 DTS Measurement Guidance v01: Section 5.3 Maximum Power Spectral Density Level in the Emission Bandwidth			

Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the maximum level in a 3 kHz bandwidth was measured. A peak value was found over the full emission bandwidth and the frequency span reduced to obtain enhanced resolution. Sweep time \geq span / 3 kHz with video averaging turned off. The Peak Power Spectral Density is the highest level found across the emission in a 3 kHz resolution bandwidth.

Supporting Information

Calculated Power = $A + 10 \log (1/x) dBm$

A = Total Power Spectral Density [10 Log10 ($10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10}$)]

x = Duty Cycle

Limit Line: KDB 662911 was implemented for In-band power spectral density (PSD) measurements - Option (2) measure and subtract 10 log (N) dB from the limit for devices with multiple RF ports

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:37 of 109

Equipment Configuration for Power Spectral Density - Peak						
Variant:	10 MHz (Low Data Rate)	Duty Cycle (%):	40			
Data Rate:	9.77 KBit/s	Antenna Gain (dBi):	Not Applicable			
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	SB			
Engineering Test Notes:						

Test Measurement Results

Test Frequency	Measured Power Spectral Density (dBm)			Spectral Density (dBm) Calculated Total Power Spectral Density		Limit	Margin	
		PO	rt(s)			BM ·		
MHz	а	b	с	d	Σ Port(s) per 30kHz RBW	to 3 kHz RBW	dBm	dB
909.0	<u>4.886</u>				4.886	-5.114	8.00	-13.11
915.0	<u>4.831</u>				4.831	-5.169	8.00	-13.17
921.0	<u>5.226</u>				5.226	-4.774	8.00	-12.77

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Power Spectral Density - Peak

Variant:	10 MHz (High Data Rate)	Duty Cycle (%):	99
Data Rate:	3.32 Mbit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured Power Spectral Density (dBm) Port(s)			Calculated Spectra dl	Total Power I Density Bm	Limit	Margin	
MHz	а	b	с	d	Σ Port(s) per 30kHz RBW	Conversion to 3 kHz RBW	dBm	dB
909.0	<u>3.656</u>				3.656	-6.344	8.00	-14.34
915.0	<u>3.239</u>				3.239	-6.761	8.00	-14.76
921.0	<u>4.341</u>				4.341	-5.659	8.00	-13.66

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Digi Intenational XLRP To: FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: DIGI44-U2 Rev A Issue Date: 22th April 2014 Page: 38 of 109

Equipment Configuration for Power Spectral Density - Peak						
Variant:	20 MHz	Duty Cycle (%):	93			
Data Rate:	None	Antenna Gain (dBi):	Not Applicable			
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	SB			
Engineering Test Notes:						

Test Measurement Results

Test Frequency	Measured Power Spectral Density (dBm) Port(s)			Calculated Spectral dl	Total Power I Density 3m	Limit	Margin	
MHz	а	b	с	d		Conversion to 3 kHz RBW	dBm	dB
915.0	<u>-5.575</u>				-5.575	-15.575	8.00	-23.57

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:				

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:39 of 109

Specification Peak Power Spectral Density Limits

§15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission

RSS-210 §A8.2(2) The transmitter power spectral density (into the antenna) shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0 second duration.

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:40 of 109

6.1.1.4. Conducted Spurious Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions					
Standard:	FCC CFR 47:15.247	Ambient Temp. (ºC):	24.0 - 27.5		
Test Heading:	Max Unwanted Emission Levels	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.247 (d) Pressure (mBars): 999 - 1001				
Reference Document(s):	KDB 558074 - D01 DTS Measurement Guidance v01: Section 5.4 Maximum Unwanted Emission Levels				

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:41 of 109

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak						
Variant:	10 MHz (Low Data Rate)	Duty Cycle (%):	40			
Data Rate:	9.77 KBit/s	Antenna Gain (dBi):	Not Applicable			
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable			
TPC:	TPC: Not Applicable Tested By: SB					
Engineering Test Notes: No software version listed. X-CTU was used to operate and communicate with the EUT.						

Test Measurement Results

Channel Frequency:	909.0 MHz					
Band-Edge Frequency:	902.0 MHz					
Test Frequency Range:	850.0 - 915.0 MH	lz				
	Band-I	Edge Markers a	nd Limit	Amen	ded Limit	Margin
Port(s)	M1 Amplitude Plot Limit M2 Frequency Amplitude M2A Frequency (MHz) (MHz) (MHz) (MHz)					(MHz)
-	22.22	11.00	002.00			1 000

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	≤40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Conducted High Band-Edge Emissions - Peak

Variant:	10 MHz (Low Data Rate)	Duty Cycle (%):	40		
Data Rate:	9.77 KBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:	No software version listed. X-CTU was used to operate and communicate with the EUT.				

Test Measurement Results

Channel Frequency:	921.0 MHz					
Band-Edge Frequency:	928.0 MHz					
Test Frequency Range:	915.0 - 978.0 MH	Z				
	Band-	Edge Markers a	nd Limit	Amer	nded Limit	Margin
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-33.52</u>	-11.36	926.20			-1.800

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	≤40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:42 of 109

Equipment Configuration for Transmitter Conducted Spurious Emissions						
Variant:	10 MHz (Low Data Rate)	Duty Cycle (%):	40			
Data Rate:	9.77 KBit/s	Antenna Gain (dBi):	Not Applicable			
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable Tested By: SB					
Engineering Test Notes:	ng Test Notes: No software version listed. X-CTU was used to operate and communicate with the EUT.					

Test Measurement Results

Test	Frequency		Transmitter Conducted Spurious Emissions (dBm)						
Frequency	Range	Por	rt a	Po	rt b	Po	rt c	Po	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
909.0	30.0 - 10000.0	<u>-59.847</u>	-11.74						
915.0	30.0 - 10000.0	<u>-59.575</u>	-11.79						
921.0	30.0 - 10000.0	<u>-60.225</u>	-11.91						

Traceability to Industry Recognized Test Methodologies

WORKINSTICCION. WI-05 MEASOREMENT OF SPORIOUS EMISSIONS	
Measurement Uncertainty: ≤40 GHz ±2.37 dB, > 40 GHz ±4.6 dB	

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:43 of 109

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak						
Variant:	10 MHz (High Data Rate)	Duty Cycle (%):	99			
Data Rate:	3.32 Mbit/s	Antenna Gain (dBi):	Not Applicable			
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable Tested By: SB					
Engineering Test Notes: No software version listed. X-CTU was used to operate and communicate with the EUT.						

Test Measurement Results

Channel Frequency:	909.0 MHz					
Band-Edge Frequency:	902.0 MHz					
Test Frequency Range:	850.0 - 915.0 MH	Ηz				
	Band	Band-Edge Markers and Limit Amended Limit Margin				
Port(s)	M1 Amplitude (dBm)	M1 Amplitude Plot Limit M2 Frequency Amplitude M2A Frequency (MHz) (MHz) (MHz) (MHz)				
а	<u>-32.63</u>	-8.26	903.80			-1.800

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	≤40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Conducted High Band-Edge Emissions - Peak

Variant:	10 MHz (High Data Rate)	Duty Cycle (%):	99	
Data Rate:	3.32 Mbit/s	Antenna Gain (dBi):	Not Applicable	
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	Tested By:	SB	
Engineering Test Notes:	No software version listed. X-CTU was used to operate and communicate with the EUT.			

Test Measurement Results

Channel Frequency:	921.0 MHz							
Band-Edge Frequency:	928.0 MHz	8.0 MHz						
Test Frequency Range:	915.0 - 978.0 MHz							
	Band-Edge Markers and Limit			Amen	Margin			
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)		
а	<u>-33.86</u>	-8.38	926.10			-1.900		

 Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-05 MEASUREMENT OF SPURIOUS EMISSIONS

 Measurement Uncertainty:
 \$40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:44 of 109

Equipment Configuration for Transmitter Conducted Spurious Emissions							
Variant:	10 MHz (High Data Rate)	Duty Cycle (%):	99				
Data Rate:	3.32 Mbit/s	Antenna Gain (dBi):	Not Applicable				
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:	neering Test Notes: No software version listed. X-CTU was used to operate and communicate with the EUT.						

Test Measurement Results

Test	Frequency	Transmitter Conducted Spurious Emissions (dBm)								
Frequency	Range	Port a		Port b		Port c		Port d		
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit	
909.0	30.0 - 10000.0	<u>-48.263</u>	-8.21							
915.0	30.0 - 10000.0	<u>-48.017</u>	-8.32				-	-		
921.0	30.0 - 10000.0	<u>-47.873</u>	-8.49							

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	≤40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:45 of 109

Equipment Configuration for Conducted Low Band-Edge Emissions - Peak

Variant:	20 MHz	Duty Cycle (%):	93			
Data Rate:	None	Antenna Gain (dBi):	Not Applicable			
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	SB			
Engineering Test Notes:	No software version listed. X-CTU was used to operate and communicate with the EUT.					

Test Measurement Results

Channel Frequency:	915.0 MHz							
Band-Edge Frequency:	902.0 MHz)2.0 MHz						
Test Frequency Range:	850.0 - 925.0 MH	350.0 - 925.0 MHz						
	Band-Edge Markers and Limit			Amen	Margin			
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)		
а	<u>-35.18</u>	-15.22	905.30			-3.300		

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	≤40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Conducted High Band-Edge Emissions - Peak

Variant:	20 MHz	Duty Cycle (%):	93		
Data Rate:	None	Antenna Gain (dBi):	Not Applicable		
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:	No software version listed. X-CTU was used to operate and communicate with the EUT.				

Test Measurement Results

Channel Frequency:	915.0 MHz	15.0 MHz						
Band-Edge Frequency:	928.0 MHz	28.0 MHz						
Test Frequency Range:	905.0 - 978.0 MI	905.0 - 978.0 MHz						
	Band-Edge Markers and Limit			Ameno	Margin			
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)		
а	<u>-35.80</u>	-15.20	924.70			-3.300		

 Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-05 MEASUREMENT OF SPURIOUS EMISSIONS

 Measurement Uncertainty:
 \$40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:46 of 109

Equipment Configuration for Transmitter Conducted Spurious Emissions								
Variant:	20 MHz	Duty Cycle (%):	93					
Data Rate:	None	Antenna Gain (dBi):	Not Applicable					
Modulation:	DSSS	Beam Forming Gain (Y):	Not Applicable					
TPC:	Not Applicable	Tested By:	SB					
Engineering Test Notes: No software version listed. X-CTU was used to operate and communicate with the EUT.								
	·							

Test Measurement Results

Test	Frequency			Transmitte	r Conducted	Spurious Emissions (dBm)			
Frequency	Range	Por	Port a		Port b Port c		rt c	Port d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
915.0	30.0 - 10000.0	<u>-48.617</u>	-15.46						
									-

Traceability to Industry Recognized Test Methodologies	3
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	≤40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:47 of 109

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power					
2,400 MHz	2,483.5 MHz	> 20 dB					
5725 MHz	5850 MHz	≥ 20 üB					

§15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

§15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Traceability

Method	Test Equipment Used
Measurements were made per work	0088, 0158, 0287, 0252, 0313, 0314, 0070,
instruction WI-05 'Measurement of	0116, 0117.
Spurious Emissions'	

6.1.2. Radiated Emission Testing

Transmitter Radiated Spurious Emissions (above 1 GHz); Peak Field Strength Measurements; and Radiated Band Edge Measurements – Restricted Bands

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2, §2.6 Industry Canada RSS-Gen §4.7

Test Procedure

The worst case highest spectral density radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FOwhere: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

 $40 \text{ dB}\mu\text{V/m} = 100 \ \mu\text{V/m}$ $48 \text{ dB}\mu\text{V/m} = 250 \ \mu\text{V/m}$

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:49 of 109

6.1.2.1. OMNI - Spurious Emissions

Tes	t Freq.	909 MHz	(10 MH	z)					Engineer	SB			
٧	/ariant	DSSS						Т	emp (ºC)	24.2			
Freq.	Range	1000 MH	z - 1800	0 MHz				Rel.	Hum.(%)	33			
Power S	Setting	22.3						Press	. (mBars)	1008			
Ar	ntenna	Omni)mni										
Test N	lotes 1	5VDC; E	VDC; EUT Label: B17; Support Laptop Inside w/ serial cable;										
Test N	lotes 2												
dBuV/m Vasona by EMiSoft 21 Mar 14 15:55 – ⁸⁰⁰ ⁷⁰⁰													
Formally m	neasur	ed emis	ssion	peaks									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
7272.949	37.1	7.2	-0.2	44.0	Peak [Scan]	V	98	-1	54	-10.0	Pass		
Legend:	DIG =	Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency											
	NRB =	Non-Rest	ricted E	and, Limit	is 20 dB below F	undam	ental;	RB = R	estricted B	and			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:50 of 109

Tes	t Freq.	915 MHz	(10 MH	lz)					Engineer	SB			
١	Variant	DSSS						٢	ſemp (⁰C)	24.2			
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	33			
Power S	Setting	22.3				Press. (mBars) 1008							
A	ntenna	Omni											
Test N	lotes 1	5VDC; E	UT Labe	el: B17; Sup	oport Laptop Insid	de w/ s	erial ca	able;					
Test N	lotes 2												
Micom	bs	dBuV/m 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 1000.0 Radiu Filen	ated Emi	An and a solor sol	/asona by EMit	Templat	e: FCC client pr	1000.0 RE 1-1 ograms	21 Px Fri 18000 8GHz digi44/raw d	Mar 14 10:0 [1] Hori PK Lmt - Av Lmt - Debug Meas Dist 3 Spec Dist 3 squency: Mi 0 ata\SE 1-18	ns cal Hz g or		
Formally I	measu	red emis	ssion	peaks									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
7309.805	36.6	7.2	-0.3	43.5	Peak [Scan]	V	100	-1	54.0	-10.5	Pass		
Legend:	DIG =	= Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency											
	NRB =	Non-Rest	ricted E	Band, Limit	s 20 dB below F	undam	ental; I	RB = R	estricted Ba	and			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:51 of 109

Tes	t Freg.	921 MHz	(10 MH	z)					Engineer	SB		
۱	/ariant	DSSS	· ·	,				Т	emp (ºC)	24.2		
Freq.	Range	1000 MH	z - 1800	0 MHz				Rel.	Hum.(%)	33		
Power S	Setting	22.3				Press. (mBars) 10				1008	1008	
Aı	ntenna	Omni							. ,	1		
Test N	lotes 1	5VDC; E	UT Labe	el: B17; Sup	oport Laptop Insi	de w/ s	erial ca	able;				
Test N	lotes 2											
MiCOM	bs	6BuV/m 800 700 600 500 400 300 200 100 100 1000 1000 1000 1000 1	ated Emil	ssions rogram files	Vasona by EMi	Templa	te: FGC	10000 0 RE 1-1 rograms	21 Px Px Fn 1800 8/GHz Idigi44/raw d	Mar 14 10: [1] Hori [2] Vert Pk Lmt Av Lmt + Debug Meas Dist 3 Spec Dist 3 equency: M 10 lata/SE 1-18	12 ical m m Hz Ig or	
Formally r	neasu	red emis	sion	peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
No emissions of	oserved v	within 6 dB	of the li	mit.								
Legend:	DIG =	Digital Dev	gital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency									
	NRB =	Non-Rest	ricted E	and, Limit	is 20 dB below F	undam	ental;	RB = R	estricted B	and		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:52 of 109

Tes	t Freq.	915 MHz	(20 MH	z)					Engineer	SB		
١	Variant	DSSS						т	emp (ºC)	24.2		
Freq.	Range	1000 MH	z - 1800	0 MHz				Rel.	Hum.(%)	33	33	
Power	Setting	22.3				Press. (mBars) 1008						
A	ntenna	Omni								•		
Test N	lotes 1	5VDC; E	UT Labe	el: B17; Sup	port Laptop Insid	de w/ s	erial ca	able;				
Test N	lotes 2											
MiCOM	bs	dBuV/m 800 700 600 600 400 300 200 100 1000 10000 Radia Filero	atted Emil	ssions rogram files	/asona by EMit	Templa	te: FCC client p	10000 0 RE 1-1 rograms	21 Px Px [2] Fn BGHz Idigi44 raw d	Mar 14 15: [1] Hon [2] Vert Pk Lmt Av Lmt + Debug Meas Dist 3 Spec Dist 3 equency: M 10 lata\SE 1-18	47 – zontu ical m m Hz lg or	
Formally I	measu	red emis	sion	peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
No emissions of	oserved	within 6 dB	of the li	mit.								
Legend:	DIG =	Digital Dev	igital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency									
	NRB =	Non-Rest	ricted E	and, Limit	s 20 dB below F	undam	ental;	RB = R	estricted B	and		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:53 of 109

6.1.2.2. Yagi - Spurious Emissions

Tes	t Freq.	909 MHz	(10 MH	lz)					Engineer	SB			
۱	/ariant	DSSS						Т	ſemp (⁰C)	24.2			
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	33			
Power S	Setting	23.2				Press. (mBars) 1008							
Ar	ntenna	Yagi	/agi										
Test N	lotes 1	5VDC; E	VDC; EUT Label: B17; Support Laptop Inside w/ serial cable;										
Test N	lotes 2												
Micem	bs	dBuV/m 80.0 70.0 60.0 50.0 40.0 20.0 10.0 1000.0 Radia Filen	sted Emij	Arran ssions program files	Vasona by EMi	Templa	te: FCC client p	10000.0 RE 1-1 rograms	24 Pk Z Z Fr 18000 8GHz Vdigi44/raw d	Mar 14 10: [1] Hori [2] Vert — Av Lmt + Debug Meas Dist 3 Spec Dist 3 equency: M 20 lata\se 1-18	30 ical m m Hz g ya		
	leasur		SION	реакѕ									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
1832.228	40.6	3.4	-6.8	37.2	Peak [Scan]	Н	99	-1	54	-16.8	Pass		
	- -			-		-	-		•				
Legend:	DIG =	= Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency											
	NRB =	Non-Rest	ricted E	Band, Limit	is 20 dB below F	undam	ental;	RB = R	estricted B	and			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:54 of 109

Tes	t Freq.	915 MHz	(10 MH	z)					Engineer	SB			
١	Variant	DSSS						Т	emp (⁰C)	24.2			
Freq.	Range	1000 MH	z - 1800	0 MHz				Rel.	Hum.(%)	33			
Power S	Setting	23.2				Press. (mBars) 1008							
A	ntenna	Yagi								1			
Test N	lotes 1	5VDC; E	;VDC; EUT Label: B17; Support Laptop Inside w/ serial cable;										
Test N	lotes 2												
MiCOM	bs	dBuV/m 800 600 600 400 200 100 1000 Filen	ated Emi	turne ssions program files	Vasona by EMit	Templa	te: FCC client p	10000.0 RE 1-1 rograms	24 Px Ay Fn 13000 8GHz Idigi44'raw d	Mar 14 10: [1] Hori [2] Vert Pk Lmt Av Lmt + Debug Meas Dist 3 Spec Dist 3 equency: M 10 ata\se 1-18	22 ical m Hz g ya		
Formally I	measu	red emis	sion	peaks									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
1816.410	43.8	3.4	-6.9	40.2	Peak [Scan]	Н	99	-1	54	-13.8	Pass		
Legend:	DIG =	Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency											
	NRB =	Non-Rest	ricted E	and, Limit	is 20 dB below F	undam	ental;	RB = R	estricted B	and			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:55 of 109

Tes	st Freq.	921 MHz	(10 MH	lz)					Engineer	SB			
١	Variant	DSSS						т	emp (ºC)	24.2			
Freq.	Range	1000 MH	z - 1800	00 MHz				Rel.	Hum.(%)	33			
Power	Setting	23.2				Press. (mBars) 1008							
A	ntenna	Yagi	'agi										
Test N	lotes 1	5VDC; E	VDC; EUT Label: B17; Support Laptop Inside w/ serial cable;										
Test N	lotes 2												
MiCOM	lbs	dBuV/m 800 700 600 500 400 300 200 100 1000 1000 Radu Filen	ated Emi	ssions program files	Vasona by EMis	Templa	le: FCC client p	100000 RE 1-1 rograms	24 Pk Av II Fn 18000 8GHz idigi44 iraw d	Mar 14 10: [1] Hori [2] Vert Av Lmt + Debug Meas Dist 3 Spec Dist 3 squency: M 10 10	34 ical m Hz g ya		
Formally	measu	red emis	ssion	peaks									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
1832.228	40.2	3.4	-6.8	36.8	Peak [Scan]	Н	99	-1	54	-17.2	Pass		
Legend:	DIG =	Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency											
	NRB =	Non-Rest	ricted E	Band, Limit	is 20 dB below F	undam	ental;	RB = R	estricted B	and			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:56 of 109

Tes	t Freq.	915 MHz	(20 MH	z)					Engineer	SB			
١	Variant	DSSS						т	emp (⁰C)	24.2			
Freq.	Range	1000 MH	z - 1800	0 MHz				Rel.	Hum.(%)	33			
Power S	Setting	23.2				Press. (mBars) 1008							
Ar	ntenna	Yagi	'agi										
Test N	lotes 1	5VDC; E	VDC; EUT Label: B17; Support Laptop Inside w/ serial cable;										
Test N	lotes 2												
MiCOM	bs	33 34 Mar 14 10:18 - 35 Vasona by EMiSoft 44 Mar 14 10:18 - 40 Vertical 40 Ver											
Formally r	measu	red emis	sion	peaks									
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
1816.410	42.2	3.4	-6.9	38.7	Peak [Scan]	Н	99	-1	54	-15.3	Pass		
7304.279	37.8	7.2	7.2 -0.3 44.7 Peak [Scan] V 99 -1 54 -9.3 Pass										
Legend:	DIG =	Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency											
	NRB =	Non-Rest	ricted E	and, Limit	is 20 dB below F	undam	ental;	RB = R	estricted B	and			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:57 of 109

Specification Limits

FCC §15.247(d) and RSS-210 §A8.5 In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

FCC §15.247(d)

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section §15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(a)).

IC RSS-210 §A8.5 If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under section A8.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Tables 2 and 3 is not required. In addition, radiated emissions which fall in the restricted bands of Table 1 must also comply with the radiated emission limits specified in Tables 2 and 3.

IC RSS-Gen §4.7

The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) Limit Matrix

Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

6.1.2.3. Digital Emissions (0.03-1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFL CL = Cable LossAG = Amplifier Gain

For example:

Given a Receiver input reading of $51.5dB\mu V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

 $40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$ $48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:60 of 109

Tes	t Freq.	909 MHz	(10 MHz	<u>()</u>					Engineer	SB		
V	/ariant	Digital Em	issions					٢	ſemp (⁰C)	24.2		
Freq.	Range	30 MHz -	1000 MI	Ηz				Rel.	Hum.(%)	33		
Power S	Setting	23.2						Press	. (mBars)	1008		
Ar	ntenna	Yagi										
Test N	lotes 1	5VDC; EU	IT Labe	: B17; Sup	port Laptop Inside	e w/ se	rial cab	le;				
Test N	lotes 2											
MiC@MLa	bs	dBuV/m 600 400 200 200 100 00 300 Radia Filena	1300 2 ted Emis me: c:\pr	30.0 330.0 sions rogram files/v	asona by EMiSo 4300 5300 6 emisoft - vasona/re	30.0 3 mplate sults/ci	FCC 1	3000 S 5.209 R grams/di	24 M cop + (2) Me Sp Frequ 30.0 1000.0 E 30-1000Mł gi44iraw data	ar 14 09:15 [1] Horizo [2] Vertica Opk Lmt Debug Formal as Dist 3m uency: MHz Hz avde 30m-10	nti il	
Formally m	neasur	ed emis	sion p	eaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
845.251	37.6	7.0	-8.4	36.2	Quasi Max	Н	162	71	46	-9.8	Pass	
107.475	53.1	4.1	- 19.3	37.9	Quasi Max	V	98	55	43.5	-5.6	Pass	
908.637	42.3	7.1	-7.7	41.7	Peak [Scan]	н	100					FUND
401.091	44.7	5.5	- 14.7	35.5	Peak [Scan]	Н	98	86	46	-10.6	Pass	
432.693	40.1	5.6	14.2	31.5	Peak [Scan]	н	98	86	46	-14.5	Pass	
175.985	51.4	4.5	- 19.9	36.0	Peak [Scan]	V	98	86	43.5	-7.5	Pass	
Legend:	DIG =	Digital Devi	ce Emis	sion; TX =	Transmitter Emis	sion; F	UND =	Funda	mental Fre	quency		
	NRB =	Non-Restr	cted Ba	and, Limit is	20 dB below Fur	ndame	ntal; RI	3 = Res	stricted Ban	d		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:61 of 109

Tes	t Freq.	915 MHz	(10 MHz)						Engineer	SB		
١	Variant	Digital Em	issions					٦	ſemp (⁰C)	24.2		
Freq.	Range	30 MHz -	1000 MH	z				Rel.	Hum.(%)	33		
Power S	Setting	23.2						Press	. (mBars)	1008		
Aı	ntenna	Yagi										
Test N	lotes 1	5VDC; EU	JT Label:	B17; Supp	ort Laptop Inside	w/ seri	al cable	e;				
Test N	lotes 2											
MiCOMLa	bs	dBuV/m 600 400 300 200 100 00 300 Radia Filena	1300 23 ted Emissime: c:\pro	Va	Sona by EMiSo	ft	00 80 FCC 15 nt progr	M 209 RE amsidg	24 Mai Co- Freque Freque 0.0 10000 0.0 100000 0.0 100000 0.0 100000 0.0 10000000000	s Dist 3m co Dist 3m co Dist 3m co Dist 3m ancy: MHz de 30m-1g		
Formally r	measu	red emis	sion pe	eaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
104.812	56.0	4.1	-19.7	40.4	Quasi Max	V	100	0	43.5	-3.1	Pass	
914.469	45.1	7.1	-7.7	44.5	Peak [Scan]	Н	100					FUND
883.367	42.3	7.1	-8.1	41.4	Peak [Scan]	Н	100	0	46.0	-4.7	Pass	
182.290	50.7	4.5	-19.9	35.3	Peak [Scan]	V	100	-1	43.5	-8.2	Pass	
400.750	44.7	5.5	-14.8	35.4	Peak [Scan]	V	100	-1	46.0	-10.6	Pass	
729.696	41.2	6.6	-9.8	38.0	Peak [Scan]	Н	100	-1	46.0	-8.0	Pass	
Legend:	DIG =	Digital Devi	ce Emiss	sion; TX = T	ransmitter Emiss	ion; FL	JND = I	Fundan	nental Freq	uency		
	NRB =	Non-Restr	icted Ba	nd, Limit is	20 dB below Fund	damen	tal; RB	= Rest	ricted Band			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:62 of 109

Tes	st Freq.	921 MHz	(10 MHz	<u>z)</u>					Engineer	SB		
,	Variant	Digital Er	nissions					Т	emp (⁰C)	24.2		
Freq.	Range	30 MHz -	1000 MI	Ηz				Rel.	Hum.(%)	33		
Power	Setting	23.2						Press	. (mBars)	1008		
A	ntenna	Yagi										
Test N	lotes 1	5VDC; E	UT Label	: B17; Supp	port Laptop Inside	w/se	rial cab	le;				
Test N	lotes 2											
Micem	bs	dBuV/m 60.0 40.0 20.0 20.0 10.0 0.0 30.0 Radii	130.0 2 ated Emis ame: c:\pr	Va 30.0 330.0 sions ogram files/e	asona by EMiSo	oft	T30.0 C	B30.0 S 5.209 R prams/di	24 M Qp + Me Sp Frequ 80.0 10000 GI 30-1000Ml gi44/raw data	ar 14 09:38 [1] Horizo [2] Vertica Gpk Lmt Debug as Dist 3m ac Dist 3m uency: MHz lize 30m-1g	- 1	
Formally	measu	red emis	ssion p	eaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
105.631	55.6	4.1	-19.7	40.0	Quasi Max	V	100	0	43.5	-3.5	Pass	
879.479	42.8	7.1	-8.2	41.7	Quasi Max	н	100	0	46.0	-4.3	Pass	
926.132	44.4	7.2	-7.6	44.1	Peak [Scan]	Н	100					FUND
173.075	49.5	4.5	-19.7	34.3	Peak [Scan]	V	98	-1	43.5	-9.2	Pass	
399.570	44.7	5.5	-14.8	35.4	Peak [Scan]	V	98	-1	46.0	-10.6	Pass	
248.735	43.5	4.9	-19.0	29.3	Peak [Scan]	V	98	-1	46.0	-16.7	Pass	
						•						
Legend:	DIG =	Digital Dev	/ice Emis	sion; TX =	Transmitter Emiss	sion; F	UND =	Funda	mental Free	quency		
	NRB =	Non-Rest	ricted Ba	and, Limit is	20 dB below Fur	ndame	ntal; RE	3 = Res	stricted Ban	d		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:63 of 109

Test	Freq.	915 MHz	(20 MHz)						Engineer	SB		
Va	ariant	Digital Em	issions					٦	ſemp (⁰C)	24.2		
Freq. R	ange	30 MHz -	1000 MH	z				Rel.	Hum.(%)	33		
Power Se	etting	23.2						Press	. (mBars)	1008		
Ant	tenna	Yagi								1		
Test No	otes 1	5VDC; EU	IT Label:	B17; Supp	ort Laptop Inside	w/ seri	al cable	e;				
Test No	otes 2											
Micom	S	dBuV/m 600 400 200 100 00 300 Radiat Filena	1300 23 tred Emissis me: c:\pro	Va	Sona by EMiSo 430.0 530.0 63 misoft - vasonal/res	ft	00 & FCC 15 nt progr	200 92 209 RE ams\dig	24 Ma ap + + Mea Spe Freque 00 10000 30-1000MH; 144/raw data	r 14 10:00 - [1] Horizoni Qpk Lmt Debug Formal s Dist 3m c Dist 3m ency: MHz de 30m-1g	2	
Formally m	easu	red emis	sion pe	eaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
883.702	42.8	7.1	-8.1	41.9	Quasi Max	н	106	266	46.0	-4.2	Pass	
106.232	52.7	4.1	-19.6	37.2	Quasi Max	V	98	62	43.5	-6.3	Pass	
181.563	47.7	4.5	-19.9	32.3	Quasi Max	V	111	55	43.5	-11.2	Pass	
333.125	44.2	5.2	-16.4	33.0	Peak [Scan]	V	111	55	46.0	-13.0	Pass	
378.230	42.6	5.4	-15.3	32.7	Peak [Scan]	V	111	55	46.0	-13.3	Pass	
810.365	36.5	7.2	-8.7	35.0	Peak [Scan]	Н	111	55	46.0	-11.0	Pass	
L												
Legend:	DIG =	Digital Devi	ce Emiss	ion; TX = T	ransmitter Emiss	ion; FL	JND = I	Fundan	nental Freq	uency		
	NRB =	Non-Restri	cted Bar	nd, Limit is	20 dB below Fund	damen	tal; RB	= Rest	ricted Band			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:64 of 109

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.3. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz - 30 MHz)

Ambient conditions. Temperature: 17 to 23 °C

Relative humidity: 31 to 57 %

Pressure: 999 to 1012 mbar

Not required - EUT is power by DC only.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:66 of 109

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conduc	ted Limit (dBμV)
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

|--|

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0287, 0190, 0293, 0307

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:67 of 109

7. PHOTOGRAPHS

7.1. Conducted Test Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:68 of 109

7.2. Test Setup - Digital Emissions below 1 GHz

8.1 dBi OMNI antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:69 of 109

15.1 dBi Yagi antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:70 of 109

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: DIGI44-U2 Rev A **Issue Date:** 22th April 2014 Page: 71 of 109

7.3. Radiated Emissions Test Setup >1 GHz

8.1 dBi OMNI antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: DIGI44-U2 Rev A Issue Date: 22th April 2014 Page: 72 of 109

15.1 dBi Yagi antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:73 of 109

8. TEST EQUIPMENT

Asset #	Instrument	Manufacturer	Part #	Serial #	Calibration Due Date
0117	Power Sensor	Hewlett Packard	8487D	3318A00371	18 th Oct 14
0223	Power Meter	Hewlett Packard	EPM-442A	US37480256	18 th Oct 14
0376	Power Sensor	Agilent	U2000A	MY51440005	28 th Oct 14
0390	Power Sensor	Agilent	U2002A	MY50000103	17 th Oct 14
0158	Barometer /Thermometer	Control Co.	4196	E2846	6 th Dec 14
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007	2 nd Dec 13
0287	EMI Receiver	Rhode & Schwartz	ESIB40	100201	31 st Jul 14
0378	EMI Receiver	Rhode & Schwartz	ESIB40	100107/040	17 th Jul 14
0338	30 - 3000 MHz Antenna	Sunol	JB3	A052907	14 th Aug 14
0399	1-18 GHz Horn Antenna	EMCO	3117	00154575	10 th Oct 14
0252	SMA Cable	Megaphase	Sucoflex 104	None	N/A
0310	2m SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	N/A
0312	3m SMA Cable	Micro-Coax	UFA210A-1- 1181-3G0300	209092-001	N/A
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623	N/A
0359	DFS Test System	Aeroflex	PXI-1042	300001/004	21 st Oct 14
0299	DFS Test Software	Aeroflex	PXIModule	Version 7.1.0	N/A
0502	EMC Test Software	EMISoft	Vasona	5.0051	N/A
0503	RF Conducted Test Software	National Instruments	Labview	Version 8.2	N/A
0398	RF Conducted Test Software	MiCOM Labs ATS		Version 1.8	N/A
0380	RF Switch	MiCOM Labs	MIC001	MIC001	20 th March 14

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:74 of 109

APPENDIX

A. SUPPORTING INFORMATION

A.1. CONDUCTED TEST PLOTS

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:75 of 109

A.1.1. 6 dB & 99% Bandwidth

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

MiTest

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:76 of 109

6 dB & 99% BANDWIDTH

Variant: Low Data Rate, Channel: 915.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc RBW: 100 KHz VBW: 300 KHz Ref Level: 35 dBm 23.3 dB Offset Sweep Time: 10.0 s Date: 20 Mar 2014 4:13:28 PM 30 20 M2 D1: 14.181 dBm 10 D2: 8.181 dBm 0. -10 dBm -20 -30 unymy 1. -40 -50 910.53 MHz 919.34 MHz -60 É. Ū. Start 904,000 MHz Center 915.000 MHz Stop 926.000 MHz Step 2.200 MHz Span 22.000 MHz

Marker : Frequency : Amplitude Test Results Analyser Setup Detector = MAX PEAK M1 : 910.525 MHz : 4.585 dBm Measured 6 dB Bandwidth: 8.818 MHz M2 : 915.198 MHz : 14.181 dBm Sweep Count = 0 Limit: ≥500.0 kHz RF Atten (dB) = 30Delta1 : 8.818 MHz : 0.891 dB Margin: -8.32 MHz Trace Mode = VIEW T1 : 910.481 MHz : 4.124 dBm T2:919.563 MHz:3.719 dBm OBW : 9.082 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:77 of 109

MiTest

6 dB & 99% BANDWIDTH

Variant: Low Data Rate, Channel: 921.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 916.657 MHz : 6.064 dBm M2 : 921.198 MHz : 14.545 dBm Delta1 : 8.818 MHz : -1.031 dB T1 : 916.481 MHz : 4.691 dBm T2 : 925.563 MHz : 4.136 dBm OBW : 9.082 MHz	Measured 6 dB Bandwidth: 8.818 MHz Limit: ≥500.0 kHz Margin: -8.32 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:78 of 109

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:79 of 109

6 dB & 99% BANDWIDTH

Variant: High Data Rate, Channel: 915.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 910.261 MHz : 4.925 dBm M2 : 912.906 MHz : 11.897 dBm Delta1 : 9.611 MHz : -0.464 dB T1 : 910.261 MHz : 4.925 dBm T2 : 919.784 MHz : 6.302 dBm OBW : 9.523 MHz	Measured 6 dB Bandwidth: 9.611 MHz Limit: ≥500.0 kHz Margin: -9.11 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:80 of 109

6 dB & 99% BANDWIDTH

Variant: High Data Rate, Channel: 921.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 916.261 MHz : 4.937 dBm M2 : 917.098 MHz : 11.819 dBm Delta1 : 9.567 MHz : 0.875 dB T1 : 916.261 MHz : 4.937 dBm T2 : 925.784 MHz : 6.208 dBm OBW : 9.523 MHz	Measured 6 dB Bandwidth: 9.567 MHz Limit: ≥500.0 kHz Margin: -9.07 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:81 of 109

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:82 of 109

A.1.2. Peak Output Power

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:83 of 109

PEAK OUTPUT POWER MiTest Variant: Low Data Rate, Channel: 915.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc Ref Level: 35 dBm 23.3 dB Offset Sweep Time: 2.0 s RBW. 1 MHz VBW. 1 MHz Date: 20 Mar 2014 4:12:02 PM 30 M2 D1: 18.632 dBm 20 10 Deltal 0. D2: -1.368 dBm -10 dBm -20 mon -30 -40 -50 909.33 MHz 920.71 MHz -60 1 Ť. Start 904.000 MHz Center 915.000 MHz Stop 926 000 MHz Step 2.200 MHz Span 22.000 MHz

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 909.335 MHz : -1.408 dBm M2 : 915.154 MHz : 18.632 dBm Delta1 : 11.375 MHz : -0.203 dB	Channel Power: 29.51 dBm Limit: 27.90 dBm Margin: 1.61 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:84 of 109

PEAK OUTPUT POWER MiTest Variant: Low Data Rate, Channel: 921.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc Ref Level: 35 dBm 23.3 dB Offset Sweep Time: 2.0 s RBW. 1 MHz VBW. 1 MHz Date: 20 Mar 2014 4:22:34 PM 30 M2 D1: 18.982 dBm 20 10 Ita1 0. D2: -1.018 dBm M -10 dBm -20 mmmm -30 -40 -50 914.98 MHz 926.71 MHz -60 t. 11 Start 910.000 MHz Center 921.000 MHz Stop 932.000 MHz Step 2.200 MHz Span 22.000 MHz

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 914.982 MHz : -6.796 dBm M2 : 917.230 MHz : 18.982 dBm Delta1 : 11.727 MHz : 5.544 dB	Channel Power: 29.57 dBm Limit: 27.90 dBm Margin: 1.67 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:85 of 109

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:86 of 109

PEAK OUTPUT POWER

Variant: High Data Rate, Channel: 915.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 908.938 MHz : -2.163 dBm M2 : 915.242 MHz : 18.630 dBm Delta1 : 12.168 MHz : 0.234 dB	Channel Power: 29.45 dBm Limit: 27.90 dBm Margin: 1.55 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:87 of 109

PEAK OUTPUT POWER

Variant: High Data Rate, Channel: 921.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 914.982 MHz : -1.766 dBm M2 : 919.964 MHz : 18.582 dBm Delta1 : 12.080 MHz : 0.317 dB	Channel Power: 29.58 dBm Limit: 27.90 dBm Margin: 1.68 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:88 of 109

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 904.379 MHz : -5.120 dBm M2 : 914.479 MHz : 16.078 dBm Delta1 : 21.242 MHz : 1.147 dB	Channel Power: 29.85 dBm Limit: 27.90 dBm Margin: 1.95 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:89 of 109

A.1.3. Power Spectral Density

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:90 of 109

POWER SPECTRAL DENSITY - PEAK

Variant: Low Data Rate, Channel: 915.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 915.281 MHz : 4.831 dBm	Limit: ≤ 18.000 dBm Margin: -13.17 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:91 of 109

Mitest

POWER SPECTRAL DENSITY - PEAK

Variant: Low Data Rate, Channel: 921.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 921.281 MHz : 5.226 dBm	Limit: ≤ 18.000 dBm Margin: -12.77 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:92 of 109

POWER SPECTRAL DENSITY - PEAK

Variant: High Data Rate, Channel: 909.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc Ref Level: 35 dBm 23.3 dB Offset RBW: 30 KHz VBW: 100 KHz Sweep Time: 46 ms Date: 20 Mar 2014 3:08:56 PM 30 20 10 M1 mann WMA.A. AAAAA 0. -10 dBm -20 -30 MAMA man warmer -40 -50 -60 Start 900.750 MHz Center 909.000 MHz Stop 917 250 MHz Step 1.650 MHz Span 16.500 MHz

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 909.347 MHz : 3.656 dBm	Limit: ≤ 18.000 dBm Margin: -14.34 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:93 of 109

POWER SPECTRAL DENSITY - PEAK

Variant: High Data Rate, Channel: 915.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 911.049 MHz : 3.239 dBm	Limit: ≤ 18.000 dBm Margin: -14.76 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:94 of 109

POWER SPECTRAL DENSITY - PEAK

Variant: High Data Rate, Channel: 921.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 920.521 MHz : 4.341 dBm	Limit: ≤ 18.000 dBm Margin: -13.66 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210 Serial #: DIGI44-U2 Rev A Issue Date: 22th April 2014 Page: 95 of 109

humbrouthan

Stop 930.000 MHz

Span 30.000 MHz

dBm

-50

-60

POWER SPECTRAL DENSITY - PEAK

Variant: 20 MHz, Channel: 915.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc Ref Level: 35 dBm 23.3 dB Offset Sweep Time: 84 ms RBW: 30 KHz VBW: 100 KHz Date: 21 Mar 2014 8:49:04 AM 30 20 10 -0. M1 -10 -20 -30 -40

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 915.331 MHz : -5.575 dBm	Limit: ≤ 18.000 dBm Margin: dB

Center 915.000 MHz

Step 3.000 MHz

Back to the Matrix

moundant

Start 900.000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:96 of 109

A.1.4. Conducted Spurious Emissions

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 902.000 MHz : -32.223 dBm M2 : 903.928 MHz : -11.969 dBm M3 : 909.269 MHz : 8.310 dBm	Channel Frequency: 909.00 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:97 of 109

CONDUCTED HIGH BAND-EDGE EMISSION - PEAK

Variant: Low Data Rate, Channel: 921.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 921.186 MHz : 8.645 dBm M2 : 926.236 MHz : -18.092 dBm M3 : 928.000 MHz : -33.520 dBm	Channel Frequency: 921.00 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:98 of 109

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: Low Data Rate, Channel: 909.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 909.118 MHz : 8.261 dBm M2 : 6883.126 MHz : -59.847 dBm	Limit: -11.74 dBm Margin: -48.11 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:99 of 109

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: Low Data Rate, Channel: 915.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 909.118 MHz : 8.208 dBm M2 : 6623.387 MHz : -59.575 dBm	Limit: -11.79 dBm Margin: -47.79 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:100 of 109

Mitest

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: Low Data Rate, Channel: 921.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 909.118 MHz : 8.088 dBm M2 : 6983.026 MHz : -60.225 dBm	Limit: -11.91 dBm Margin: -48.31 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:101 of 109

CONDUCTED LOW BAND-EDGE EMISSION - PEAK

Variant: High Data Rate, Channel: 909.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 902.000 MHz : -32.634 dBm M2 : 903.798 MHz : -16.525 dBm M3 : 906.924 MHz : 11.738 dBm	Channel Frequency: 909.00 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:102 of 109

CONDUCTED HIGH BAND-EDGE EMISSION - PEAK

Variant: High Data Rate, Channel: 921.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 918.283 MHz : 11.622 dBm M2 : 926.110 MHz : -9.183 dBm M3 : 928.000 MHz : -33.856 dBm	Channel Frequency: 921.00 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:103 of 109

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: High Data Rate, Channel: 909.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 909.118 MHz : 11.789 dBm M2 : 6643.367 MHz : -48.263 dBm	Limit: -8.21 dBm Margin: -40.05 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:104 of 109

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: High Data Rate, Channel: 915.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 909.118 MHz : 11.679 dBm M2 : 6963.046 MHz : -48.017 dBm	Limit: -8.32 dBm Margin: -39.70 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:105 of 109

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: High Data Rate, Channel: 921.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 909.118 MHz : 11.514 dBm M2 : 6983.026 MHz : -47.873 dBm	Limit: -8.49 dBm Margin: -39.38 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:106 of 109

CONDUCTED LOW BAND-EDGE EMISSION - PEAK

Variant: 20 MHz, Channel: 915.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 902.000 MHz : -35.180 dBm M2 : 905.311 MHz : -19.616 dBm M3 : 914.780 MHz : 4.783 dBm	Channel Frequency: 915.00 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:107 of 109

CONDUCTED HIGH BAND-EDGE EMISSION - PEAK

Variant: 20 MHz, Channel: 915.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 30 Trace Mode = VIEW	M1 : 914.655 MHz : 4.805 dBm M2 : 924.749 MHz : -25.567 dBm M3 : 928.000 MHz : -35.801 dBm	Channel Frequency: 915.00 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi Intenational XLRPTo:FCC 47 CFR Part 15.247 & IC RSS-210Serial #:DIGI44-U2 Rev AIssue Date:22th April 2014Page:108 of 109

CONDUCTED SPURIOUS EMISSIONS - PEAK

Variant: 20 MHz, Channel: 915.00 MHz, Chain a, Temp: Ambient, Voltage: 5 Vdc

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 909.118 MHz : 4.543 dBm M2 : 6963.046 MHz : -48.617 dBm	Limit: -15.46 dBm Margin: -33.16 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

575 Boulder Court Pleasanton, California 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com