Bundesnetzagentur	CTC I advanced member of RWTÜV group
TEST R	EPORT
BNetzA-CAB-02/21-102	1-3700/21-01-09
Testing laboratory	Applicant
CTC advanced GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>https://www.ctcadvanced.com</u> e-mail: <u>mail@ctcadvanced.com</u>	Digi International Inc. 9350 Excelsior Blvd, Suite 700 Hopkins, 55343 / UNITED STATES Phone: -/- Contact: Dan Kobylarz e-mail: <u>daniel.kobylarz@digi.com</u>
Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.	Manufacturer Digi International Inc. 9350 Excelsior Blvd, Suite 700 Hopkins, 55343 / UNITED STATES
Test sta	indard/s

FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio FCC - Title 47 CFR Part 15 frequency devices

RSS - 247 Issue 2

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Kind of test item:	Embedded ARM System on Module
Model name:	ConnectCore 6P
FCC ID:	MCQ-CCIMX6P
ISED certification number:	1846A-CCIMX6P
Frequency:	UNII bands: 5150 MHz to 5250 MHz; 5250 MHz to 5350 MHz; 5470 MHz to 5725 MHz; 5725 MHz to 5850 MHz
Technology tested:	WLAN
Antenna:	External antenna (Ethertronics 1001932)
Power supply:	5.0 V DC by external power supply
Temperature range:	-40°C to +85°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Test performed:

Marco Bertolino Lab Manager **Radio Communications** Michael Dorongovski Lab Manager **Radio Communications**

Table of contents 1

1	Table	of contents	2
2	Gener	ral information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test s	standard/s, references and accreditations	4
4	Repo	rting statements of conformity – decision rule	5
5	Test e	environment	6
6	Test i	tem	6
	6.1 6.2	General description Additional information	
7	Descr	iption of the test setup	7
	7.1 7.2 7.3	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz	9
8	Seque	ence of testing	11
	8.1 8.2 8.3 8.4	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz	12 13
9	Meas	urement uncertainty	15
10	S	Summary of measurement results	16
11	А	dditional comments	17
12	Ν	leasurement results	20
	12.1 12.2 12.3 12.4	Band edge compliance radiated Spurious emissions radiated below 30 MHz Spurious emissions radiated 30 MHz to 1 GHz Spurious emissions radiated 1 GHz to 40 GHz	26 41
13	G	lossary	65
14	D	ocument history	66
15	Α	ccreditation Certificate – D-PL-12076-01-04	66
16	Α	ccreditation Certificate – D-PL-12076-01-05	67

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 **Application details**

Date of receipt of order: 2022-01-11 Date of receipt of test item: 2022-01-05 Start of test:* 2022-01-10 End of test:* 2022-02-25 -/-

Person(s) present during the test:

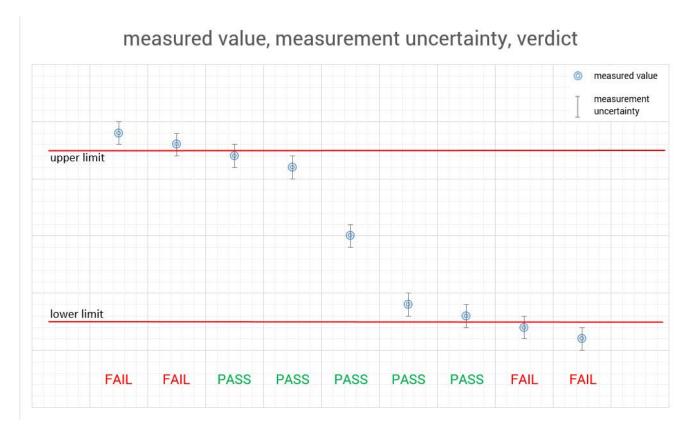
*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description				
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices				
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices				
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus				
Guidance	Version	Description				
KDB 789033 D02	v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E American National Standard for Methods of Measurement of				
ANSI C63.4-2014	-/-	Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz				
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices				
Accreditation	Descriptio	n				
D-PL-12076-01-04	Telecomm	mmunication and EMC Canada www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf				
D-PL-12076-01-05		ommunication FCC requirements /www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf				


ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 **Test environment**

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme environmental conditions required. No tests under extreme environmental conditions required.
Relative humidity content	:		40 %
Barometric pressure	:		1022 hpa
		V_{nom}	5.0 V DC by external power supply
Power supply	:	V_{max}	No tests under extreme environmental conditions required.
		V_{min}	No tests under extreme environmental conditions required.

6 Test item

General description 6.1

Kind of test item :	Embedded ARM System on Module
Model name :	ConnectCore 6P
HMN :	-/-
PMN :	ConnectCore 6 Plus
HVIN :	50001964-01
FVIN :	82004170
S/N serial number :	Rad. 0004F3263632
Hardware status :	50001964-02
Software status :	U-Boot dub-2017.03-r8.1, Linux 5.4.84
Firmware status :	DEY-3.0-r3.2
Frequency band :	UNII bands: 5150 MHz to 5250 MHz; 5250 MHz to 5350 MHz; 5470 MHz to
	5725 MHz; 5725 MHz to 5850 MHz
Type of radio transmission :	OFDM
Use of frequency spectrum :	
Type of modulation :	CCK, (D)BPSK, (D)QPSK, 16 – QAM, 64 – QAM
	25 with 20 MHz channel bandwidth
Number of channels :	12 with 40 MHz channel bandwidth
	6 with 80 MHz channel bandwidth
Antenna :	External antenna (Ethertronics 1001932)
Power supply :	5.0 V DC by external power supply
Temperature range :	-40°C to +85°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

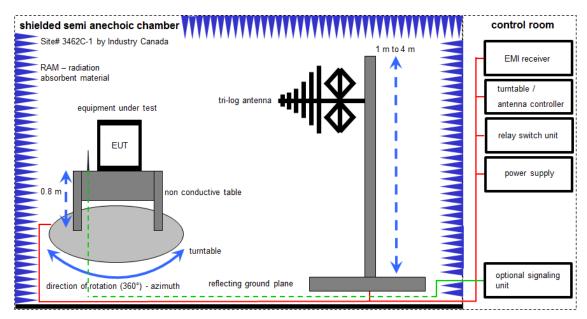
1-3700/21-01-01_AnnexA 1-3700/21-01-01_AnnexB 1-3700/21-01-01_AnnexD

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


- calibration / calibrated k
- not required (k, ev, izw, zw not required) ne
- periodic self verification ev
- Ve long-term stability recognized
- Attention: extended calibration interval vlkl!
- Attention: not calibrated NK!

- limited calibration EΚ
- cyclical maintenance (external cyclical zw maintenance)
- izw internal cyclical maintenance
- blocked for accredited testing g
- *) next calibration ordered / currently in progress

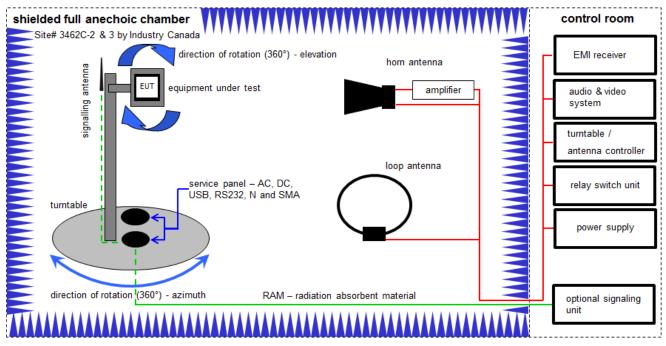
7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CTC | advanced

Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.59.00

FS = UR + CL + AF


(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

<u>Example calculation</u>: FS [dB μ V/m] = 12.35 [dB μ V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB μ V/m] (35.69 μ V/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKl!	21.04.2021	20.04.2023
7	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	10.12.2020	09.06.2022

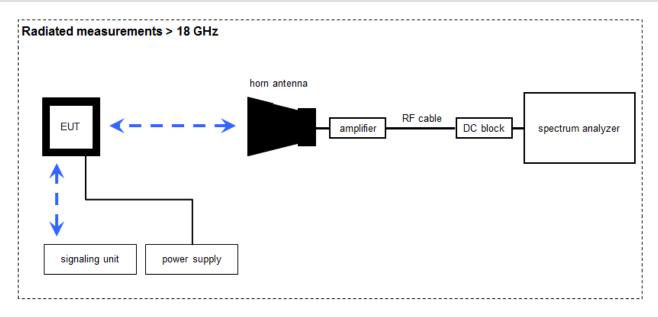
7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS [dBµV/m] = 40.0 [dBµV/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dBµV/m] (71.61 µV/m)


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	01.07.2021	30.06.2023
2	A, B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vlKI!	12.03.2021	11.03.2023
4	A, B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	A, B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2021	08.12.2022
6	В	High Pass Filter	VHF-3500+	Mini Circuits	-/-	400000193	ne	-/-	-/-
7	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
8	A, B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
9	A, B	NEXIO EMV- Software	BAT EMC V3.21.0.27	EMCO	-/-	300004682	ne	-/-	-/-
10	В	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

CTC | advanced

member of RWTÜV group

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vlKl!	17.01.2022	31.01.2024
3	А	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	vlKI!	17.01.2022	31.01.2024
4	А	Broadband Low Noise Amplifier 18- 50 GHz	CBL18503070-XX	CERNEX	19338	300004273	ev	-/-	-/-
5	А	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
6	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	25.01.2022	31.01.2023

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

9 Measurement uncertainty

Measurement uncertair	ıty			
Test case	Uncertainty			
Antenna gain	± 3	dB		
Power spectral density	± 1.5	56 dB		
DTS bandwidth	± 100 kHz (depend	s on the used RBW)		
Occupied bandwidth	± 100 kHz (depend	s on the used RBW)		
Maximum output power conducted ± 1.56 dB				
Detailed spurious emissions @ the band edge - conducted ± 1.56 dB				
Band edge compliance radiated	± 3	dB		
	> 3.6 GHz	± 1.56 dB		
Spurious emissions conducted	> 7 GHz	± 1.56 dB		
Spurious emissions conducted	> 18 GHz	± 2.31 dB		
	≥ 40 GHz	± 2.97 dB		
Spurious emissions radiated below 30 MHz	± 3 dB			
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB			
Spurious emissions radiated 1 GHz to 12.75 GHz ± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.	5 dB		
Spurious emissions conducted below 30 MHz (AC conducted) ± 2.6 dB				

