

REGULATORY COMPLIANCE TEST REPORT

FCC Part 15 Subpart C 15.247 (DTS) ISED RSS-247 Issue 2

Report No.: DIGI107-U4 Rev A

Company: Digi International

Model Name: SIGMA PUMPS GEN V

REGULATORY COMPLIANCE TEST REPORT

Company Name: Digi International

Model Name: SIGMA PUMPS GEN V

To: FCC Part 15 Subpart C 15.247 (DTS) & ISED RSS-247 Issue 2

Test Report Serial No.: DIGI107-U4 Rev A

This report supersedes: NONE

Applicant: Digi International 9350 Excelsior Blvd Hopkins, Minnesota 55343 USA

Issue Date: 1st November 2023

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	4
1.1. TESTING ACCREDITATION	4
1.2. RECOGNITION	
1.3. PRODUCT CERTIFICATION	
2. DOCUMENT HISTORY	7
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	
4.1. Normative References	
4.2. Test and Uncertainty Procedure1	0
5. PRODUCT DETAILS AND TEST CONFIGURATIONS1	
5.1. Technical Details1	
5.2. Scope Of Test Program1	2
5.3. Equipment Model(s) and Serial Number(s)1	
5.4. Antenna Details	
5.5. Cabling and I/O Ports	
5.6. Test Configurations	
5.7. Equipment Modifications	4
5.8. Deviations from the Test Standard	
6. TEST SUMMARY	
7. TEST EQUIPMENT CONFIGURATION(S)	
7.1. Conducted RF	
7.2. Radiated Emissions	
8. MEASUREMENT AND PRESENTATION OF TEST DATA	
9. 1 E ST RESULTS	
9.1.0 UD & 99% Dalluwidul	1
9.2. Conducted Output Power	6
9.2. Conducted Output Power	26 2
9.2. Conducted Output Power 2 9.3. Power Spectral Density 3 9.4. Emissions 3	6 2 7
9.2. Conducted Output Power 2 9.3. Power Spectral Density 3 9.4. Emissions 3 9.4.1. Conducted Emissions 3	26 26 27 27
9.2. Conducted Output Power 2 9.3. Power Spectral Density 3 9.4. Emissions 3 9.4.1. Conducted Emissions 3 9.4.1.1. Conducted Spurious Emissions 3	26 27 37 37
9.2. Conducted Output Power 2 9.3. Power Spectral Density 3 9.4. Emissions 3 9.4.1. Conducted Emissions 3 9.4.1.1. Conducted Spurious Emissions 3 9.4.1.2. Conducted Band-Edge Emissions 4	26 27 37 87 82
9.2. Conducted Output Power 2 9.3. Power Spectral Density 3 9.4. Emissions 3 9.4.1. Conducted Emissions 3 9.4.1.1. Conducted Spurious Emissions 3 9.4.1.2. Conducted Band-Edge Emissions 4 9.4.2. Radiated Emissions 5	26 27 37 37 38 20
9.2. Conducted Output Power 2 9.3. Power Spectral Density 3 9.4. Emissions 3 9.4.1. Conducted Emissions 3 9.4.1.1. Conducted Spurious Emissions 3 9.4.1.2. Conducted Band-Edge Emissions 4 9.4.2. Radiated Emissions 5 9.4.2.1. TX Spurious & Restricted Band Emissions 5	6 2 7 7 8 7 8 2 7 8 2 0 0
9.2. Conducted Output Power 2 9.3. Power Spectral Density 3 9.4. Emissions 3 9.4.1. Conducted Emissions 3 9.4.1.1. Conducted Spurious Emissions 3 9.4.1.2. Conducted Band-Edge Emissions 3 9.4.2.1. TX Spurious & Restricted Band Emissions 5 9.4.2.2. Restricted Edge & Band-Edge Emissions 5	26 27 77 82 20 00 55
9.2. Conducted Output Power. 24 9.3. Power Spectral Density. 33 9.4. Emissions 33 9.4.1. Conducted Emissions 33 9.4.1.1. Conducted Spurious Emissions 34 9.4.1.2. Conducted Band-Edge Emissions 34 9.4.2. Radiated Emissions 54 9.4.2.1. TX Spurious & Restricted Band Emissions 56 9.4.2.2. Restricted Edge & Band-Edge Emissions 56 9.4.2.3. Restricted Edge & Band-Edge Emissions 56 9.4.2.4. GRAPHICAL IMAGES 66	26 27 37 82 20 05 3
9.2. Conducted Output Power. 24 9.3. Power Spectral Density. 33 9.4. Emissions. 33 9.4.1. Conducted Emissions. 33 9.4.1.1. Conducted Spurious Emissions. 33 9.4.1.2. Conducted Band-Edge Emissions. 34 9.4.2. Radiated Emissions. 55 9.4.2.1. TX Spurious & Restricted Band Emissions 56 9.4.2.2. Restricted Edge & Band-Edge Emissions 56 9.4.2.3. Restricted Edge & Band-Edge Emissions 56 9.4.2.6. Restricted Edge & Band-Edge Emissions 56 9.4.2.7. Restricted Edge & Band-Edge Emissions 56 9.4.2.6. Restricted Edge & Band-Edge Emissions 56 9.4.2.7. Restricted Edge & Band-Edge Emissions 56 9.4.2.8. GRAPHICAL IMAGES 56 A.1.6 dB & 99% Bandwidth 66	16 2 7 7 8 2 0 0 5 3 4
9.2. Conducted Output Power. 2 9.3. Power Spectral Density 3 9.4. Emissions 3 9.4.1. Conducted Emissions 3 9.4.1.1. Conducted Spurious Emissions 3 9.4.1.2. Conducted Band-Edge Emissions 3 9.4.2. Radiated Emissions 5 9.4.2.1. TX Spurious & Restricted Band Emissions 5 9.4.2.2. Restricted Edge & Band-Edge Emissions 5 9.4.2.3. Restricted Edge & Band-Edge Emissions 5 9.4.2.4. TX Spurious & Restricted Band Emissions 5 9.4.2.5. Restricted Edge & Band-Edge Emissions 5 9.4.2.6. Restricted Edge & Band-Edge Emissions 5 9.4.2.7. Restricted Edge & Band-Edge Emissions 5 9.4.2.8. Power Spectral Density 7	6 2 7 7 8 2 0 0 5 3 4 6
9.2. Conducted Output Power.29.3. Power Spectral Density39.4. Emissions39.4.1. Conducted Emissions39.4.1.1. Conducted Spurious Emissions39.4.1.2. Conducted Band-Edge Emissions39.4.2. Radiated Emissions49.4.2.1. TX Spurious & Restricted Band Emissions59.4.2.2. Restricted Edge & Band-Edge Emissions59.4.2.3. Emissions59.4.2.4. Spower Spectral Density7A.3. Emissions10	6 2 7 7 8 2 0 0 5 3 4 6 0
9.2. Conducted Output Power. 2 9.3. Power Spectral Density 3 9.4. Emissions 3 9.4.1. Conducted Emissions 3 9.4.1.1. Conducted Spurious Emissions 3 9.4.1.2. Conducted Band-Edge Emissions 3 9.4.2. Radiated Emissions 5 9.4.2.1. TX Spurious & Restricted Band Emissions 5 9.4.2.2. Restricted Edge & Band-Edge Emissions 5 9.4.2.3. Restricted Edge & Band-Edge Emissions 5 9.4.2.4. TX Spurious & Restricted Band Emissions 5 9.4.2.5. Restricted Edge & Band-Edge Emissions 5 9.4.2.6. Restricted Edge & Band-Edge Emissions 5 9.4.2.7. Restricted Edge & