Test of Digi International XBPS3B

To: FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: DIGI22-U1 Rev B

Test of Digi International XBPS3B

To FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: DIGI22-U1 Rev B

This report supersedes: DIGI22-U1 Rev A

Manufacturer: Digi International 355 South 520 West, Suite 180 Lindon Utah 84042 USA

Product Function: General Data and Control Radio

Copy No: pdf Issue Date: 17th November 2011

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:3 of 92

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:4 of 92

TABLE OF CONTENTS

AC	CREDITA	FION & LISTINGS	5
	RECOGNI	TION	6
		CERTIFICATION	
1.	TEST RE	SULT CERTIFICATE	9
2.	REFERE	NCES AND MEASUREMENT UNCERTAINTY	10
	2.1. Norm	native References	10
	2.2. Test	and Uncertainty Procedures	10
3.	PRODUC	T DETAILS AND TEST CONFIGURATIONS	11
	3.1. Tech	nical Details	11
		e of Test Program	
		pment Model(s) and Serial Number(s)	
		nna Details	
		ing and I/O Ports	
		Configurations	
		pment Modifications	
		ations from the Test Standard contracted Testing or Third Party Data	
	3.9. 5000		10
Λ			
4.	TEST SU	MMARY	16
4. 5.	TEST SU TEST RE	MMARYSULTS	16 18
	TEST SU TEST RE 5.1. Device	MMARY SULTS ce Characteristics	16 18
	TEST SU TEST RE 5.1. Devic 5.1.1	MMARY SULTS ce Characteristics	16 18
	TEST SU TEST RE 5.1. Device 5.1.1 5.1.2	MMARY SULTS ce Characteristics 20 dB Bandwidth 7. Transmitter Channels - Channel Spacing	16 18 18 18 24
	TEST SU TEST RE 5.1. Devic 5.1.1 5.1.2 5.1.3	MMARY SULTS ce Characteristics 20 dB Bandwidth 7. Transmitter Channels - Channel Spacing 8. Transmitter Channels	16 18 18 24 27
	TEST SU TEST RE 5.1. Devic 5.1.1 5.1.2 5.1.3 5.1.4	MMARY SULTS ce Characteristics 20 dB Bandwidth Transmitter Channels - Channel Spacing Transmitter Channels Output Power	16 18 18 24 27 33
	TEST SU TEST RE 5.1. Devic 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5	MMARY SULTS ce Characteristics 20 dB Bandwidth Transmitter Channels - Channel Spacing Transmitter Channels Output Power Maximum Permissible Exposure	16 18 18 24 27 33 36
	TEST SU TEST RE 5.1. Devic 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6	MMARY SULTS ce Characteristics 20 dB Bandwidth Transmitter Channels - Channel Spacing Transmitter Channels Output Power Maximum Permissible Exposure Conducted Spurious Emissions Transmitter	16 18 18 24 27 33 36 37
	TEST SU TEST RE 5.1. Devie 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.6 5.1.7	MMARY SULTS ce Characteristics 20 dB Bandwidth Transmitter Channels - Channel Spacing Transmitter Channels Output Power Output Power Maximum Permissible Exposure Conducted Spurious Emissions Transmitter Conducted Receiver Spurious Emissions	16 18 18 24 27 33 36 37 45
	TEST SU TEST RE 5.1. Devie 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.6 5.1.7 5.1.8	MMARY SULTS ce Characteristics 20 dB Bandwidth Transmitter Channels - Channel Spacing Transmitter Channels Output Power Output Power Conducted Spurious Emissions Transmitter Conducted Receiver Spurious Emissions Radiated Emissions	16 18 18 24 27 33 36 37 45 53
	TEST SU TEST RE 5.1. Devic 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8 5.1.9	MMARY SULTS ce Characteristics 20 dB Bandwidth Transmitter Channels - Channel Spacing Transmitter Channels Output Power Output Power Maximum Permissible Exposure Conducted Spurious Emissions Transmitter Conducted Receiver Spurious Emissions	16 18 182427333637455382
5.	TEST SU TEST RE 5.1. Devie 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.6 5.1.7 5.1.8 5.1.9 PHOTOG	 MMARY SULTS 20 dB Bandwidth Transmitter Channels - Channel Spacing Transmitter Channels Transmitter Channels Output Power Output Power Maximum Permissible Exposure Conducted Spurious Emissions Transmitter Conducted Receiver Spurious Emissions Radiated Emissions AC Wireline Conducted Emissions (150 kHz – 30 MHz) RAPHS 	16 18 18 24 27 33 36 37 45 53 82 84
5.	TEST SU TEST RE 5.1. Devic 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.6 5.1.7 5.1.8 5.1.9 PHOTOG 6.1. Gene 6.2. Radi	 MMARY SULTS 20 dB Bandwidth 20 dB Bandwidth Transmitter Channels - Channel Spacing Transmitter Channels. Output Power Maximum Permissible Exposure Conducted Spurious Emissions Transmitter Conducted Receiver Spurious Emissions. Radiated Emissions AC Wireline Conducted Emissions (150 kHz – 30 MHz) RAPHS eral Measurement Test Set-Up. ated Emissions >1 GHz 	16 18 18 24 27 33 36 37 37 35 37 35 37 37 38 38 84 84 84
5.	TEST SU TEST RE 5.1. Devic 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.6 5.1.6 5.1.6 5.1.6 6.1. Gene 6.2. Radii 6.3. Radi	 MMARY SULTS 20 dB Bandwidth Transmitter Channels - Channel Spacing Transmitter Channels. Output Power Maximum Permissible Exposure Conducted Spurious Emissions Transmitter Conducted Receiver Spurious Emissions Radiated Emissions AC Wireline Conducted Emissions (150 kHz – 30 MHz) RAPHS eral Measurement Test Set-Up 	16 18 18 24 27 33 36 37 45 53 82 84 84 84 84 84

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:5 of 92

ACCREDITATION & LISTINGS

MiCOM Labs, Inc. an accredited laboratory complies with the international standard BS EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.	
USA	Federal Communications Commission (FCC)	ТСВ	-	Listing #: 102167	
Canada	Industry Canada (IC)	FCB	APEC MRA 2	Listing #: 4143A	
Japan	MIC	CAB	APEC MRA 2	210	
	VCCI			No. 2959	
Europe	European Commission	NB	EU MRA	NB 2280	
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1		
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1		
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	US0159	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	050159	
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1		
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1		

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification N/A - Not Applicable

**EU MRA – European Union Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:7 of 92

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

Notified Body Identifier - 2280

Japan – Recognized Certification Body (RCB)

RCB Identifier - 210

DOCUMENT HISTORY

Document History					
Revision Date		Comments			
Draft					
Rev A	31 st October 2011	Initial Release			
Rev B	17 th November 2011	Updated Section 5.1.1 20 dB BW with new spectrum plot			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:9 of 92

1. TEST RESULT CERTIFICATE

Manufacturer:	Digi International	Tested By:	MiCOM Labs, Inc.
	355 South 520 West, Suite 180		440 Boulder Court
	Lindon Utah 84042		Suite 200
	USA		Pleasanton
			California, 94566, USA
EUT:	General Data and Control Radio	Telephone:	+1 925 462 0304
Model:	XBPS3B	Fax:	+1 925 462 0306
S/N:	Not Available		
Test Date(s):	15 - 22nd September 2011	Website:	www.micomlabs.com

STANDARD(S)	TEST RESULTS
FCC 47 CFR Part15.247 & IC RSS-210	EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve

Quality Manager MiCOM Labs,

Gordon Hurst President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:10 of 92

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	2007	Code of Federal Regulations
(ii)	Industry Canada RSS-210	Issue 7 June 2007	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)
(iii)	Industry Canada RSS-Gen	Issue 2 June 2007	General Requirements and Information for the Certification of Radiocommunication Equipment.
(iv)	ANSI C63.4	2003	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(v)	CISPR 22/ EN 55022	1997 1998	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(vi)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vii)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(viii)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(ix)	A2LA	14 th September 2005	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the Digi International XBPS3B to FCC Part
	15.247 and Industry Canada RSS-210 regulations for
	Frequency Hopping operation.
Applicant:	Digi International
	355 South 520 West, Suite 180
	Lindon, Utah 84042
	USA
Manufacturer:	Digi International
	355 South 520 West, Suite 180
	Lindon Utah 84042
	USA
Laboratory performing the tests:	MiCOM Labs, Inc.
	440 Boulder Court, Suite 200
Test was at as fear as a surplus	Pleasanton, California 94566 USA
Test report reference number:	DIGI22-U1 Rev B
Standard(s) applied:	FCC 47 CFR Part15.247 & IC RSS-210
Date EUT received:	1 st September 2011
Dates of test (from - to):	15 - 22nd September 2011
No of Units Tested:	One
Type of Equipment:	915 MHz Frequency Hopping
Manufacturers Trade Name:	XBee Pro XSC
Model:	XBee Pro S3B
Location for use:	Indoor and Outdoor
Declared Frequency Range(s):	902 - 928 MHz
Type of Modulation:	FSK
Declared Nominal Output Power:	Max: +24 dBm Min: -17 dBm
EUT Modes of Operation:	FHSS
Transmit/Receive Operation:	Transceiver Half Duplex
Rated Input Voltage and Current:	Nom: 3.3 Vdc, Min: 2.4 Vdc Max: 3.6 Vdc
Operating Temperature Range:	-40°C to +85°C (client declared range)
ITU Emission Designator:	300KF7D
Long Term Frequency Stability:	±3ppm/year
EUT Dimensions (L x W x H):	33 x 22 x 4mm or with Reverse SMA 33 x 22 x 8mm
EUT Weight :	6 grams
Primary function of equipment:	General data and control radio

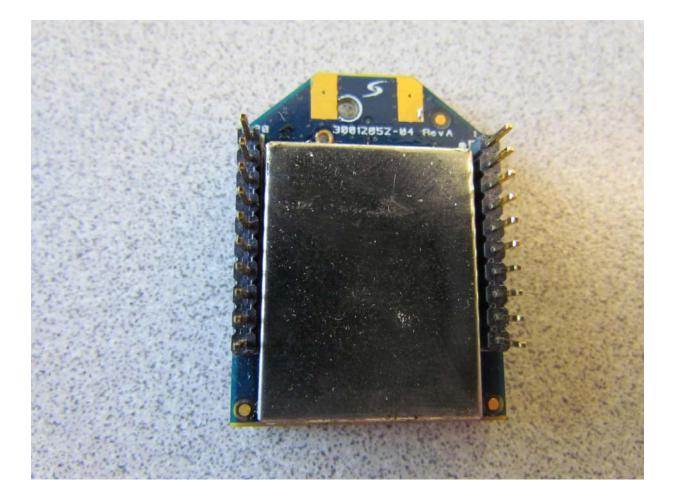
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:12 of 92

3.2. Scope of Test Program

The scope of the test program was to testing on the Digi International XBPS3B in the frequency ranges 902 - 928 MHz against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications for radiated and conducted emissions for intentional radiators. The intentional radiator was tested in a simulated typical installation to demonstrate compliance with the stated standards.

Device is a frequency hopper which utilizes 84 hopping channels.



Digi International XBee Pro S3B Top

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Digi International XBee Pro S3B Reverse

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	915 MHz	Digi International	XBPS3B	None Available
Support	Cable Assembly + pcb	Digi International	N/A	N/A

3.4. Antenna Details

The following is a description of the EUT antennas.

Manufacturer	Model	Туре	Gain (dBi)	Frequency Band (MHz)
Digi International	A09-Y15	Yagi Directional	15.1	900 - 950
Digi International	A09-F8	Omni	8.1	900 - 950

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. RF Port (915 MHz)

3.6. Test Configurations

Test configurations

Operating Channel	Frequencies (MHz)
0	902.4
42	915.00
83	927.5

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

The following tests were performed by a MiCOM Labs approved test facility;-

1. NONE

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(1) A8.1	20 dB BW	20 dB BW	Conducted	Complies	5.1.1
15.247(a)(1) A8.1	Transmitter Channels	Channel Spacing	Conducted	Complies	5.1.2
15.247(a)(1) <mark>A8.1</mark>	Transmitter Channels	Number of Channels	Conducted	Complies	5.1.3.1
		Channel Occupancy	Conducted	Complies	5.1.3.2
15.247(b)(2) A8.4	Output Power	Transmit Power	Conducted	Complies	5.1.4
15.247(i) 5.5	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Conducted	Complies	5.1.5
15.247(d) A8.5	Conducted Spurious Emissions	Band Edge	Conducted	Complies	5.1.6
		Spurious Emissions Transmitter (1 to 10 GHz)	Conducted	Complies	
§7.2.3		Standby	Conducted	Complies	5.1.7

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d) 15.205 15.209 A8.5 2.2 2.6 4.9	Radiated Emissions above 1 GHz	Transmitter	Radiated	Complies	5.1.8.1
4.10		Receiver	Radiated	Complies	5.1.8.2
15.247(d) 15.205 15.209 A8.5 2.2 2.6	Radiated Emissions below 1 GHz		Radiated	Complies	5.1.9
15.207 7.2.2	Conducted	AC Wireline Conducted Emissions	Conducted	Complies	5.1.10

Note 1: Test results reported in this document relate only to the items tested

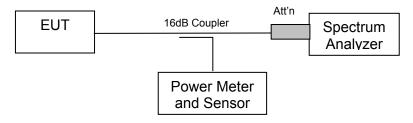
Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 - Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:18 of 92

5. TEST RESULTS


- 5.1. Device Characteristics
- 5.1.1. 20 dB Bandwidth

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Test Procedure

The 20 dB bandwidth is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

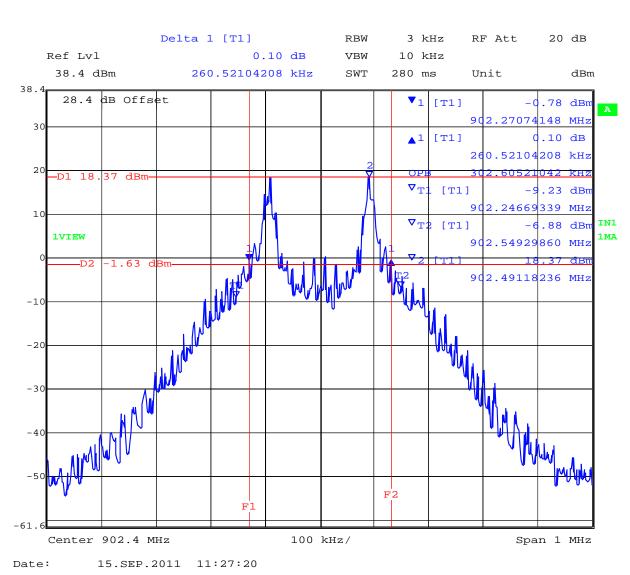
Test Measurement Set up

Measurement set up for 20 dB bandwidth test

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Results for 20 dB Bandwidth

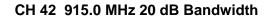
Ambient conditions.Temperature: 17 to 23 °CRelative humidity: 31 to 57 %Pressure: 999 to 1012 mbar

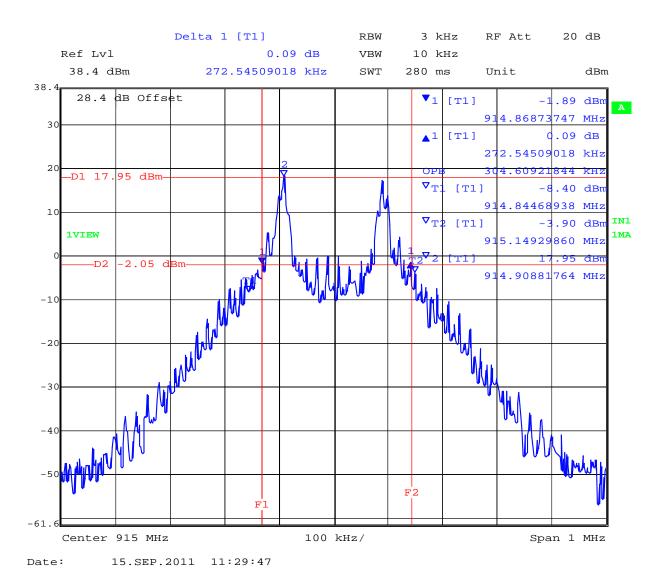

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	20 dB Bandwidth (kHz)	Specification (kHz)
0	902.4	260.521	
42	915.0	272.545	<500
83	927.5	282.565	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

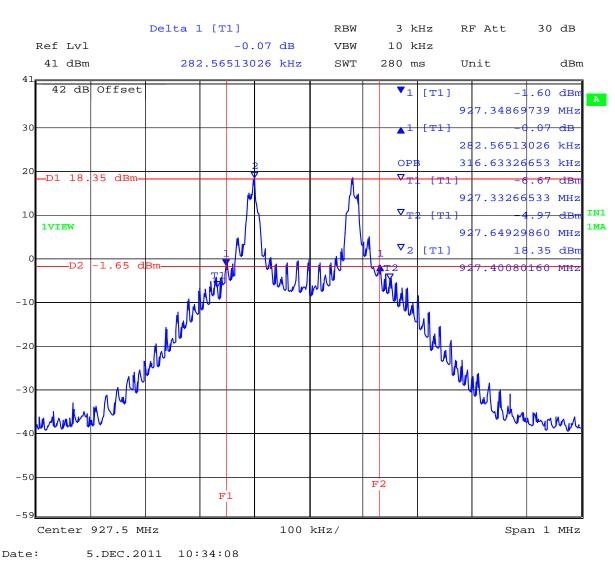
Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:20 of 92




CH 0 902.4 MHz 20 dB Bandwidth

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:21 of 92



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:22 of 92

CH 83 927.5 MHz 20 dB Bandwidth

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:23 of 92

Specification

Limits

FCC §15.247 (a)(1) Industry Canada RSS-210 §8.1

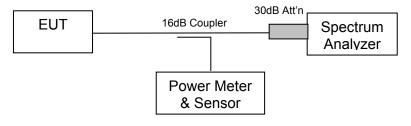
For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Laboratory Measurement Uncertainty for Spectrum Measurement

Measurement uncertainty	±2.81 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117
instruction WI-03 'Measurement of RF	
Spectrum Mask'	


5.1.2. Transmitter Channels - Channel Spacing

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §8.1(2)

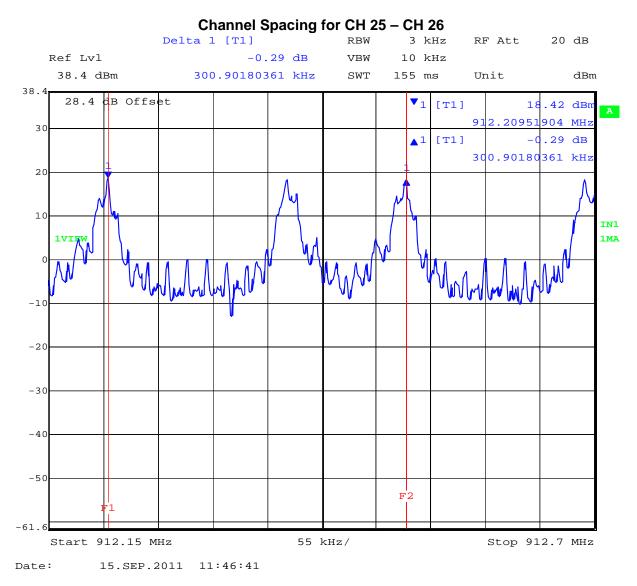
Test Procedure

The channel spacing is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

Measurement set up for Channel Spacing Test

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:25 of 92


Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS

Channel(s)	Channel Spacing (KHz)	Specification
25-26	300.902	Greater than maximum 20 dB Bandwidth

Maximum 20 dB bandwidth = 52.6052 kHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification for Channel Spacing

Limits

FCC §15.247 (a)(1) Industry Canada RSS-210 §A8.1(2)

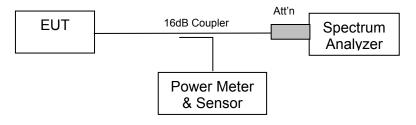
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Laboratory Uncertainty for Frequency Measurements

Measurement uncertainty	±0.86ppm

Traceability

Method	Test Equipment Used	
Measurements were made per work	0078, 0134, 0158, 0184, 0193, 0250,	
instruction WI-02 'Frequency Measurement"	0252 0310, 0312.	


5.1.3. Transmitter Channels

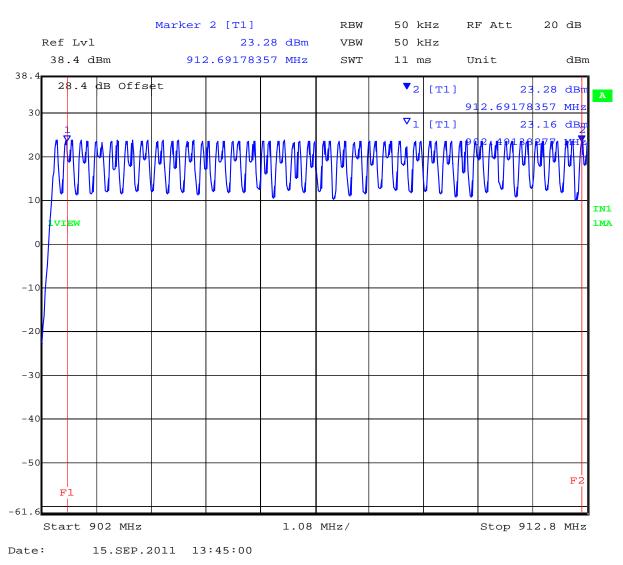
5.1.3.1. Number of Channels FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Test Procedure

The number of channels and channel occupancy is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

Test set up to measure the number of channels and channel occupancy

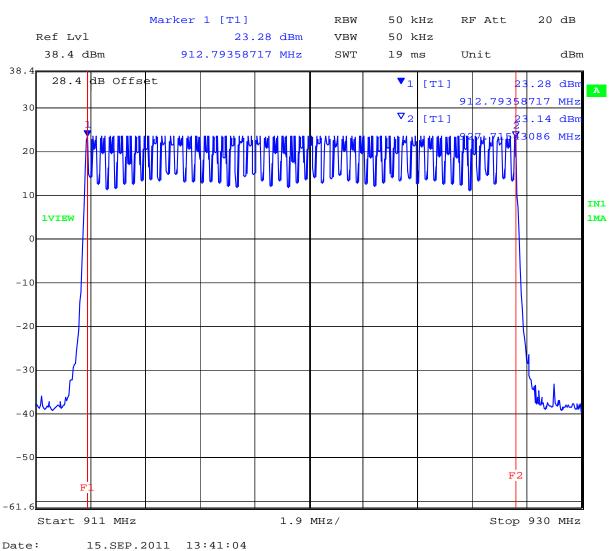

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:28 of 92

Ambient conditions. Temperature: 17 to 23 °C

Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS

Number of Channels	Specification	
84	At least 25 hopping channels	



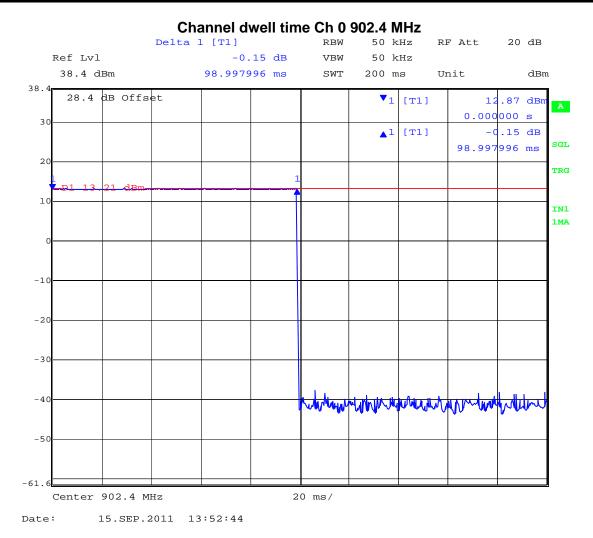
Number of Transmission Channels – Lower Band

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:29 of 92

Number of Transmission Channels – Upper Band

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

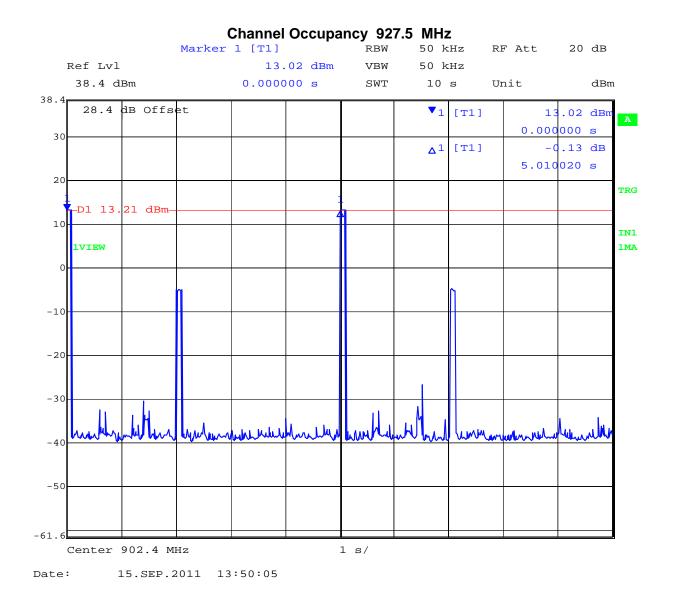

5.1.3.2. Channel Occupancy FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Channel Dwell Time

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	Channel Dwell Time (single channel) (mSecs)
0	902.4	98.997


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Channel Occupancy

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	Channel Occupancy within 10 Second Period (Seconds)
0	902.4	5.01

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification for Number of Channels and Channel Occupancy

Limits

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

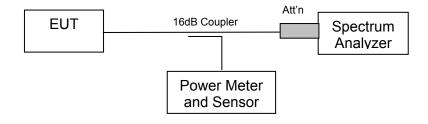
For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Laboratory Uncertainty for Frequency Measurements

Measurement uncertainty	±0.86ppm
-	

Traceability

Method	Test Equipment Used
Measurements were made per work	0078, 0134, 0158, 0184, 0193, 0250,
instruction WI-02 'Frequency Measurement"	0252 0310, 0312.


5.1.4. Output Power

FCC, Part 15 Subpart C §15.247(b)(2) Industry Canada RSS-210 §A8.4

Test Procedure

The transmitter terminal of EUT was set for CW (continuous wave) operation and connected to the input of the power meter which was calibrated to measure power. The value of measured power including antenna cable loss was reported.

Test Measurement Set up

Measurement set up for Transmitter Output Power

Measurement Results for Output Power

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 %

Pressure: 999 to 1012 mbar

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	Power (dBm)
0	902.4	+23.63
42	915.0	+23.59
83	927.5	+23.69

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limits

FCC, Part 15 Subpart C §15.247 (b)(2) The maximum output power of the intentional radiator shall not exceed the following:

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Industry Canada RSS-210 §A8.4

For frequency hopping systems operating in the 902 - 928 MHz band, the maximum peak conducted power output power is not to succeed 1.0 W if the hopset uses 50 or more hopping channels and 0.25 W if the hopset uses less than 50 hopping channels.

Laboratory Measurement Uncertainty for Power Measurements

	Measurement uncertainty	±1.33 dB
--	-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

5.1.5. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.247(i) Industry Canada RSS-Gen §5.5

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm²) = EIRP/(4πd²) EIRP = P * G P = Peak output power (mW) G = Antenna numeric gain (numeric) d = Separation distance (cm) Numeric Gain = 10 ^ (G (dBi)/10)

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 $\rm mW/cm^2$

Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm ² Limit(cm)	Minimum Separation Distance (cm)
0	1	+23.69	233.9	4.31	20*
8.1	6.46	+23.69	233.9	8.92	20*
15.1	32.36	+20.90	123.03	17.8	20*

<u>*Note:</u> for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

§15.247(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines.

FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1

RSS-Gen §5.5 Before equipment certification is granted, the applicable requirements of RSS-102 shall be met.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

5.1.6. Conducted Spurious Emissions Transmitter

FCC, Part 15 Subpart C §15.247(d) Industry Canada RSS-210 §A8.5

Test Procedure

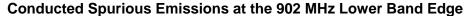
Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

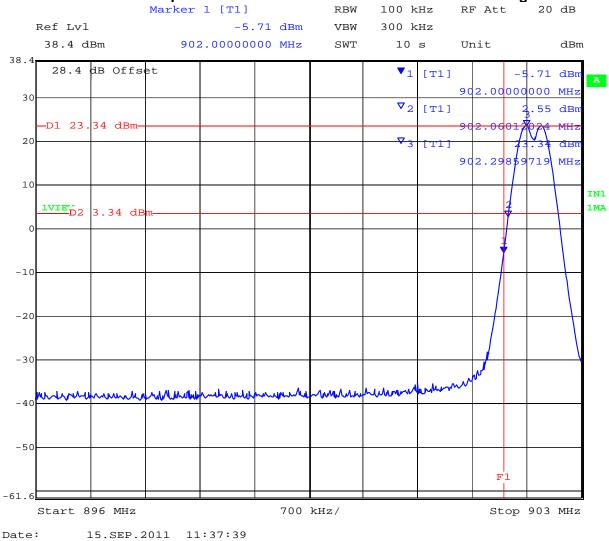
Test Measurement Set up

Band-edge measurement test configuration

Measurement Results of Conducted Spurious Emissions

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

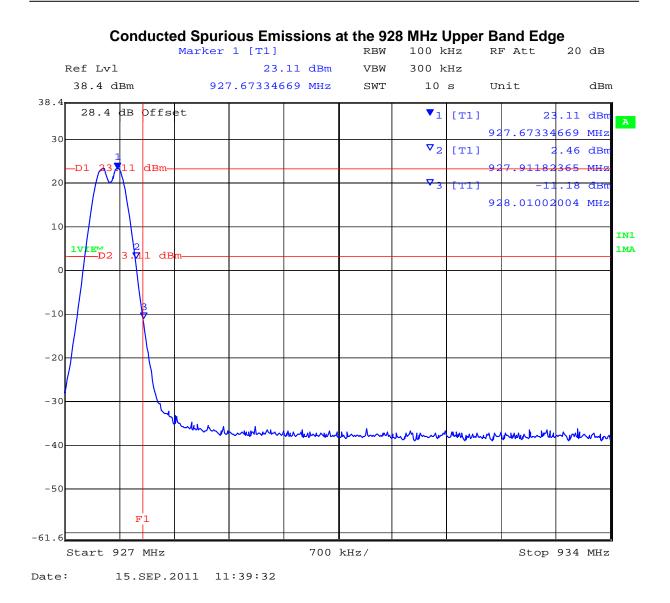

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Conducted Band-Edge Results

TABLE OF RESULTS - 802.11b

Channel #	Center Frequency (MHz)	Band-edge Frequency (MHz)	Limit (dBm)	Amplitude @ Band-edge (dBm)	Margin (dB)
0	902.4	902.0	+3.34	-5.71	-9.05
83	927.5	928.0	+3.11	-11.18	-14.29



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:39 of 92

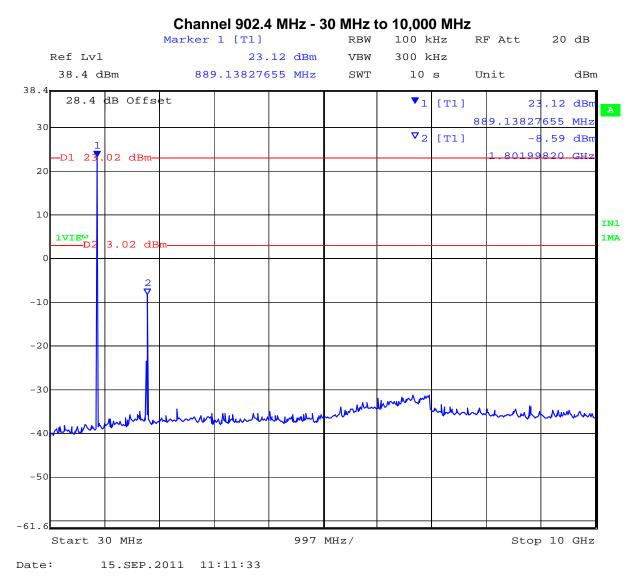
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Spurious Emissions (1-10 GHz)

Conducted spurious emissions (1-10 GHz) are provided indicated by the following matrix. Measurements were performed with the transmitter tuned to the channel closest to the band-edge being measured. All emissions were maximized during measurement. Limits which were derived from the band-edge measurements provided below are drawn on each plot.

TABLE OF RESULTS

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
902.4	30	10,000	-8.58	+3.02	-11.6

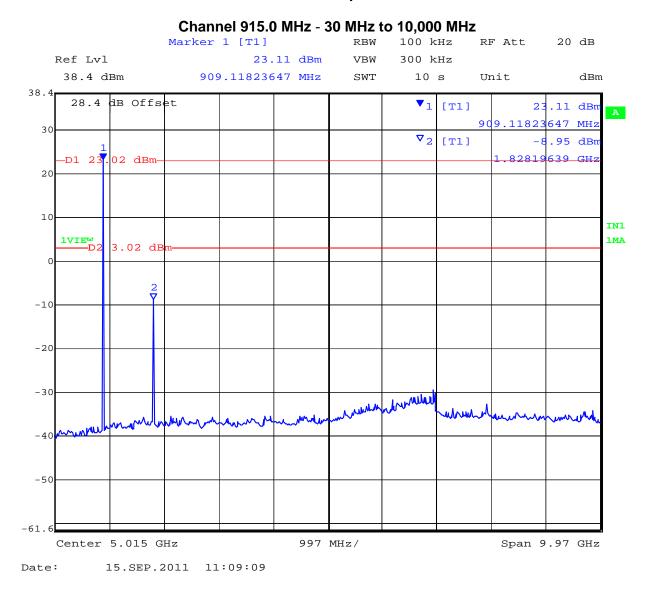

The emission breaking the limit line is the carrier.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:41 of 92

Conducted Transmitter Spurious Emissions

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:42 of 92

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
915.0	30	10,000	-8.95	+3.02	-11.97

The emission breaking the limit line is the carrier.

Conducted Transmitter Spurious Emissions

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Digi International XBPS3B To: FCC 47 CFR Part15.247 & IC RSS-210 Serial #: DIGI22-U1 Rev B Issue Date: 17th November 2011 Page: 43 of 92

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
927.5	30	10,000	-9.50	+3.02	-12.52

The emission breaking the limit line is the carrier.

Conducted Transmitter Spurious Emissions

Channel 927.5 MHz - 30 MHz to 10,000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limits Band-Edge

Lower Limit	Upper Limit	Limit below highest level of
Band-edge	Band-edge	desired power
902 MHz	928 MHz	≥ 20 dB

FCC, Part 15 Subpart C §15.247(d)

Industry Canada RSS-210 §A.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty ±2.37 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0287, 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.7. Conducted Receiver Spurious Emissions

Industry Canada RSS-Gen §7.2.3

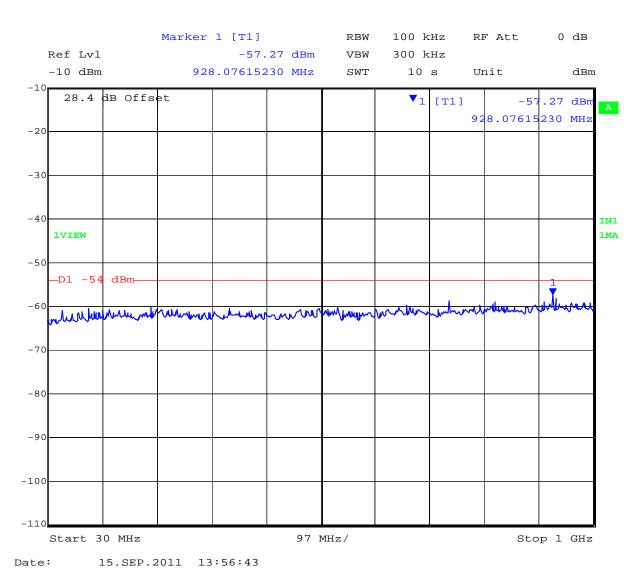
Test Procedure

Conducted Stand-By emissions were measured on the device on the mid channel. The EUT was placed in Stand-By mode and emissions were measured 30 MHz – 7 GHz.

Test Measurement Set up

EUT	Att'n	Spectrum
		Analyzer

Stand-By spurious emissions test configuration


Measurement Results of Stand –By Spurious Emissions

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

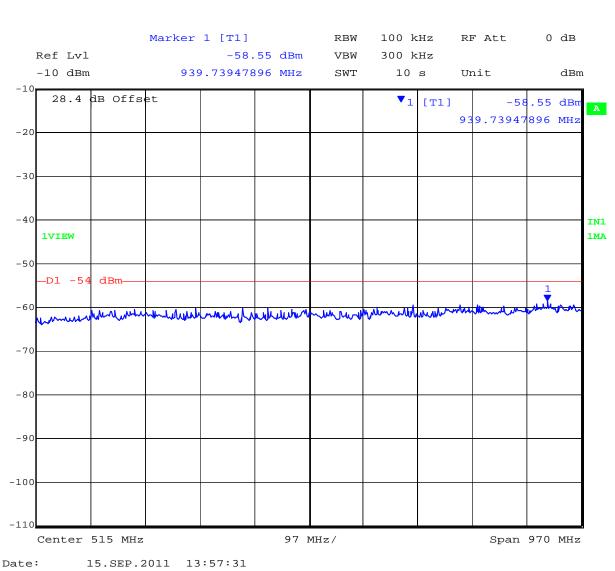
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Receiver Conducted Spurious Emissions 0.03 – 10 GHz


902.4 MHz Receiver Conducted Emissions 30 MHz – 1 GHz

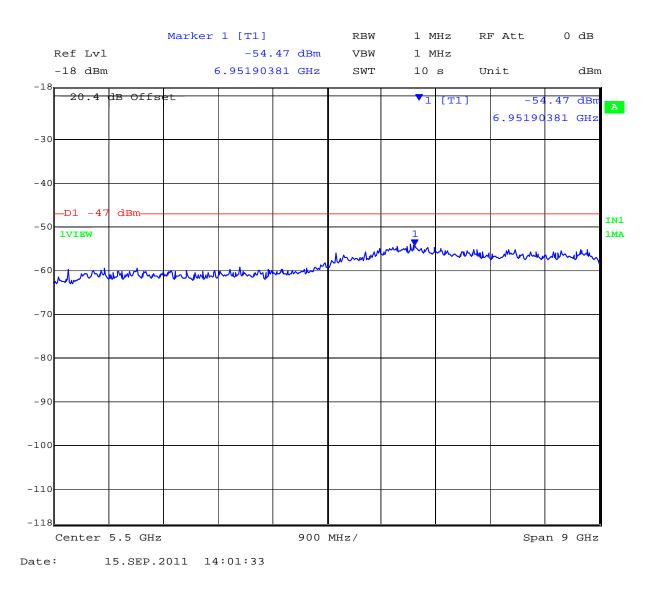
No emissions were observed breaking the limit.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


902.4 MHz Receiver Conducted Emissions 1 – 10 GHz

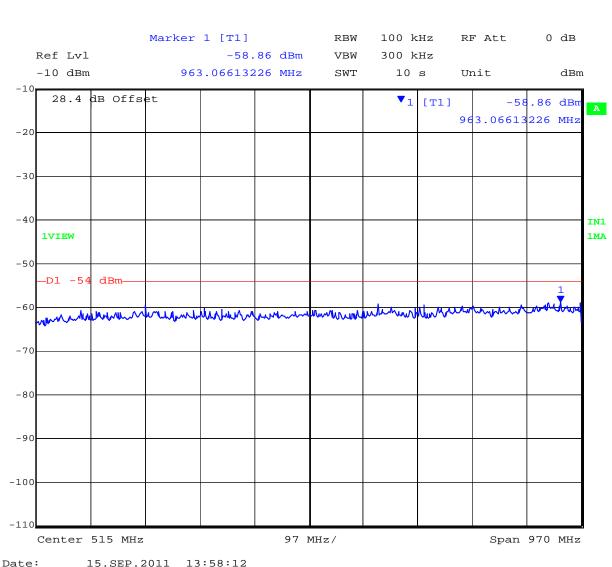
No emissions were observed breaking the limit.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


915 MHz Receiver Conducted Emissions 30 MHz – 1 GHz

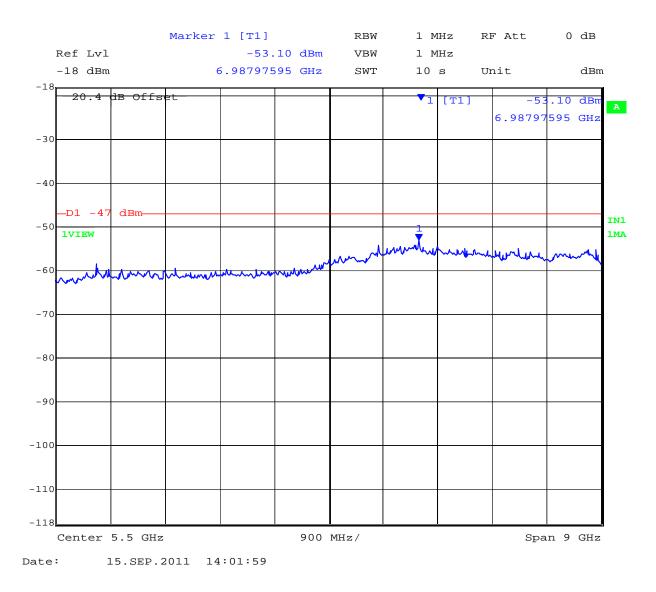
No emissions were observed breaking the limit.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



No emissions were observed breaking the limit.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


927.5 MHz Receiver Conducted Emissions 30 MHz – 1 GHz

No emissions were observed breaking the limit.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

No emissions were observed breaking the limit.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification Antenna Conducted Measurement Industry Canada RSS-Gen §7.2.3

If the device has a detachable antenna of known antenna impedance, then the antenna conducted method is permitted in lieu of a radiated measurement. Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts (-57 dBm) in the band 30-1000 MHz, or 5 nanowatts (-53 dBm) above 1 GHz.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0287, 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117.

5.1.8. Radiated Emissions

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2, §2.6 Industry Canada RSS-Gen §4.7

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

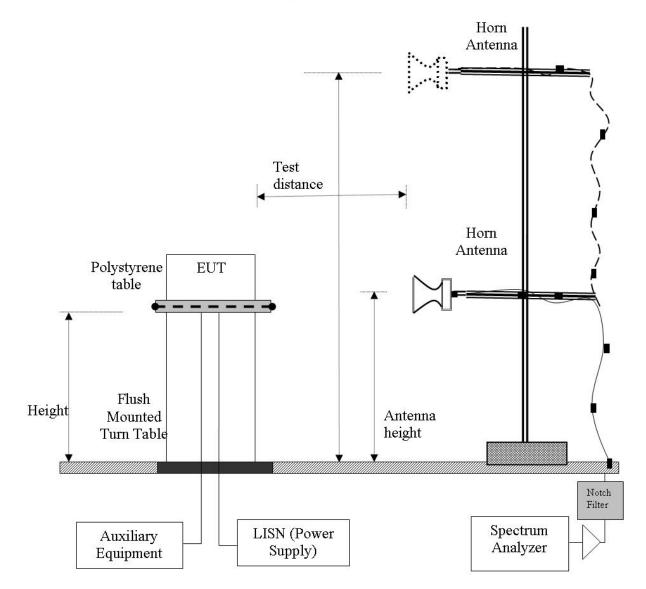
FS = R + AF + CORR - FOwhere: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

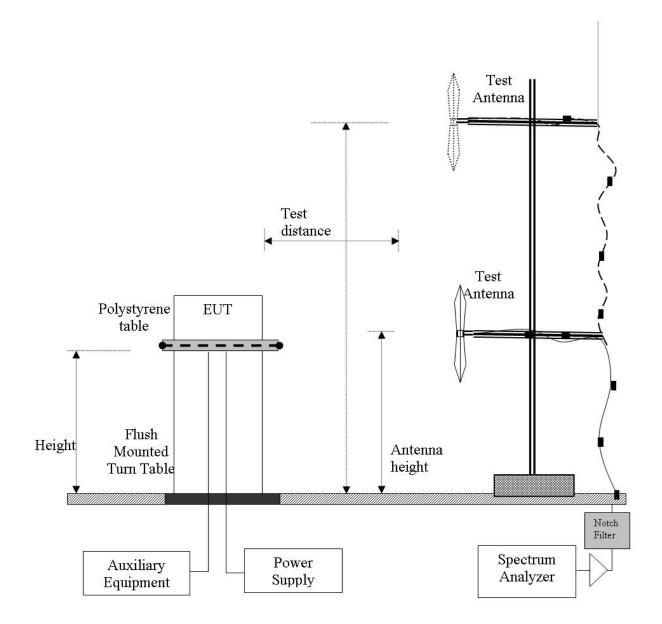
Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:


Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

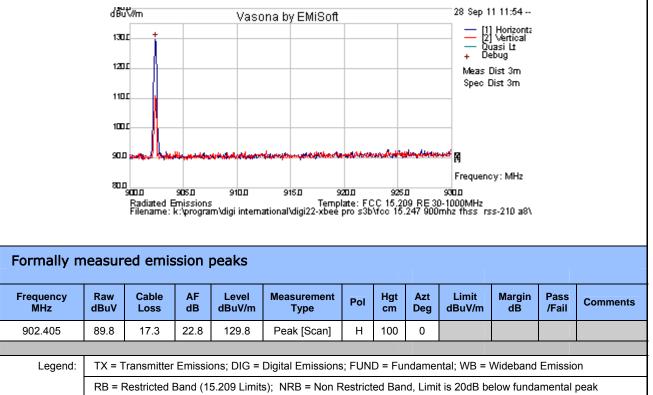
Radiated Emission Measurement Setup – Above 1 GHz



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:55 of 92

Radiated Emission Measurement Setup – Below 1 GHz


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.8.1. Antenna Yagi Directional - Transmitter Peak and Radiated Spurious Emissions

Radiated Peak Emissions – Yagi 15.1 dBi

Test Freq.	902.4 MHz	Engineer	SB
Variant	N/A	Temp (ºC)	28.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	30
Power Setting	Maximum	Press. (mBars)	1000
Antenna	13 Element Welded Yagi 15.1 dBi	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			
MiCOMLabs			
dB	បីVm Vasona by EMiSof		1 11:54
130	- <u>+</u>		Horizont: Vertical jasi Lt jobug
121		Meas	Dist 3m Dist 3m
110			

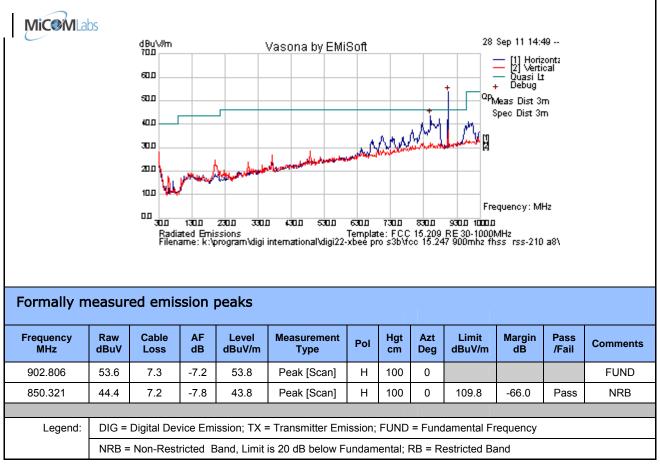
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:57 of 92

Tes	t Freq.	915 MHz							Engineer	SB		
٢	Variant	N/A					Temp (°C) 2			28.5	28.5	
Freq.	Range	1000 MHz - 18000 MHz						Rel.	Hum.(%)	30		
Power	Setting	Maximum						Press	. (mBars)	1000		
A	ntenna	13 Element Welded Yagi 15.1 dBi						Duty	Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
MiC@MLa		80.0 900.0 Radii Filen	9 0 ated Emi ame: k:y	50 91 ssions program/digi	Vasona by El	میانندری 92	Intelation III Ite: FCC Iro s3b\f	925.0	25 Fr 5300	Sep 11 12: [1] Hori [2] Vert + Debug Meas Dist 3 Spec Dist 3 Spec Dist 3 MHz hss rss-211	zont: ical f m m Hz	
Formally r	neasui	red emis	sion	beaks				_				
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
915.030	90.5	17.4	22.9	130.8	Peak [Scan]	н	100	0				
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissio	ns; FUN	D = Fu	ndame	ntal; WB =	Wideband	Emissio	on
	RB = F	Restricted I	Band (1	5.209 Limit	s); NRB = Non	Restric	ted Bar	nd, Limi	t is 20dB b	elow funda	amental	peak

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

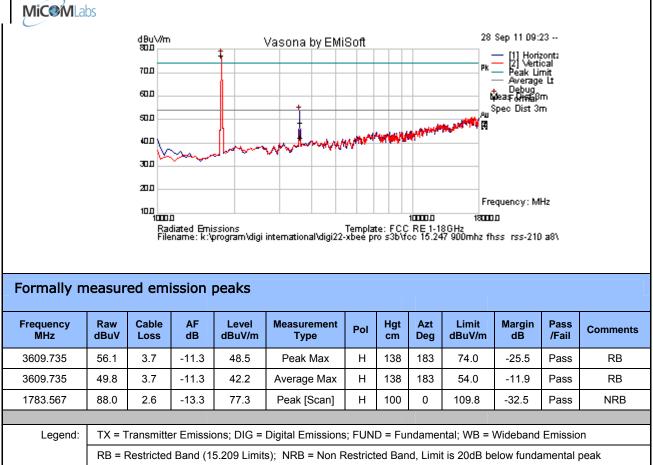
Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:58 of 92


Tes	t Freq.	927.5 M⊦	łz						Engineer	SB		
V	/ariant	N/A						1	ſemp (⁰C)	28.5		
Freq.	Range	1000 MH	z - 1800	0 MHz		Rel. Hum.(%)				30		
Power S	Setting	Maximum	ı				Press. (mBars)					
Ar	ntenna	13 Eleme	ent Welc	led Yagi 15	.1 dBi			Duty	Cycle (%)	100		
Test N	otes 1											
Test N	otes 2											
MiCCMLak	dBut/vim Vasona by EMiSoft 1301 13											
Formally n	neasur	ed emis	sion	beaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
927.655	90.2	17.4	23.0	130.6	Peak [Scan]	н	100	0				
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissior	s; FUN	D = Fu	ndame	ntal; WB =	Wideband	Emissio	on
	RB = F	Restricted I	Band (1	5.209 Limit	s); NRB = Non	Restric	ted Ban	id, Limi	t is 20dB b	elow funda	amental	peak

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Radiated Spurious Emissions

Test Freq.	902.4 MHz	Engineer	SB
Variant	Digital Emissions	Temp (ºC)	28
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	30
Power Setting	Maximum	Press. (mBars)	100
Antenna	13 Element Welded Yagi 15.1 dBi		
Test Notes 1			
Test Notes 2			


NRB Limit = Pk Emission – 20 dB = 129.8 – 20 = 109.8 dBµV

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:60 of 92

Test Freq.	902.4 MHz	Engineer	SB
Variant	N/A	Temp (⁰C)	28.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	30
Power Setting	24 dBm	Press. (mBars)	1000
Antenna	13 Element Welded Yagi 15.1 dBi	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			
NACONALabo			

NRB Limit = Pk Emission - 20 dB = 129.8 - 20 = 109.8 dBµV

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:61 of 92

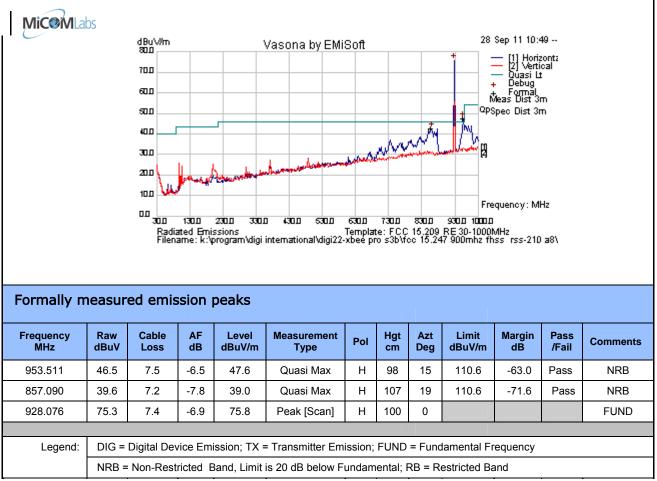
Test Freq.	915.0 MHz	Engineer	SB
Variant	Digital Emissions	Temp (ºC)	28
Freq. Range	1000 MHz - 6000 MHz	Rel. Hum.(%)	33
Power Setting	Maximum	Press. (mBars)	1000
Antenna	13 Element Welded Yagi 15.1 dBi		
Test Notes 1			
Test Notes 2			
MicMLabs	dBuV/m Vasona by EMis and and and and and and and and	500 7300 5300 9300 10000	Aeas Dist 3m pec Dist 3m quency: MHz

_				_								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
863.928	44.8	7.2	-7.7	44.4	Peak [Scan]	Н	100	0	110.8	-66.4	Pass	NRB
Legend:	DIG =	DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency										
	NRB =	NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band										

NRB Limit = Pk Emission – 20 dB = 130.8 – 20 = 110.8 dBµV

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:62 of 92


Tes	t Freq.	915 MH	Z						Engineer	SB			
١	Variant	N/A						Т	emp (⁰C)	28.5	28.5		
Freq.	Range	1000 M	Hz - 1800	00 MHz				Rel.	Hum.(%)	30			
Power S	Setting	24 dBm				Press. (mBars)				1000			
Aı	ntenna	13 Elerr	nent Weld	led Yagi 15	i.1 dBi			Duty (Cycle (%)	100			
Test N	lotes 1												
Test N	lotes 2												
With the set of the se													
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
3659.699	62.9	3.7	-11.3	55.3	Peak Max	Н	200	169	74.0	-18.7	Pass	RB	
3659.699	57.6	3.7	-11.3	50.0	Average Max	Н	200	169	54.0	-4.0	Pass	RB	
1817.635	88.0	2.6	-13.0	77.6	Peak [Scan]	Н	150	0	110.8	-33.2	Pass	NRB	
Legend:		So.0 2.0 -13.0 77.0 Peak [Scali] H 130 0 110.8 -33.2 Pass NKB TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak											

NRB Limit = Pk Emission $-20 \text{ dB} = 130.8 - 20 = 110.8 \text{ dB}\mu\text{V}$

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Test Freq.	927.5 MHz	Engineer	SB
Variant	Digital Emissions	Temp (⁰C)	28
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	30
Power Setting	Maximum	Press. (mBars)	100
Antenna	13 Element Welded Yagi 15.1 dBi		
Test Notes 1			
Test Notes 2			

NRB Limit = Pk Emission – 20 dB = 130.6 – 20 = 110.6 dBµV

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:64 of 92

_	. =									0.5		
	st Freq.	928 MH	IZ						Engineer	SB		
	Variant	N/A						Т	emp (⁰C)	28.5		
Freq.	Range	1000 M	Hz - 1800	00 MHz		Rel. Hum.(%) 30						
Power	Setting	24 dBm						Press	. (mBars)	1000		
Α	ntenna	13 Elen	nent Weld	ded Yagi 1	5.1 dBi			Duty (Cycle (%)	100		
Test N	Notes 1											
Test N	Notes 2											
MiC®MLa	bs	dBu/Vim 800 600 800 800 800 800 800 800 800 800			Vasona by EMi	w ^{**} ***		10000.0	PK		zont: ical mit e Lt m m Hz	
Formally r	neasui	red emi	ission	peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
3710.591	57.4	3.7	-11.1	50.1	Peak Max	Н	149	172	74.0	-23.9	Pass	RB
3710.591	50.9	3.7	-11.1	43.5	Average Max	Н	149	172	54.0	-10.5	Pass	RB
1851.703	88.0	2.7	-12.8	77.9	Peak [Scan]	Н	200	0	110.6	-32.7	Pass	NRB
		·										
Legend:	TX = 1	ransmitte	er Emissi	ons; DIG =	Digital Emissions	; FUN	D = Fu	ndamei	ntal; WB = \	Nideband	Emissio	n
		RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak								neak		

NRB Limit = Pk Emission - 20 dB = 130.6 - 20 = 110.6 dBµV

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.8.2. Antenna Omni Directional - Transmitter Peak and Radiated Spurious Emissions

Radiated Peak Emissions – Antenna Omni Directional 8.1 dBi

	_											
Tes	t Freq.	902 MHz							Engineer	SB		
N	/ariant	N/A						Т	emp (⁰C)	28.5		
Freq.	Range	1000 MH	z - 1800	00 MHz		Rel. Hum.(%) 30				30		
Power S	Setting	24 dBm				Press. (mBars)			1000			
Ai	ntenna	A09-F8T	⁻ M 8.1 c	lBi		Duty Cycle (%)				100		
Test N	lotes 1											
Test N	lotes 2											
Formally m	රස්ග 130 120 110 100 300 300	son n Radiated E Filename: 1	sion	9100 sm/digi intern	Tempi ational/digi22-xbee	200 Jate: FC pro s3b	925 :C 15.2 trcc 15	09 RE 30 247 900	(1) (2) (2) (4) (4) (5) (7) (ss-210 a8\		
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
902.345	85.3	17.3	22.8	125.3	Peak [Scan]	V	150	0				
Legend:					Digital Emissions s); NRB = Non F							

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

1105

1000

90.0 🖕

800 9000

905.0

9100

Title: Digi International XBPS3B To: FCC 47 CFR Part15.247 & IC RSS-210 Serial #: DIGI22-U1 Rev B Issue Date: 17th November 2011 Page: 66 of 92

Ē.

930.0

Frequency: MHz

Test Freq.	915 MHz	Engineer	SB
Variant	N/A	Temp (ºC)	28.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	30
Power Setting	24 dBm	Press. (mBars)	1000
Antenna	A09-F8TM 8.1 dBi	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			
MiC@MLabs	dອື່ນີ້ໃຫ້ Vasona by EM	iSoft 28	Sep 11 12:42
	Vasona by Livi	13011	•
	1301 +		— [1] Horizont: — [2] Vertical — Quasi L± ⊦ Debug
	1201	h	⊢ Debug Aleas Dist3m Spec Dist3m

	Radi: Filen	ated Emi: ame: k:¥	ssions program\digi	international/digi22-	Templat xbee pr	te:FCC os3b\fo	: 15.209 cc 15.24	RE 30-10001 17 900mhz fh	viHz ss rss-210	l a8\	
Formally measured emission peaks											
Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
85.0	17.4	22.9	125.3	Peak [Scan]	V	150	0				
TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	; FUN	D = Fui	ndamei	ntal; WB =	Wideband	Emissic	n
RB = F	RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak										
	Raw dBuV 85.0 TX = T	Raw dBuVCable Loss85.017.4TX = Transmitter	neasured emission pRaw dBuVCable LossAF dB85.017.422.9TX = Transmitter Emission	neasured emission peaksRaw dBuVCable LossAF dBLevel dBuV/m85.017.422.9125.3TX = Transmitter Emissions; DIG =	Raw Cable Loss AF dB Level dBuV/m Measurement Type 85.0 17.4 22.9 125.3 Peak [Scan] TX = Transmitter Emissions; DIG = Digital Emissions	Raw dBuV Cable dB dF dB Measurement dBuV/m Pol 85.0 17.4 22.9 125.3 Peak [Scan] V TX = Transmitter Emissions; DIG = Digital Emissions; FUN	Raw dBuV Cable dB Measurement dBuV/m Pol Hgt cm 85.0 17.4 22.9 125.3 Peak [Scan] V 150 TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fu	neasured emission peaksRaw dBuVCable LossAF dBLevel dBuV/mMeasurement TypePolHgt cmAzt Deg85.017.422.9125.3Peak [Scan]V1500TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundament	Raw Cable Loss AF dB Level dBuV/m Pol Pol Cm Hgt Deg Limit dBuV/m 85.0 17.4 22.9 125.3 Peak [Scan] V 150 0 Image: Colspan="5">TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = V	Raw dBuV Cable dB AF dB Level dBuV/m Pol description Hgt dBuV/m Margin dB 85.0 17.4 22.9 125.3 Peak [Scan] V 150 0 Imit dBuV/m Margin dB TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband	Raw dBuV Cable Loss AF dB Level dBuV/m Measurement Type Pol Hgt cm Azt Deg Limit dBuV/m Margin dB Pass /Fail 85.0 17.4 22.9 125.3 Peak [Scan] V 150 0 Image: Comparison of the compar

9150

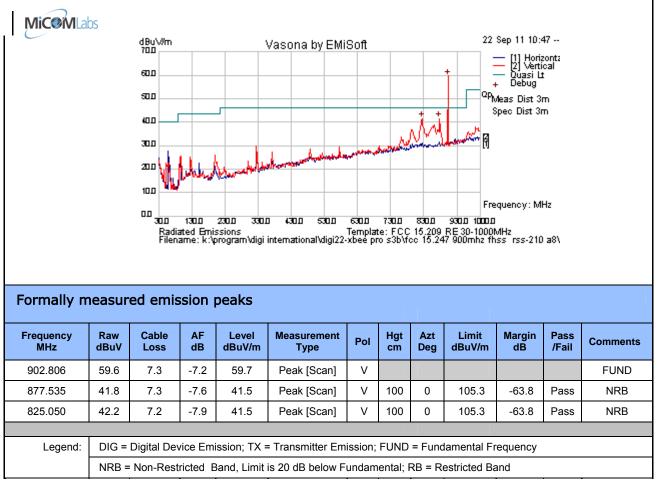
920.0

925.0

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:67 of 92

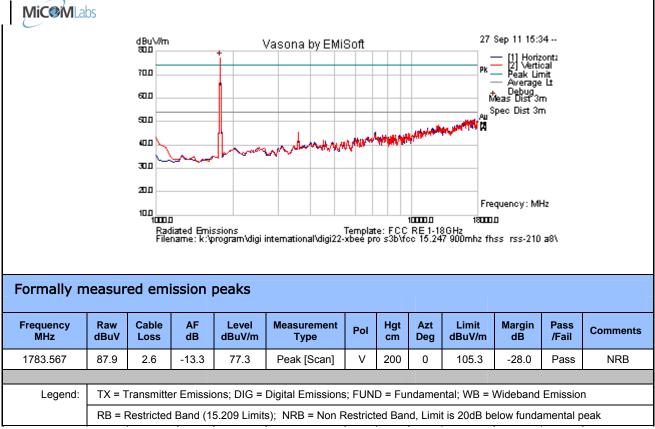
Tes	t Freq.	928 MHz							Engineer	SB			
١	Variant	N/A						٦	ſemp (⁰C)	28.5			
Freq.	Range	1000 MH	z - 1800	0 MHz		Rel. Hum.(%)				30			
Power S	Setting	24 dBm						Press	. (mBars)	1000			
A	ntenna	A09-F8T	M 8.1 d	Bi				Duty	Cycle (%)	100			
Test N	lotes 1												
Test N	lotes 2												
Formally n	neasur	80.0 900.0 Radi. Filen	90: ated Emi ame: k:'y	5D 91 ssions program\digi	Vasona by EM		DD rte: FCC ro s3b\f	925.0 925.0 0 15.209 0 c 15.24	530.0	Sep 11 12: [1] Hori [2] Vert Polugsi L + Debug Meas Dist 3 Spec Dist 3 Spec Dist 3 Spec Dist 3 MHz MHz MS rss-211	zont: ical # m m Hz		
	_						.						
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
927.655	85.5	17.4	23.0	125.9	Peak [Scan]	V	150	0					
Legend:	TY = T	ranemittor	Emissic		Digital Emissior		D = Eu	ndamo	ntal: W/B -	Wideband	Emissic		
Legend.					-								
<u> </u>	KD = F	cesincied i	Sanu (1		s); NRB = Non	Result	eu bar	u, LIM			amenial	реак	


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:68 of 92

Radiated Spurious Emissions

Test Freq.	902.4 MHz	Engineer	SB
Variant	Digital Emissions	Temp (⁰C)	28
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	30
Power Setting	24 dBm	100	
Antenna	A09-F8TM 8.1 dBi		
Test Notes 1			
Test Notes 2			


NRB Limit = Pk Emission – 20 dB = $125.3 - 20 = 105.3 \text{ dB}\mu\text{V}$

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:69 of 92

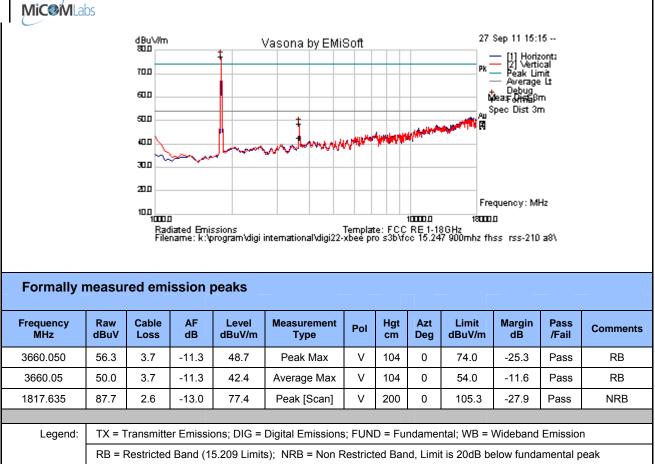
Test Freq.	902.4 MHz	Engineer	SB			
Variant	N/A		28.5			
Variant	N/A	Temp (ºC)	20.3			
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	30			
Power Setting	24 dBm	Press. (mBars)	1000			
Antenna	A09-F8TM 8.1 dBi	Duty Cycle (%)	100			
Test Notes 1						
Test Notes 2						

NRB Limit = Pk Emission – 20 dB = 125.3 – 20 = 105.3 dBµV

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:70 of 92

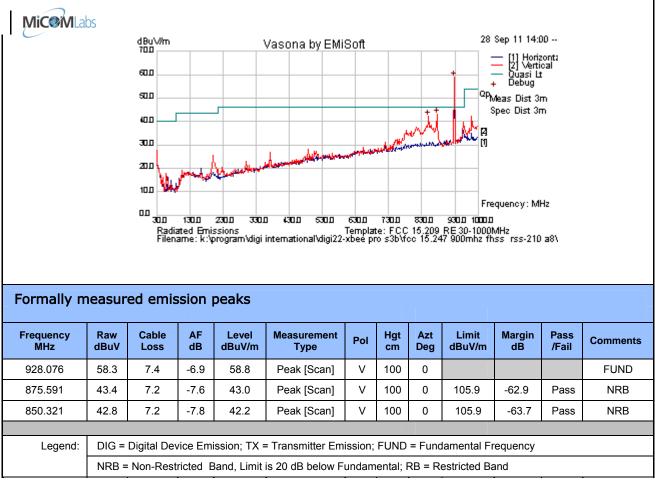
										1		
Test	t Freq.	. 915 MHz				Engineer			SB			
v	/ariant	Digital Emissions						Temp (°C) 28				
Freq. I	Range	30 MHz -	1000 N	1Hz			Rel. Hum.(%) 33					
Power S	Setting	24 dBm						Press.	. (mBars)	ars) 1000		
An	ntenna	A09-F8T	A09-F8TM 8.1 dBi									
Test N	otes 1											
Test N	otes 2											
dBuV/m Vasona by EMiSoft 28 Sep 11 13:51 To To To To State To To To Badiate Enissions Template: FCC 16 209 RE 30:1000MHz Filename: R:/program/digi The To State To To To To State To To To												
Formally measured emission peaks												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
863.928	41.2	7.2	-7.7	40.8	Peak [Scan]	V	100	0	105.3	-64.5	Pass	NRB
Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency												
	NRB =	NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band										


NRB Limit = Pk Emission – 20 dB = 125.3 – 20 = 105.3 dBµV

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:71 of 92

Test Freq.	915 MHz	Engineer	SB			
Variant	N/A	Temp (ºC)	28.5			
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	30			
Power Setting	24 dBm	Press. (mBars)	1000			
Antenna	A09-F8TM 8.1 dBi	Duty Cycle (%)	100			
Test Notes 1						
Test Notes 2	Test Notes 2					
Micentuchs						


NRB Limit = Pk Emission – 20 dB = 125.3 – 20 = 105.3 dBµV

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:72 of 92

Test Freq.	927.5 MHz	Engineer	SB		
Variant	Digital Emissions	28			
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	30		
Power Setting	24 dBm	100			
Antenna	A09-F8TM 8.1 dBi				
Test Notes 1					
Test Notes 2					

NRB Limit = Pk Emission – 20 dB = 125.9 – 20 = 105.9 dBµV

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:73 of 92

Test Freq.	927.5 MHz	Engineer	SB
Variant	N/A	Temp (ºC)	28.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	30
Power Setting	24 dBm	Press. (mBars)	1000
Antenna	A09-F8TM 8.1 dBi	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			
	dBu/Vm Vasona by EMis 800 700 600 500 500		Sep 11 15:25 [1] Horizontz [2] Vertical Peak Limit Average Lt Debug keas Dist 3m Spec Dist 3m
	300		

		100 10001 Rad File		ssions rogram\digi i	international\digi22-	Templat xbee pr		1000000 RE 1-18 cc 15.24	18000			
Formally m	neasur	ed emi	ission p	beaks					_			_
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1851.703	87.9	2.7	-12.8	77.8	Peak [Scan]	V	200	0	125.9	-48.1	Pass	NRB
Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission												
	RB = R	Restricted	Band (1	5.209 Limits	s); NRB = Non F	Restrict	ed Ban	id, Limi	t is 20dB b	elow funda	mental p	eak

NRB Limit = Pk Emission – 20 dB = 125.9 – 20 = 105.9 dBµV

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:74 of 92

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.109 (b) The field strength of radiated emissions from a Class A digital device, as determined at a distance of 3 meters, shall not exceed the following:

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	49.5	3
88-216	150	54.0	3
216-960	200	57.0	3
Above 960	500	60.0	3

§15.109 (b) Limit Matrix Class A digital device

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0287, 0335, 0338, 0158, 0134, 0304, 0311, 0315, 0310, 0312, 0341

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.8.3. Receiver Radiated Spurious Emissions (above 1 GHz)

Industry Canada RSS-Gen §4.10, §6

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

All Sectors of the EUT were tested simultaneously

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

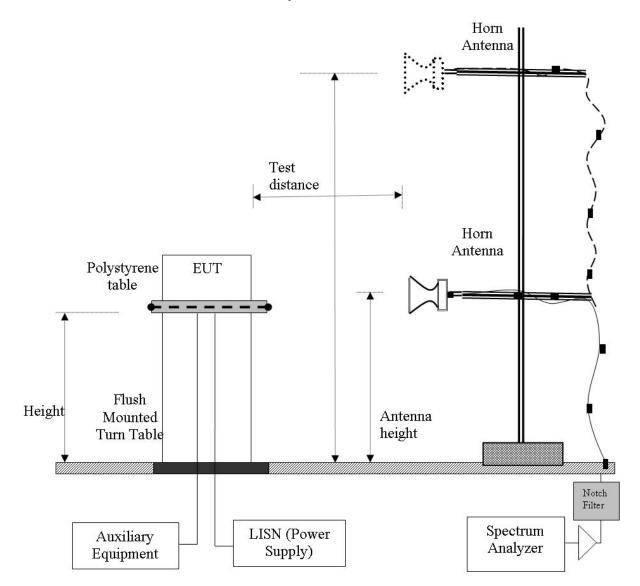
FS = R + AF + CORR - FO where: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \, dB\mu V/m$

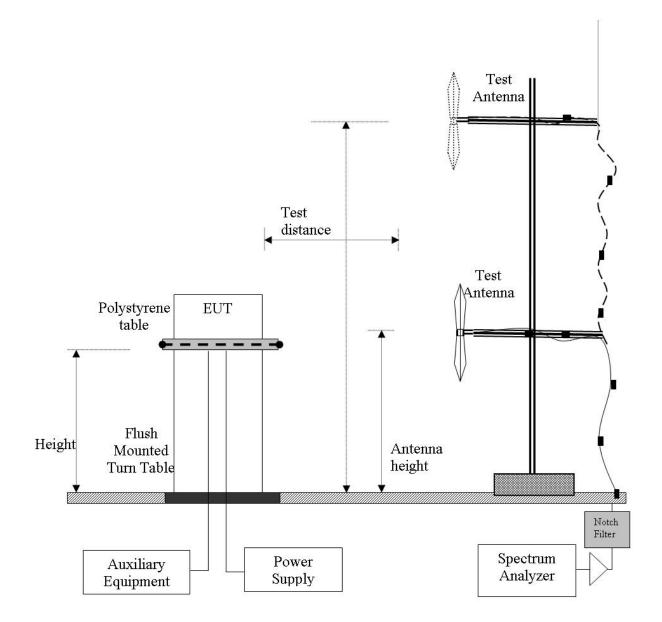
Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:


Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

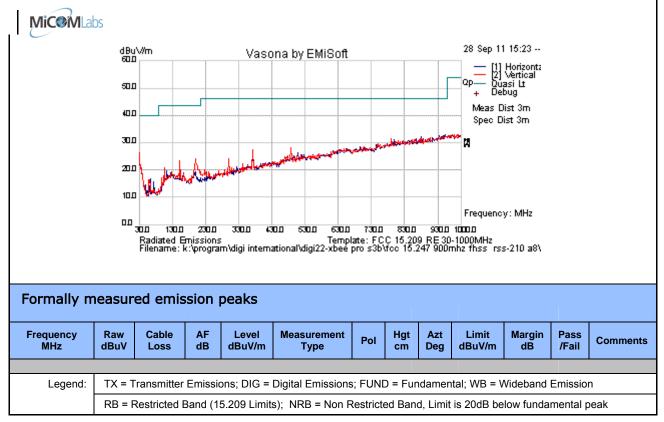
Radiated Emission Measurement Setup – Above 1 GHz



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:77 of 92

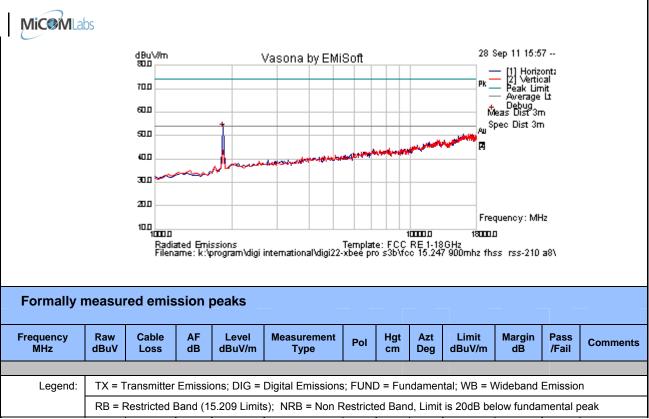
Radiated Emission Measurement Setup – Below 1 GHz


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:78 of 92

Yagi Receiver Spurious Emissions

Test Freq.	915 MHz	Engineer	SB
Variant	N/A	Temp (ºC)	28.5
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	30
Power Setting	Not Applicable Receiver Emissions	Press. (mBars)	1000
Antenna	13 Element Welded Yagi	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:79 of 92

Test Freq.	915 MHz	Engineer	SB
Variant	N/A	Temp (⁰C)	28.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	30
Power Setting	Not Applicable Receiver Emissions	Press. (mBars)	1000
Antenna	13 Element Welded Yagi	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:80 of 92

Omni Receiver Spurious Emissions

Formally measured emission peaks

Cable

Loss

AF

dB

Level

dBuV/m

Measurement

Туре

Hgt

cm

Pol

TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

Azt

Deg

Limit

dBuV/m

Margin

dB

Pass

/Fail

Comments

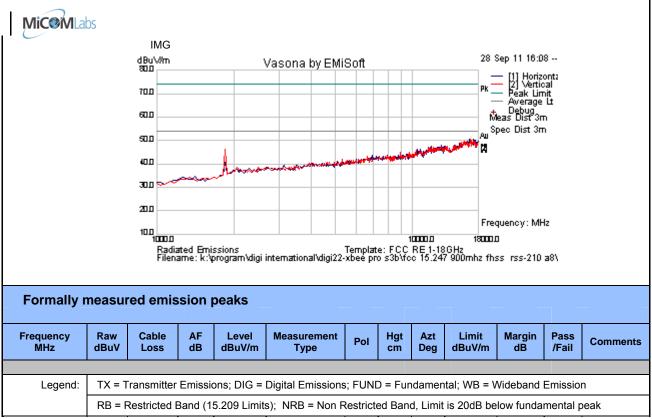
Raw

dBuV

Frequency

МНz

Legend:


Test Freg.	915 MHz	Engineer	SB
Variant	N/A	Temp (°C)	28.5
		,	
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	30
Power Setting	Not Applicable Receiver Emissions	Press. (mBars)	1000
Antenna	A09-F8TM 8.1 dBi	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			
MiC@MLabs dB so ao ao ao ao ao ao ao ao ao ao ao ao ao		مور معرف معرف المعرف المع معرف المعرف ال معرف المعرف ا معرف المعرف	iist 3m y∶MHz

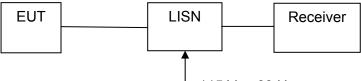
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:81 of 92

Test Freq.	915 MHz	Engineer	SB
Variant	N/A	Temp (ºC)	28.5
Freq. Range	1000 MHz -18000 MHz	Rel. Hum.(%)	30
Power Setting	Not Applicable Receiver Emissions	Press. (mBars)	1000
Antenna	A09-F8TM 8.1 dBi	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5.1.9. AC Wireline Conducted Emissions (150 kHz – 30 MHz)


FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

ac Wireline Emissions Not Applicable as the device under test is a wireless module energized with dc power

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

115 Vac 60 Hz

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radio Parameters:

Transmitting on Channel 26. 915.25 MHz Transmit Power +30 dBm Active antenna port was terminated in a 50Ω termination

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:83 of 92

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

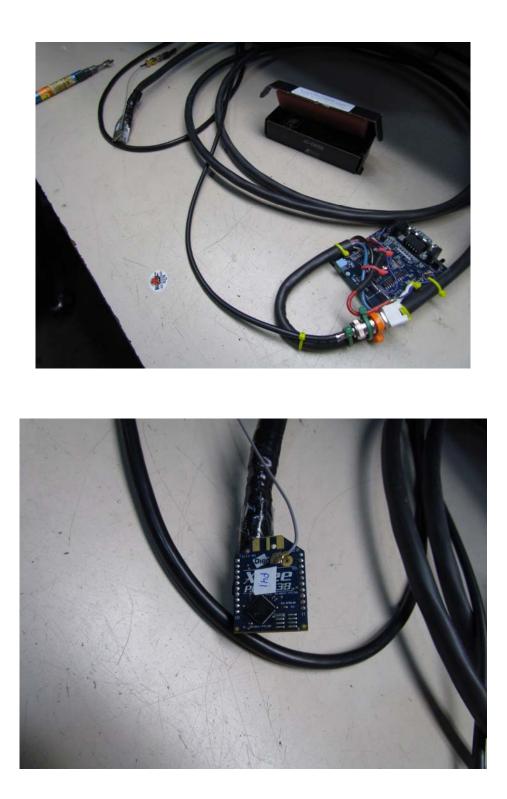
Traceability

Method	Test Equipment Used
Measurements were made per Sanmina work instruction	0190, 0193

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

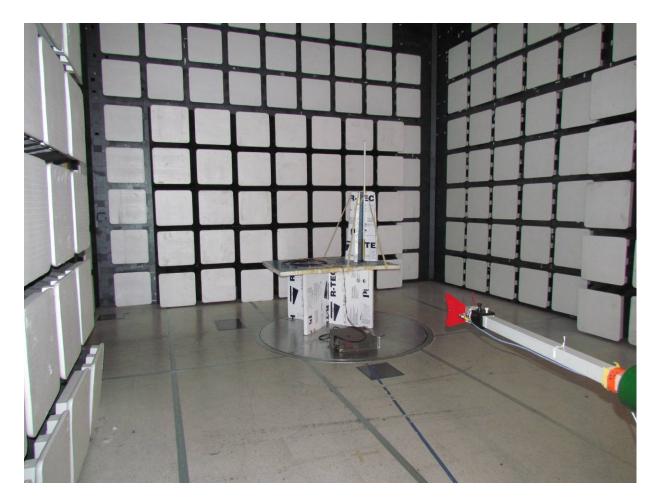
Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:84 of 92

6. PHOTOGRAPHS


6.1. General Measurement Test Set-Up

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

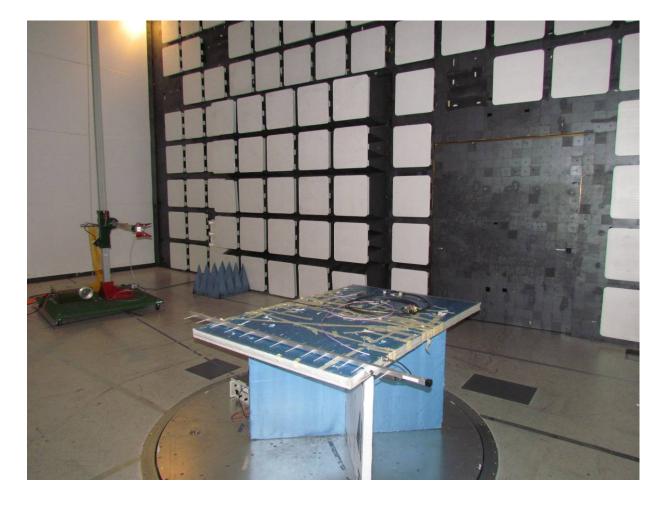
Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:85 of 92


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:86 of 92

6.2. Radiated Emissions >1 GHz

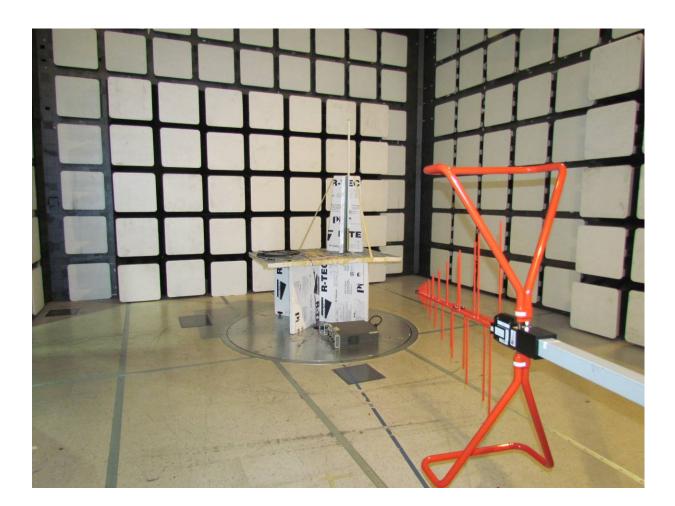
Omni Directional Antenna



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:87 of 92

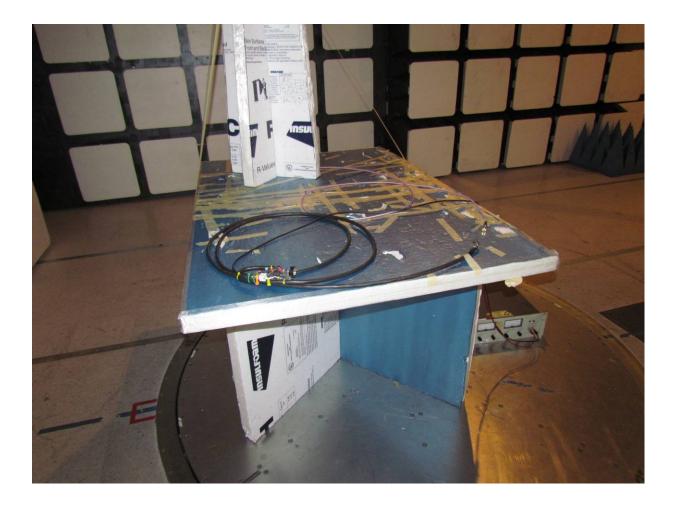
Yagi Directional Antenna



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.3. <u>Radiated Emissions <1 GHz</u>

Omni Directional Antenna



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:89 of 92

Yagi Directional Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:90 of 92

Yagi Directional Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Digi International XBPS3BTo:FCC 47 CFR Part15.247 & IC RSS-210Serial #:DIGI22-U1 Rev BIssue Date:17th November 2011Page:91 of 92

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0158	Barometer /Thermometer	Control Co.	4196	E2844
0184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwarz	ESH3Z5	836679/006
0223	Power Meter	Hewlett Packard	HP EPM-442A	US37480256
0251	K-Cable	Megaphase	Sucoflex 104	Unknown
0252	K-Cable	Megaphase	Sucoflex 104	Unknown
0253	K-Cable	Megaphase	Sucoflex 104	Unknown
0256	K-Cable	Megaphase	Sucoflex 104	Unknown
0271	Amplifier	1 to 26.5 GHz	MiCOM	
0287	EMI Receiver	Rhode & Schwarz	ESIB 40	100201
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787- 3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181- 3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30 dB N-Type Attenuator	ARRA	N944-30	1623
0335	Horn Antenna	The Electro-Mechanics Company	3117	00066580
0337	Amplifier	30 MHz – 3 GHz	MiCOM	
0338	Antenna (30M-3GHz)	Sunol Sciences	JB3	A052907
0341	902-928 MHz Notch Filter	EWT	EWT-14-0199	H1
0363	Switch	MiCOM Labs		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com