10 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Title 47 Part 15 RSS 247, Issue 2	See table	2022-05-03	Tests according to customer demand

Test specification clause	Test case		NC	NA	NP	Remark
-/-	Output power verification (cond.)		-,	/-		Declared
-/-	Antenna gain		-,	/-		Declared
U-NII Part 15	Duty cycle		-,	/-		-/-
§15.407(a) RSS - 247 (6.2.x.1)	Maximum output power (conducted & radiated)				X	-/-
§15.407(a) RSS - 247 (6.2.x.1)	Power spectral density				X	-/-
RSS - 247 (6.2.4.1)	Spectrum bandwidth 6dB bandwidth				\boxtimes	-/-
§15.407(a) RSS - 247 (6.2.x.2)	Spectrum bandwidth 26dB bandwidth				\boxtimes	-/-
RSS Gen clause 6.6	Spectrum bandwidth 99% bandwidth		-,	/-		-/-
§15.205 RSS - 247 (6.2.x.2)	Band edge compliance radiated	\boxtimes				-/-
§15.407(b) RSS - 247 (6.2.x.2)	TX spurious emissions radiated	\boxtimes				-/-
§15.209(a) RSS-Gen	Spurious emissions radiated < 30 MHz	\boxtimes				-/-
§15.107(a) §15.207	Spurious emissions conducted emissions< 30 MHz				X	-/-
§15.407 RSS - 247 (6.3)	DFS	-/-				-/-

Notes:

C: C	compliant	NC:	Not compliant	NA:	Not applicable	NP:	Not performed
------	-----------	-----	---------------	-----	----------------	-----	---------------

Test report no.: 1-3700/21-01-09

11 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: Settings used for measurements:

Test mode:	Data rate:	Power setting
a-mode (SISO)	6 Mbit/s	Channel 36: 12
		Channels 40 to 64: 12.5
		Channels 100 to 144: 12
		Channels 149 to 165: 13.5
nHT20-mode (SISO)	MCS0	Channels 36 to 140: 12.5
		Channel 144: 13.0
		Channel 149: 14
		Channels 153 to 165: 13.5
nHT40-mode (SISO)	MCS0	Channels 38 and 46: 10
		Channels 54 and 62: 11
		Channel 102: 9.5
		Channels 110: 11
		Channels 118 to 142: 12
		Channels 151 and 159: 11.5
ac80-mode (SISO)	MCS0	Channel 42: 8
		Channel 58: 9
		Channel 106: 7.5
		Channel 122: 11.5
		Channel 138: 11.5
		Channel 155: 11.5

EUT selection:

Only one device available

Devices selected by the customer

Devices selected by the laboratory (Randomly)

Provided channels:

Channels with 20 MHz channel bandwidth:

	U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)								
channel number & center frequency									
channel	36	40	44	48	52	56	60	64	
f _c / MHz								5320	

U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency											
channel	100	104	108	112	116	120	124	128	132	136	140
f _c / MHz	5500	5520	5540	5560	5580	5600	5620	5640	5660	5680	5700

U-NII-3 (5725 MHz to 5850 MHz)							
channel number & center frequency							
channel	144	149	153	157	161	165	
f _c / MHz	5720	5745	5765	5785	5805	5825	

Channels with 40 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)							
channel number & center frequency							
channel	38	46	54	62			
f _c / MHz	5190	5230	5270	5310			

U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency						
channel	102	110	118	126	134	
f _c / MHz	5510	5550	5590	5630	5670	

U-NII-3 (5725 MHz to 5850 MHz)						
channel number & center frequency						
channel	142	151	159			
f _c / MHz	5710	5755	5795			

Channels with 80 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz & 5250 MHz to 5350 MHz)						
channel number & center frequency						
channel	42	58				
f _c / MHz	5210	5290				

	U-NII-2C (5470 MHz to 5725 MHz) channel number & center frequency						
channel							
f _c / MHz	5530	5610					

U-NII-3 (5725 MHz to 5850 MHz) channel number & center frequency				
channel	138	155		
f _c / MHz	5690	5775		

Note: The channels used for the tests were marked in bold in the list.

 \mathbf{X}

Test mode:

- No test mode available.
 Iperf is used to transmit data to a companion device
- Special software is used.
 EUT is transmitting pseudo random data by itself

Antennas and transmit operating modes:

Operating mode 1 (single antenna)

- Equipment with 1 antenna,

- Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used,
- Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
- Operating mode 2 (multiple antennas, no beamforming)
 - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
- Operating mode 3 (multiple antennas, with beamforming)
 - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming.
 In addition to the antenna assembly gain (G), the beamforming

gain (Y) may have to be taken into account when performing the measurements.

12 Measurement results

12.1 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. Measurement distance is 3m.

CTC I advanced

Measurement:

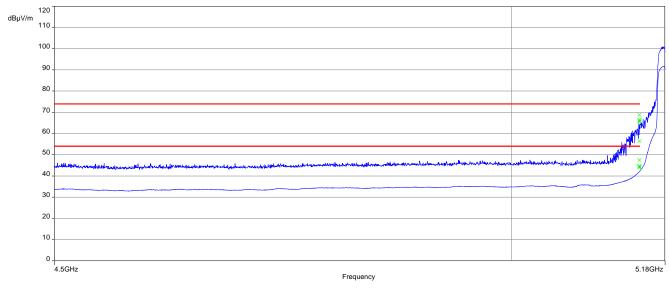
Measurement parameter		
Detector:	Peak / RMS	
Sweep time:	Auto	
Resolution bandwidth:	1 MHz	
Video bandwidth:	≥ 3 x RBW	
Span:	See plots!	
Trace mode:	Max Hold	
Test setup:	See sub clause 7.2 – B	
Measurement uncertainty:	See chapter 9	

Limits:

Band Edge Compliance Radiated

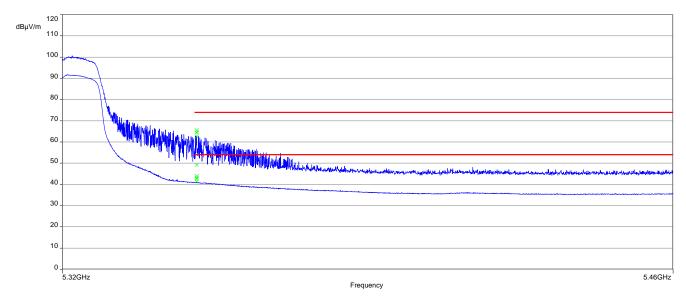
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)). 74 dBµV/m (peak)

54 dBµV/m (average)

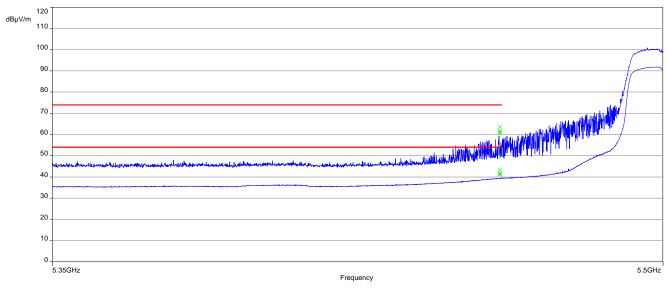

Result:

Scenario	Band Edge Compliance Radiated [dBµV/m]
band edge	< 74 dBµV/m (peak) < 54 dBµV/m (average)

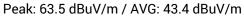
Test report no.: 1-3700/21-01-09



Plots:


Plot 1: lower band edge; U-NII-1; lowest channel; 20 MHz channel bandwidth

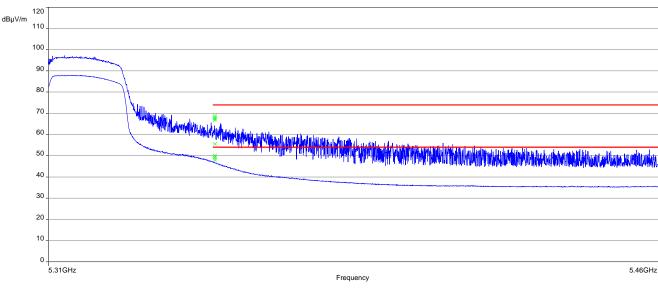
Peak: 69.0 dBuV/m / AVG: 47.4 dBuV/m

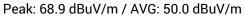


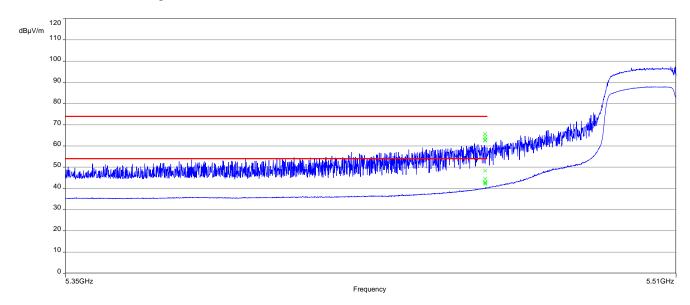

Plot 2: upper band edge; U-NII-2A; highest channel; 20 MHz channel bandwidth

Peak: 65.5 dBuV/m / AVG: 43.9 dBuV/m

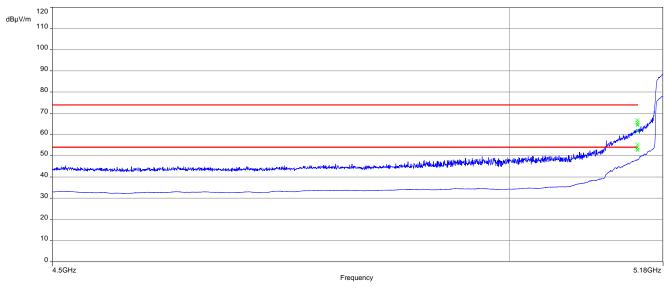
Plot 3: lower band edge; U-NII-2C; lowest channel; 20 MHz channel bandwidth

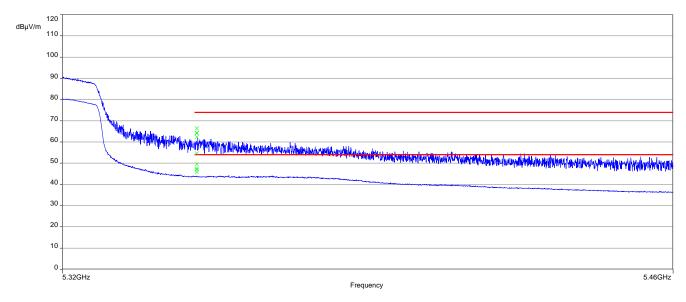



Plot 4:

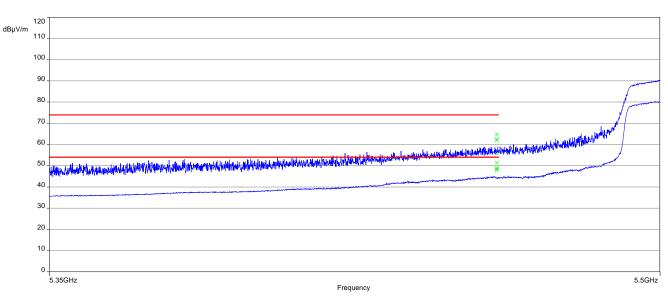


5.19GHz


Plot 5: upper band edge; U-NII-2A; highest channel; 40 MHz channel bandwidth


Plot 6: lower band edge; U-NII-2C; lowest channel; 40 MHz channel bandwidth

Peak: 65.8 dBuV/m / AVG: 44.6 dBuV/m


Plot 7: lower band edge; U-NII-1; middle channel; 80 MHz channel bandwidth

Peak: 66.8 dBuV/m / AVG: 52.5 dBuV/m

Plot 8: upper band edge; U-NII-2A; middle channel; 80 MHz channel bandwidth

Peak: 66.4 dBuV/m / AVG: 49.5 dBuV/m

Plot 9: lower band edge; U-NII-2C; lowest channel; 80 MHz channel bandwidth

Peak: 64.8 dBuV/m / AVG: 51.5 dBuV/m

12.2 Spurious emissions radiated below 30 MHz

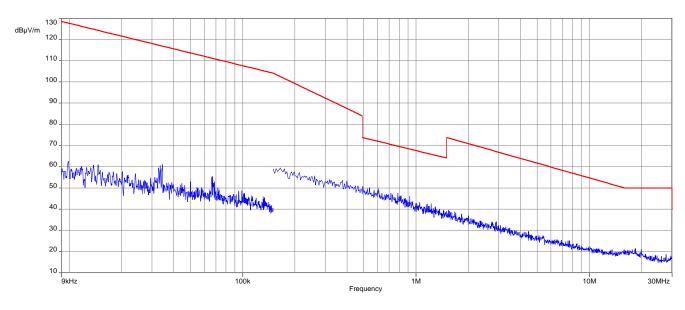
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are re-calculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

Measurement:

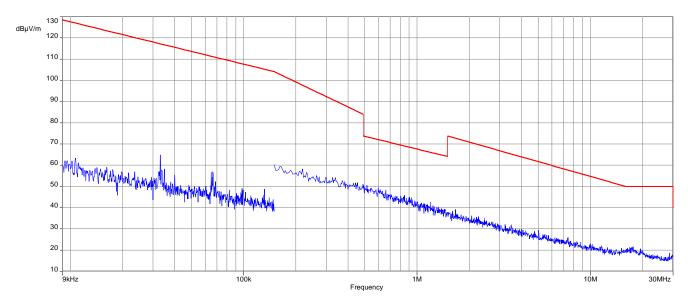
Measurement parameter				
Detector:	Peak / Quasi Peak			
Sweep time:	Auto			
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span:	9 kHz to 30 MHz			
Trace mode:	Max Hold			
Test setup:	See sub clause 7.2 – A			
Measurement uncertainty:	See chapter 9			

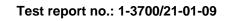
Limits:

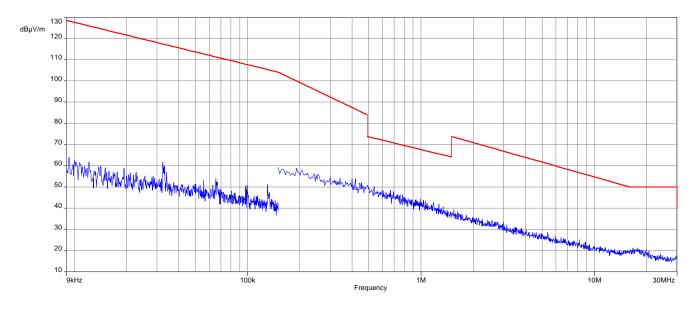

Spurious Emissions Radiated < 30 MHz				
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance		
0.009 - 0.490	2400/F(kHz)	300		
0.490 - 1.705	24000/F(kHz)	30		
1.705 - 30.0	30	30		

Results:

Spurious Emissions Radiated < 30 MHz [dBµV/m]				
F [MHz]	Detector	Level [dBµV/m]		
All detected emissions are more than 20 dB below the limit.				

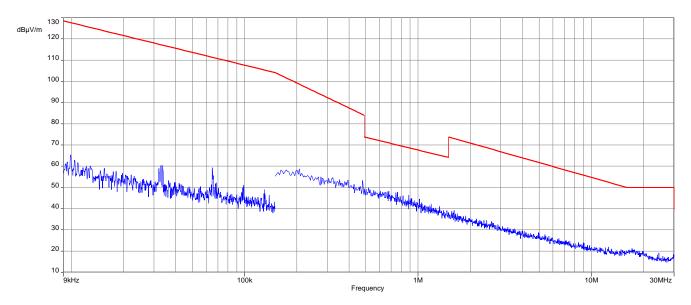


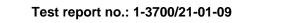

Plots: 20 MHz channel bandwidth

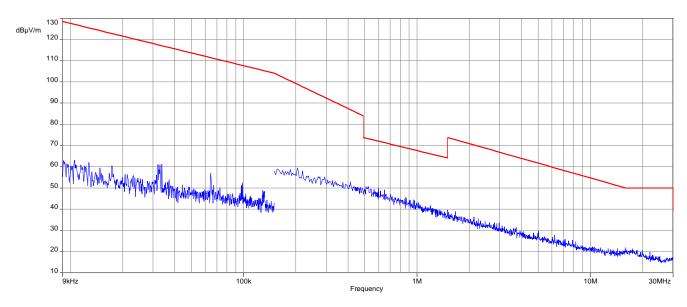


Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel

Plot 2: 9 kHz to 30 MHz, U-NII-1; highest channel

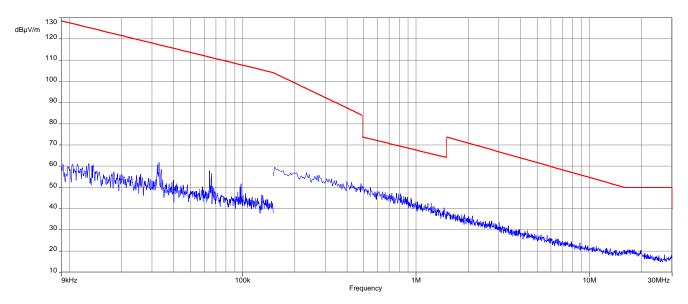


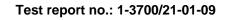


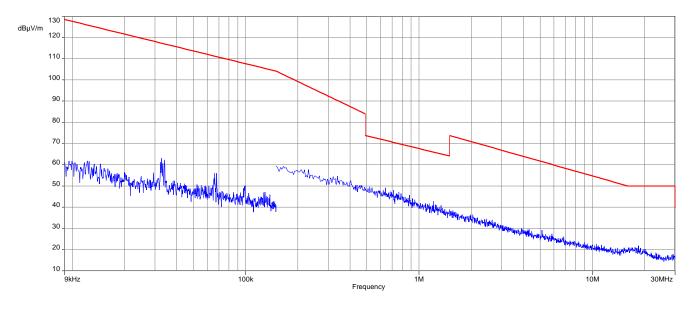


Plot 3: 9 kHz to 30 MHz, U-NII-2A; lowest channel

Plot 4: 9 kHz to 30 MHz, U-NII-2A; highest channel

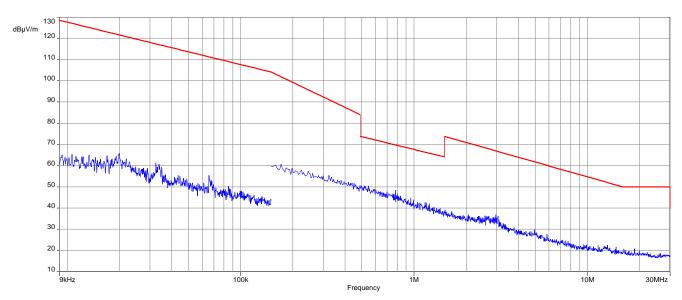


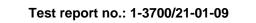




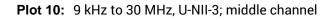
Plot 5: 9 kHz to 30 MHz, U-NII-2C; lowest channel

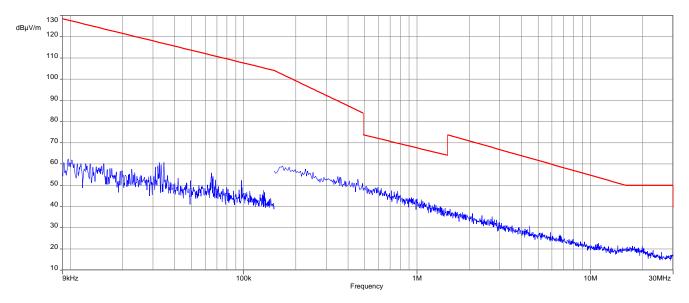

Plot 6: 9 kHz to 30 MHz, U-NII-2C; middle channel

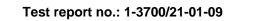




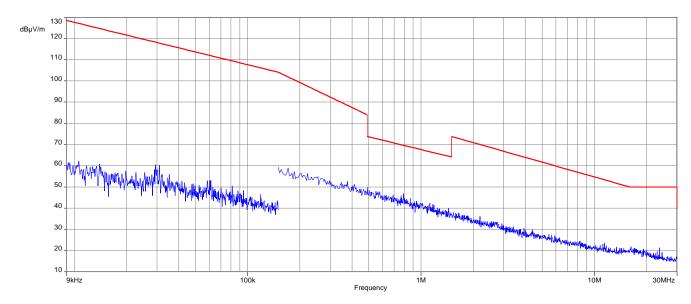
Plot 7: 9 kHz to 30 MHz, U-NII-2C; highest channel

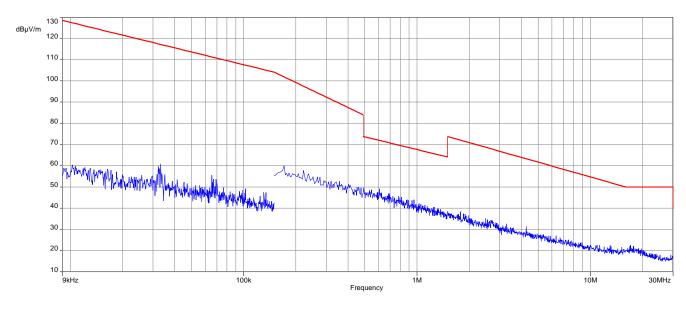




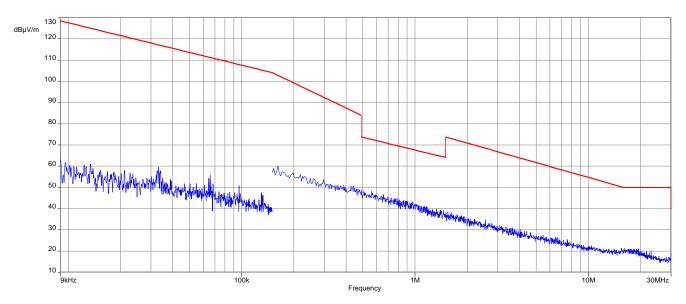


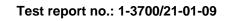
130 dBµV/m 120 110 100. 90 80 70. www.www.www.www.www.www.www.www.www. 60 m mm mul 50 40 Windowwww 30. 20 10. l 9kHz 100k 1M 10M 30MHz Frequency

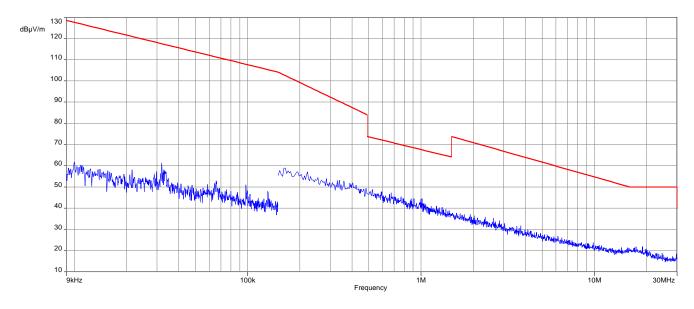

Plot 9: 9 kHz to 30 MHz, U-NII-3; lowest channel



Plot 11: 9 kHz to 30 MHz, U-NII-3; highest channel

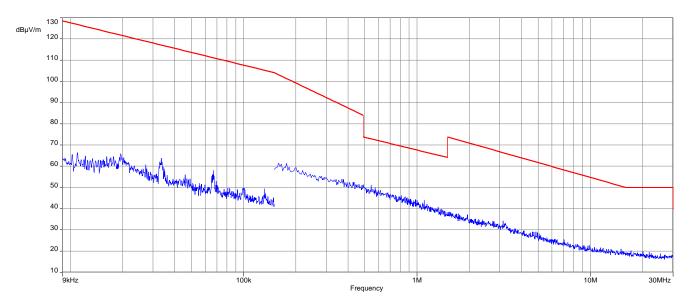


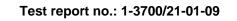

Plots: 40 MHz channel bandwidth

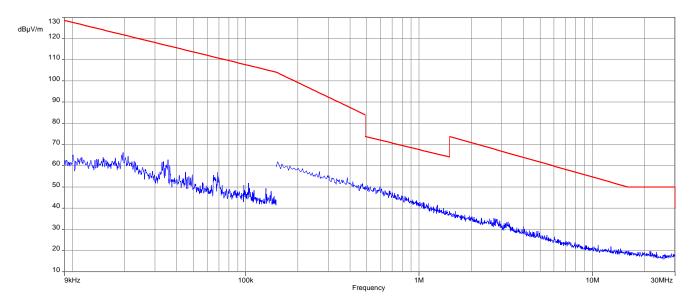


Plot 1: 9 kHz to 30 MHz, U-NII-1; lowest channel

Plot 2: 9 kHz to 30 MHz, U-NII-1; highest channel



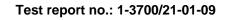


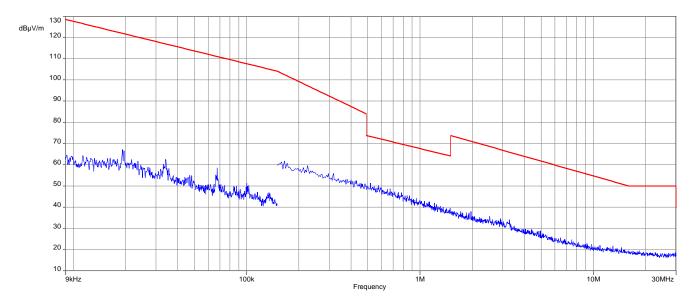


Plot 3: 9 kHz to 30 MHz, U-NII-2A; lowest channel

Plot 4: 9 kHz to 30 MHz, U-NII-2A; highest channel

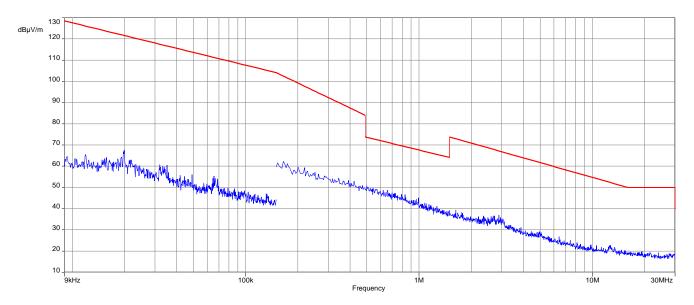


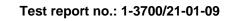


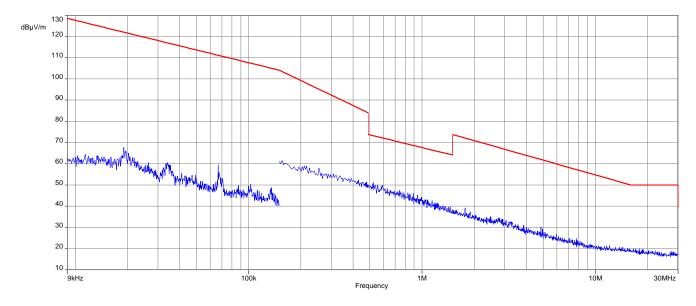


Plot 5: 9 kHz to 30 MHz, U-NII-2C; lowest channel

Plot 6: 9 kHz to 30 MHz, U-NII-2C; middle channel

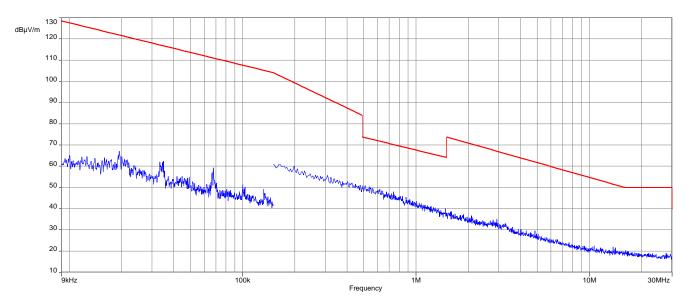


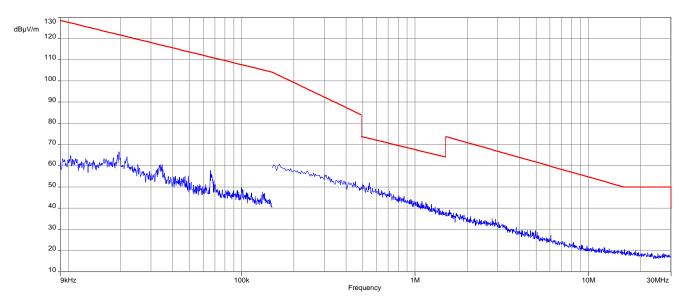




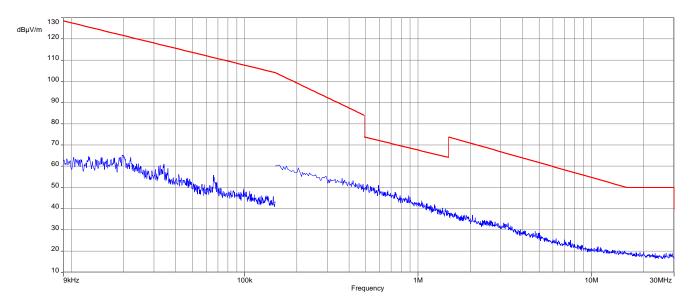
Plot 7: 9 kHz to 30 MHz, U-NII-2C; highest channel

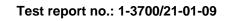
Plot 8: 9 kHz to 30 MHz, U-NII-2C/U-NII-3; Channel 142

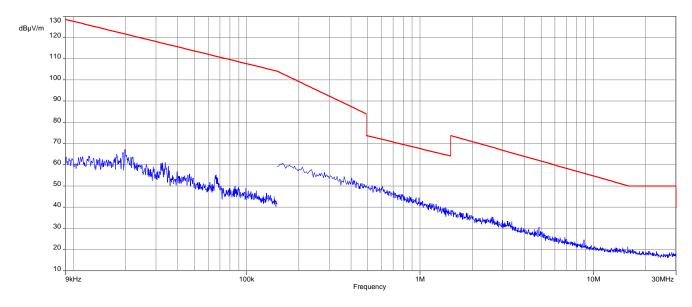



Plot 9: 9 kHz to 30 MHz, U-NII-3; lowest channel

Plot 10: 9 kHz to 30 MHz, U-NII-3; highest channel

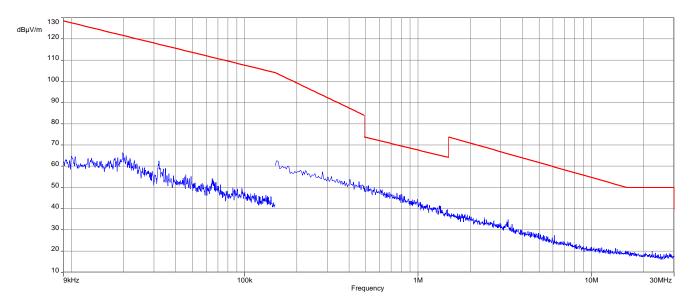


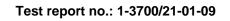

Plots: 80 MHz channel bandwidth

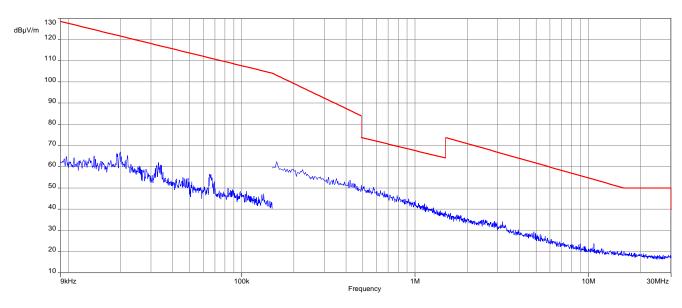


Plot 1: 9 kHz to 30 MHz, U-NII-1; middle channel

Plot 2: 9 kHz to 30 MHz, U-NII-2A; middle channel

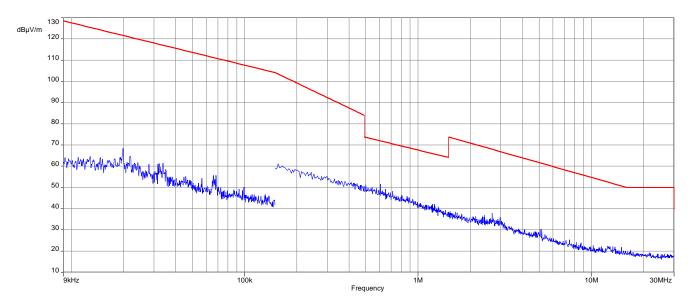






Plot 3: 9 kHz to 30 MHz, U-NII-2C; lowest channel

Plot 4: 9 kHz to 30 MHz, U-NII-2C; highest channel



Plot 5: 9 kHz to 30 MHz, U-NII-2C/U-NII-3; channel 138

Plot 6: 9 kHz to 30 MHz, U-NII-3; middle channel

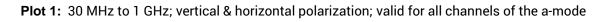
12.3 Spurious emissions radiated 30 MHz to 1 GHz

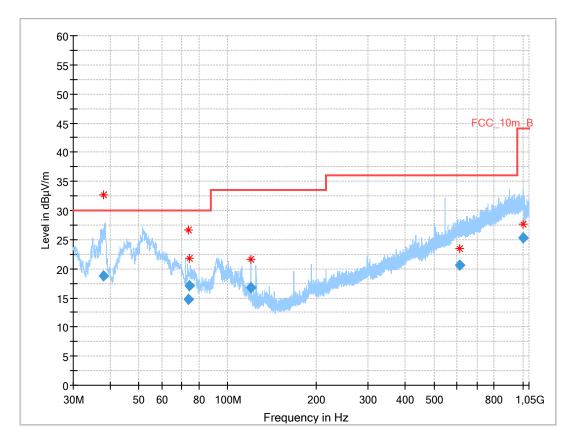
Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

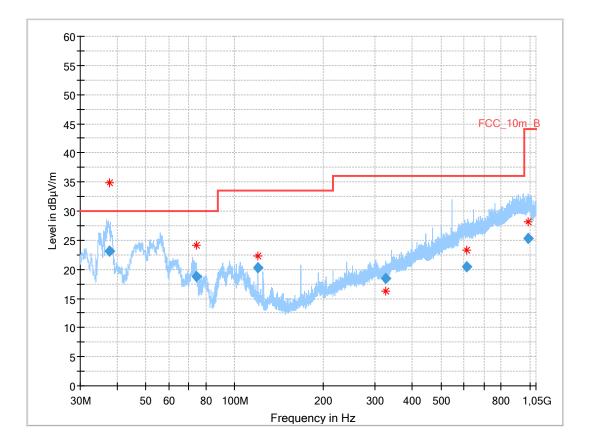
Measurement:

Measurement parameter	
Detector:	Quasi Peak
Sweep time:	Auto
Resolution bandwidth:	120 kHz
Video bandwidth:	500 kHz
Span:	30 MHz to 1 GHz
Test setup:	See sub clause 7.1 – A
Measurement uncertainty:	See chapter 9

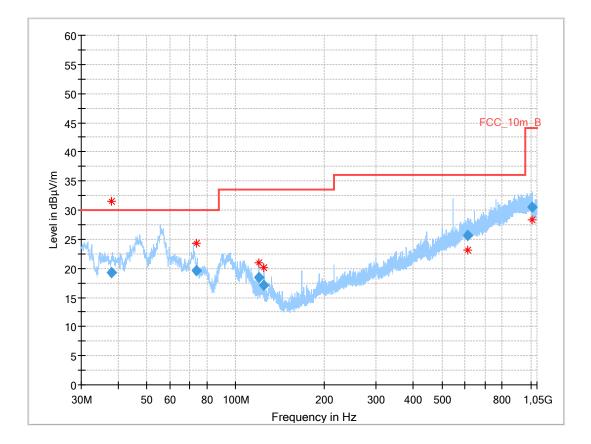

Limits:


	TX Spurious Emissions Radiated						
§15.209 / RSS-247							
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance					
30 - 88	30.0	10					
88 – 216	33.5	10					
216 - 960	36.0	10					
Above 960	54.0	3					
§15.407							
Outside the restricted bands!	Outside the restricted bands! -27 dBm / MHz						

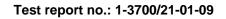
Test report no.: 1-3700/21-01-09

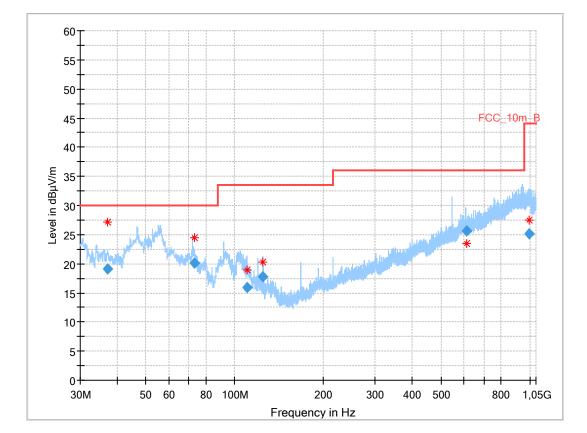

Plots:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.054	18.76	30.0	11.2	1000	120.0	142.0	v	71	14
73.637	14.82	30.0	15.2	1000	120.0	137.0	v	37	8
74.335	17.08	30.0	12.9	1000	120.0	195.0	V	16	8
119.991	16.76	33.5	16.7	1000	120.0	115.0	v	232	11
610.278	20.56	36.0	15.4	1000	120.0	143.0	v	-21	22
1000.306	25.34	44.0	18.7	1000	120.0	195.0	v	142	26



Plot 2: 30 MHz to 1 GHz; vertical & horizontal polarization; valid for all channels of the nHT20-mode and ac20mode


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
37.575	23.18	30.0	6.8	1000	120.0	137.0	v	26	14
74.026	18.83	30.0	11.2	1000	120.0	195.0	v	52	8
120.008	20.24	33.5	13.3	1000	120.0	134.0	v	52	11
324.913	18.42	36.0	17.6	1000	120.0	174.0	v	232	16
612.335	20.48	36.0	15.5	1000	120.0	195.0	н	232	22
989.357	25.34	44.0	18.7	1000	120.0	144.0	v	173	26



Plot 3: 30 MHz to 1 GHz; vertical & horizontal polarization; valid for all channels of the nHT40-mode and ac40mode

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
37.923	19.28	30.0	10.7	1000	120.0	124.0	v	151	14
73.531	19.62	30.0	10.4	1000	120.0	195.0	v	-23	8
120.018	18.44	33.5	15.1	1000	120.0	98.0	v	297	11
125.006	17.04	33.5	16.5	1000	120.0	115.0	v	232	10
613.077	25.59	36.0	10.4	1000	120.0	195.0	н	142	22
1007.436	30.46	44.0	13.5	1000	120.0	195.0	н	142	26

Plot 4: 30 MHz to 1 GHz; vertical & horizontal polarization; valid for all channels of the ac00-mode

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
37.263	19.10	30.0	10.9	1000	120.0	114.0	v	-16	14
73.047	20.11	30.0	9.9	1000	120.0	195.0	v	291	8
110.003	15.87	33.5	17.6	1000	120.0	137.0	v	52	13
125.015	17.80	33.5	15.7	1000	120.0	144.0	v	261	10
613.102	25.59	36.0	10.4	1000	120.0	195.0	н	249	22
993.520	25.22	44.0	18.8	1000	120.0	195.0	Н	52	26

12.4 Spurious emissions radiated 1 GHz to 40 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations from 1 GHz to 40 GHz.

Measurement:

Measurement parameter	
Detector:	Peak/RMS
Sweep time:	Auto
Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Span:	1 GHz to 40 GHz
Trace mode:	Max Hold / Average with 100 counts + 20 log (1 / X) for duty cycle lower than 100 %
Test setup:	See sub clause 7.2 – B See sub clause 7.3 – A
Measurement uncertainty:	See chapter 9

Limits:

TX Spurious Emissions Radiated							
§15.209 / RSS-247							
Frequency (MHz) Field Strength (dBµV/m) Measurement distance							
Above 960	54.0	3					
	§15.407						
Outside the restricted bands! -27 dBm / MHz							

Results: 20 MHz channel bandwidth

	TX Spurious Emissions Radiated [dBµV/m]							
	U-NII-1 (5150 MHz to 5250 MHz)							
L	owest chanr	nel	М	iddle chann	el	Hi	ghest chanr	nel
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
6907	Peak	60.8		Peak		10640	Peak	53.1
0907	AVG	57.5		AVG		10640 AVG 44.9		

	TX Spurious Emissions Radiated [dBµV/m]							
	U-NII-2A (5250 MHz to 5350 MHz)							
L	owest chanr	nel	М	iddle chann	el	Hi	ghest chanr	iel
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level [dBµV/m]			Detector	Level [dBµV/m]
7012	Peak	60.3		Peak		1	Peak	-/-
7013	AVG	58.3		AVG		-/-	AVG	-/-

	TX Spurious Emissions Radiated [dBµV/m]							
	U-NII-2C (5470 MHz to 5725 MHz)							
L	owest chanr	nel	М	iddle chann	iel	Hi	ghest chanr	nel
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
7333	Peak	54.5	7466	Peak	54.5	7600	Peak	55.7
1333	AVG	51.5	7400	AVG	52.2	7600	AVG	53.0
11000	Peak	59.6	11200	Peak	59.9	11400	Peak	58.1
11000	AVG	48.6	11200	AVG	47.9		AVG	46.3

TX Spurious Emissions Radiated [dBµV/m]							
	U-NII-2C/U-NII-3						
Channel 144							
F [MHz]	F [MHz] Detector Level [dBµV/m]						
7626	Peak	56.9					
7626	AVG	53.7					
11440	Peak	60.6					
11440	AVG	49.4					

	TX Spurious Emissions Radiated [dBµV/m]										
	U-NII-3 (5725 MHz to 5850 MHz)										
L	Lowest channel Middle channel Highest channel										
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]			
7660	Peak	53.7	7713	Peak	53.5	7766	Peak	54.8			
7000	AVG	51.7	1115	AVG	51.0	1100	AVG	52.6			
11487	Peak	61.4	11570	Peak	61.1	11650	Peak	59.8			
11407	AVG	49.5	11570	AVG	50.2	11050	AVG	47.6			

Results: 40 MHz channel bandwidth

	TX Spurious Emissions Radiated [dBµV/m]									
	U-NII-1 (5150 MHz to 5250 MHz)									
Lowest channel Middle channel Highest channel										
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
6007	Peak	61.1		Peak		6072	Peak	60.3		
6907 AVG 58.6 AVG 6973 AVG										

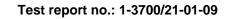
	TX Spurious Emissions Radiated [dBµV/m]									
	U-NII-2A (5250 MHz to 5350 MHz)									
L	Lowest channel Middle channel Highest channel									
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
7053	Peak	58.3		Peak		10620	Peak	52.5		
7053	AVG	56.8		AVG		10620	AVG	45.0		

	TX Spurious Emissions Radiated [dBµV/m]										
			U-NII-2C (54	70 MHz to	5725 MHz)						
Lowest channel Middle channel Highest channel											
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]			
7347	Peak	53.0	7452	Peak	55.3	7560	Peak	56.0			
1341	AVG	50.4	7453	AVG	53.3	7560	AVG	53.0			
11020	Peak	55.9	11100	Peak	58.0	11240	Peak	57.4			
11020	AVG	46.9	11180	AVG	48.2	11340	AVG	47.6			

ТХ	Spurious Emissions Radiated [dBµV/	/m]							
	U-NII-2C/U-NII-3								
Channel 142									
F [MHz]	Detector	Level [dBµV/m]							
7610	Peak	55.2							
7613	AVG	53.4							
11420	Peak	59.6							
11420	AVG	49.2							

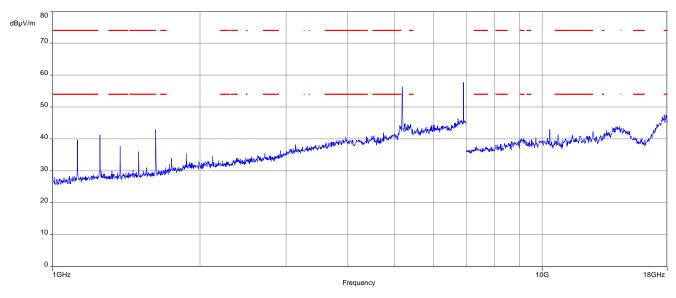
	TX Spurious Emissions Radiated [dBµV/m]									
	U-NII-3 (5725 MHz to 5850 MHz)									
L	Lowest channel Middle channel Highest channel									
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
7673	Peak	55.4		Peak		7727	Peak	54.8		
1013	AVG	53.6		AVG		1121	AVG	52.9		
11510	Peak	57.5		Peak		11500	Peak	57.1		
11510	AVG	46.2		AVG		11590	AVG	46.8		

Results: 80 MHz channel bandwidth


ТХ	Spurious Emissions Radiated [dBµV/	/m]							
	U-NII-1 (5150 MHz to 5250 MHz)								
Middle channel									
F [MHz]	Level [dBµV/m]								
	Peak	-/-							
-/-	AVG	-/-							
	Peak	-/-							
-/-	AVG	-/-							

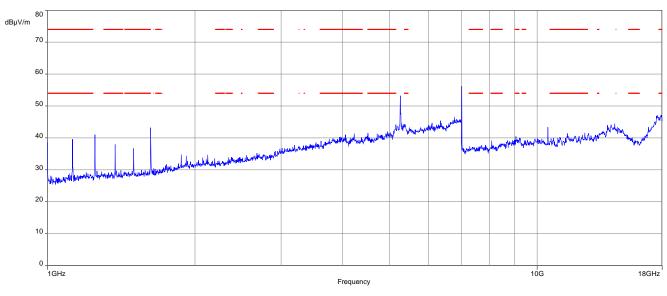
TX	TX Spurious Emissions Radiated [dBµV/m]							
U-NII-2A (5250 MHz to 5350 MHz)								
Middle channel								
F [MHz]	Detector	Level [dBµV/m]						
10600	Peak	52.0						
10600 AVG 42.4								

	TX Spurious Emissions Radiated [dBµV/m]									
	U-NII-2C (5470 MHz to 5725 MHz)									
Lowest channel Highest channel										
7373	Peak 54.3		7480	Peak	57.7					
1313	AVG	52.1	7400	AVG	52.9					
11060	Peak	52.2	11000	Peak	56.1					
11060	AVG	45.5	11220	AVG	46.5					


T	X Spurious Emissions Radiated [dBµV	/m]							
U-NII-2C / U-NII-3									
Channel 138									
F [MHz]	Detector	Level [dBµV/m]							
7586	Peak	59.2							
7580	AVG	53.9							
11400	Peak	54.1							
11400	AVG	41.0							

TX	Spurious Emissions Radiated [dBµV/	/m]						
	U-NII-3 (5725 MHz to 5850 MHz)							
Middle channel								
F [MHz] Detector Level [dBµV/m]								
7670	Peak	55.4						
7678	AVG	53.5						
11460	Peak	51.7						
11469	AVG	39.5						

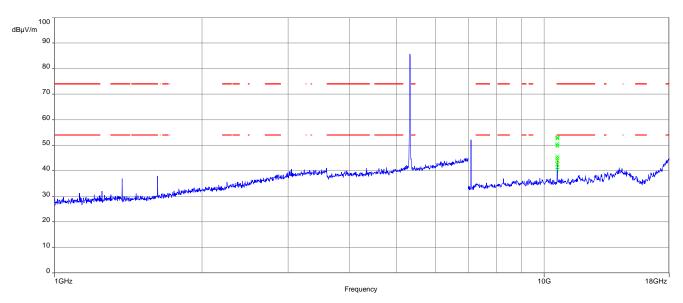
Plots: 20 MHz channel bandwidth

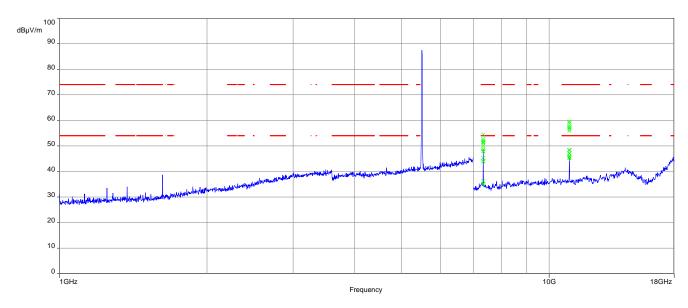


The carrier signal is notched with a band rejection filter.

80 dBµV/m 70 60 50 40 white market with WMN 30 20 10 0 10G 1GHz 18GHz Frequency

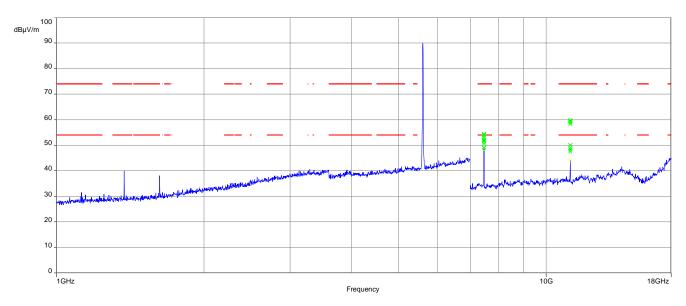
Plot 2: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel

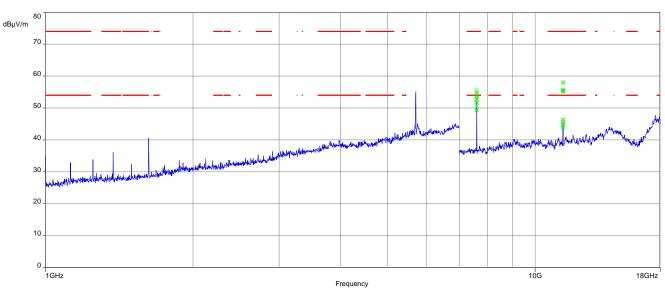

The carrier signal is notched with a band rejection filter.



Plot 3: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel

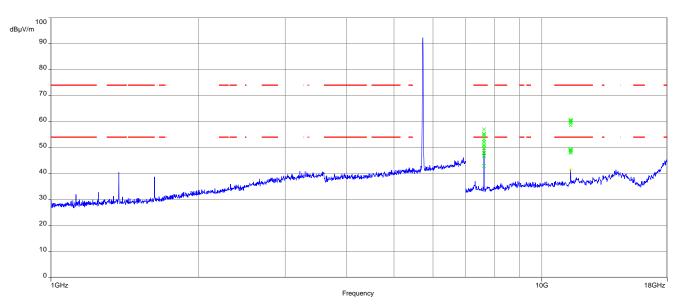
The carrier signal is notched with a band rejection filter.

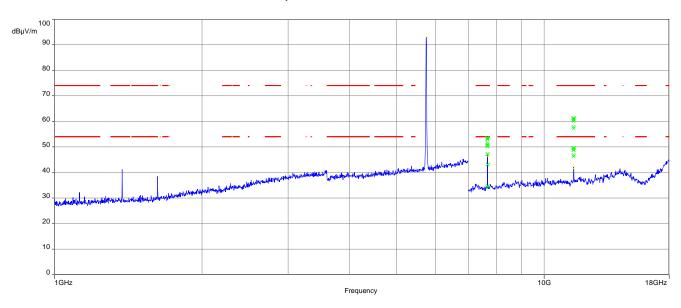

Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; highest channel



Plot 5: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel

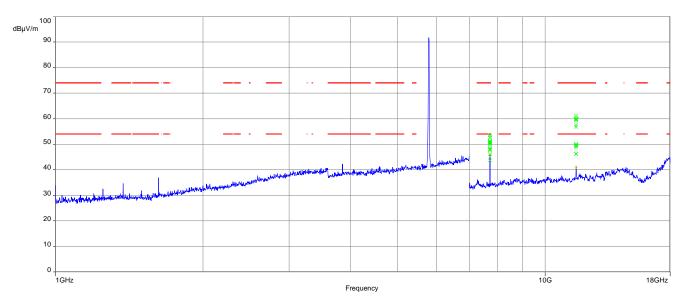
Plot 6: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; middle channel

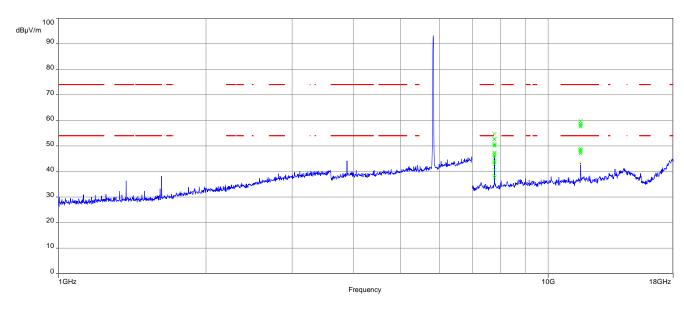




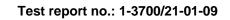
Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel

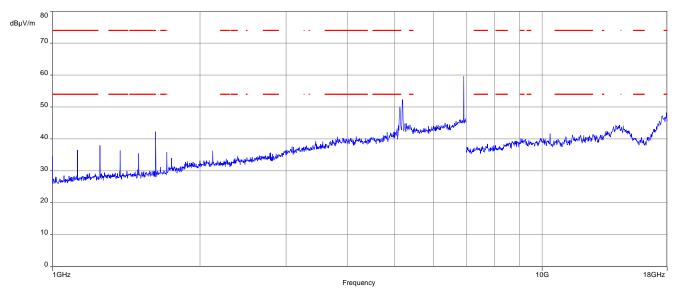
The carrier signal is notched with a band rejection filter.


Plot 8: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C/U-NII-3; Channel 144

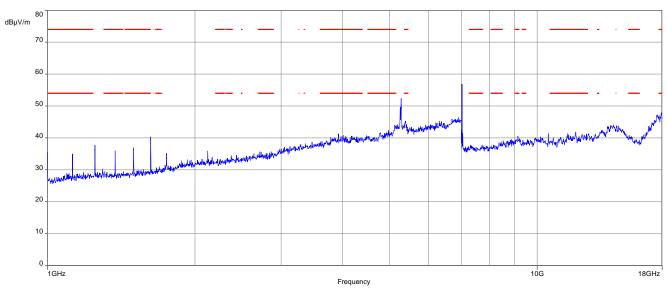


Plot 9: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel



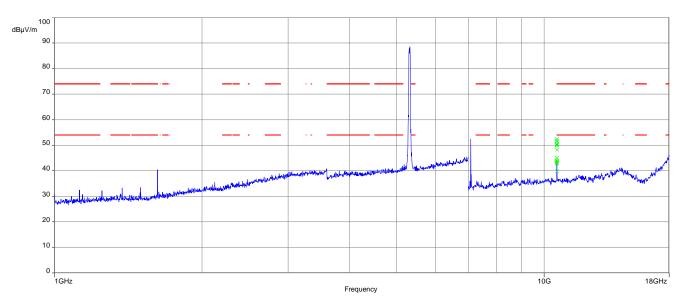

Plot 11: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; highest channel

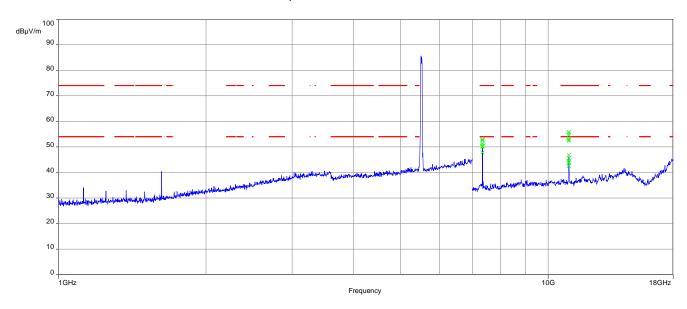
Plots: 40 MHz channel bandwidth



The carrier signal is notched with a band rejection filter.

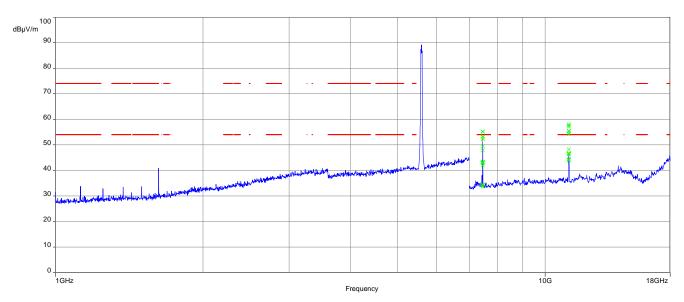
Plot 2: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-1; highest channel

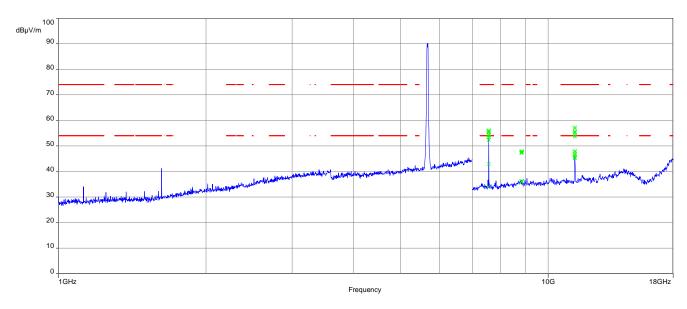

The carrier signal is notched with a band rejection filter.



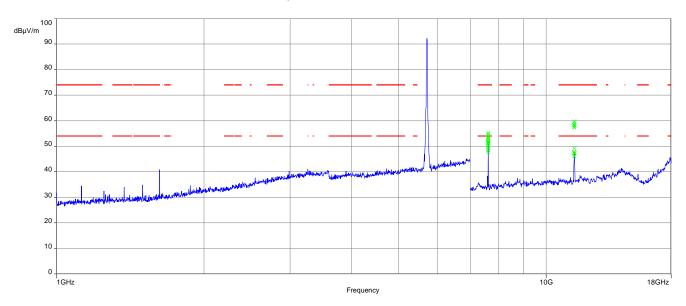
Plot 3: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; lowest channel

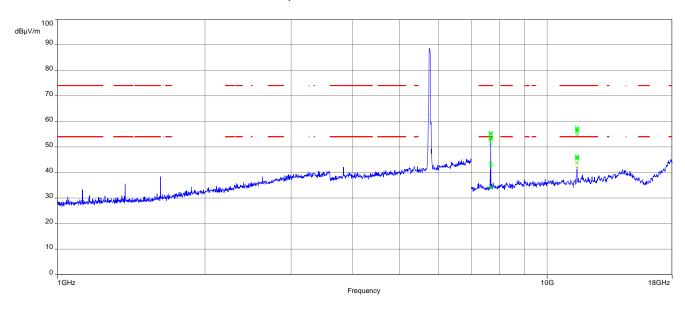
The carrier signal is notched with a band rejection filter.


Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; highest channel

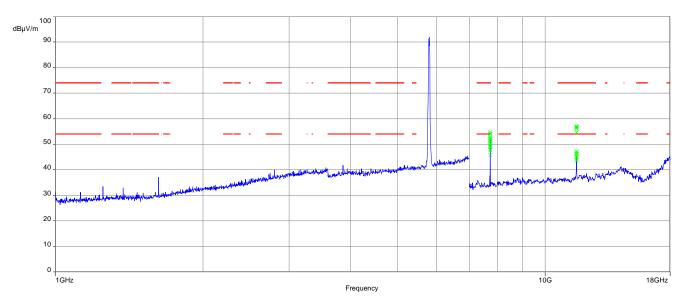


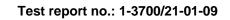
Plot 5: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel


Plot 6: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; middle channel

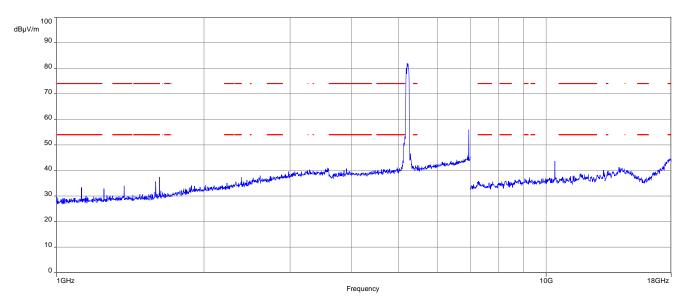


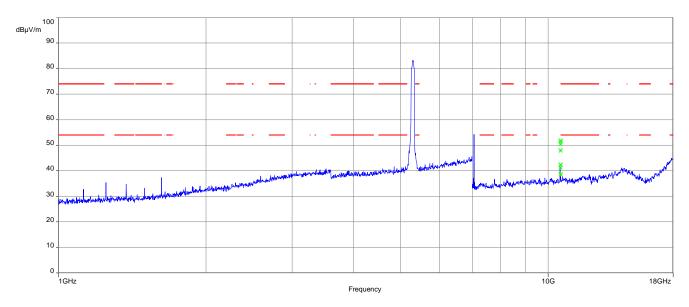
Plot 7: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel

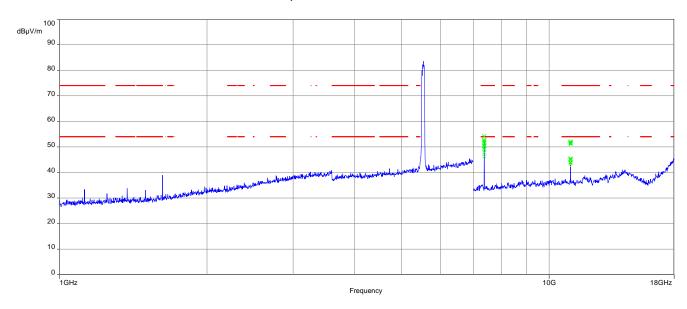

Plot 8: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C/U-NII-3; Channel 142

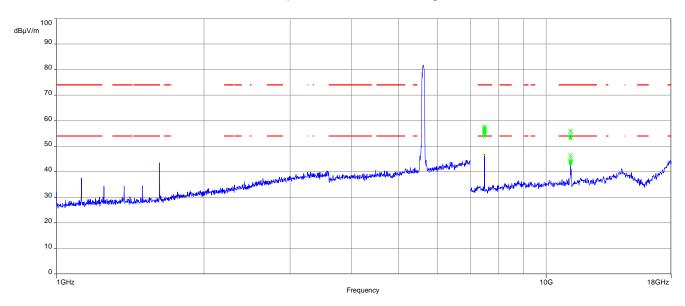


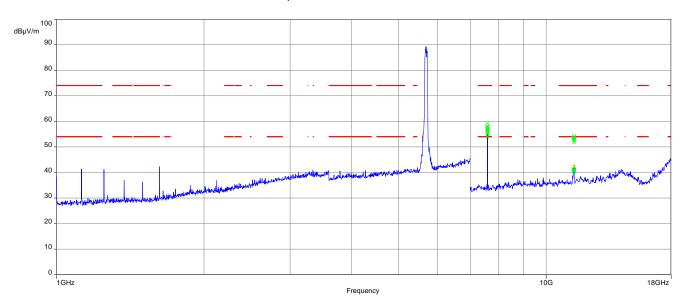
Plot 9: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; lowest channel



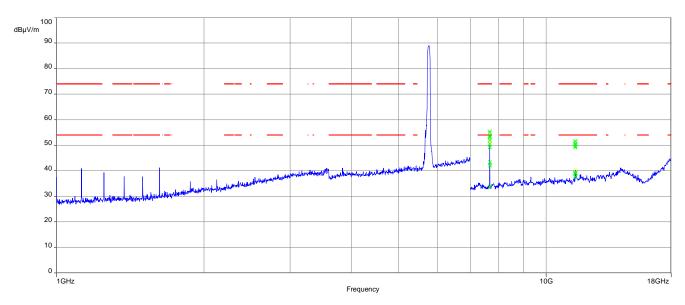



Plots: 80 MHz channel bandwidth


Plot 2: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2A; middle channel

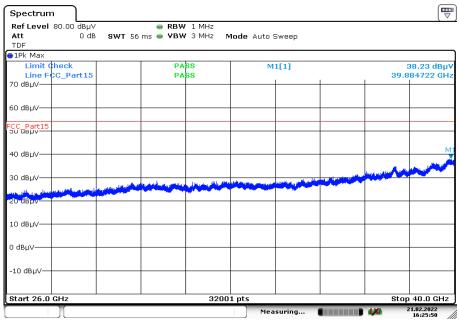


Plot 3: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; lowest channel


Plot 4: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C; highest channel

Plot 5: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-2C/U-NII-3; Channel 138

Plot 6: 1 GHz to 18 GHz; vertical & horizontal polarization; U-NII-3; middle channel


Plots: 18 GHz to 40 GHz, valid for all modes

•	ım														
Ref Lev	el 8				-2.20 d				-						
Att			0 dB	SWT	32.1 m	s 😑	VBW	3 MHz	Mode /	Auto Sw	еер				
)1Pk Max					_										
									M:	2[1]					0.67 dBµ\
'O dBµV-															39671 GH
o abpv									M	1[1]					1.38 dBµ\
io dBµV-														25.1	57151 GH
													M2	M	
50 dBµV-	0:	L 54.0	UU aBL	JV	1	43							T	- T	
JO UDDV					L 11	ΤL						يت ال			
J depa		and the state		فعاجمهم والأ					the states of the latest						
o uopv															
30 dBµV-															
о ивру-															
20 dBµV-															
.о ubµv-															
.0 dBµV-															
.о ивру-															
a din a d															
) dBµV—															
10 dBµV															
Start 18	.0 GI	Ηz					З	2001 pt	s				-	Stop	26.0 GHz
larker															
Type I	ef	Trc		X-valu	e	1	Y-val	ue	Func	tion		Fun	ction R	esult	
M1		1		25.157	151 GHz		51.38	3 dBµV							
M2		1		24.539	671 GHz		50.67	7 dBµV							
MЗ		1		20.960	D32 GHz		47.71	7 dBµV							

Date: 21 FEB 2022 15:26:04

Plot 2: 26 GHz to 40 GHz; vertical & horizontal polarization

Date: 21.FEB.2022 16:25:50

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
ETSI	European Standard
FCC	Federal Communications Commission
FCC ID	
	Company Identifier at FCC
	Industry Canada
PMN	Product marketing name
HMN	Host marketing name Hardware version identification number
HVIN	Firmware version identification number
FVIN	
EMC	Electromagnetic Compatibility Hardware
HW	Software
SW	
Inv. No.	Inventory number Serial number
S/N or SN	
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
00B	Out of band
DFS	Dynamic frequency selection Channel availability check
CAC	
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-05-03

15 Accreditation Certificate – D-PL-12076-01-04

first page	last page
<image/> <image/> <image/> <section-header><image/><image/><section-header><section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></section-header></section-header>	<text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>
The marks sameling.	

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf

16 Accreditation Certificate – D-PL-12076-01-05

first page	last page
<image/> <image/> <image/> <image/> <image/> <section-header><section-header><section-header><section-header><text><text><text><text><text></text></text></text></text></text></section-header></section-header></section-header></section-header>	Office Berlin Spittelmant 10 10117 Berlin Office Frankfurt am Main Europa-Alles 52 60327 frankfurt am Main Office Braunschweig Bundesalles 100 38136 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GroHH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overlest. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attesid by DAkS.
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-0.1 it comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 The certificate together with its annex reflects the status of the time of the date of issue. The current status of the scope of accreditation case by load in the database of according balance adds. The correlation case by load in the database of according balance adds. The current status of the scope of accreditation case by load in the database of according balance adds. The current status of the scope of accreditation case by load in the database of according balance adds. More than the scope of accreditation case by load in the database of according balance adds. More than the scope of accreditation case by load in the database of according balance adds. More than the scope of accreditation case by load in the database of according balance adds. More than the scope of accreditation case by load in the database of according balance adds. More than the scope of accorditation case by load in the database of according balance adds. More than the scope of accorditation to the scope of accorditation control for control for control for adds.	The accreditation was granted pursuent to the Act on the Accreditation Body (AkkistelleG) of 31.102 2009 (Federal Law Gazetta 1, a 2523) and the Regulation (EQ No 755/2008 of the furgopen Parliament and of the Council of 9.104 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the Europen United 1, 223 of 9.104, 2008, p. 30). DAMAS is a signatory to the Multilateral Agreements for Mutual Receptition of the European co-operation for Accreditation (EQ.1) International Accreditation for Tomic (Adv and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.iac.org LAC: www.iac.org

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf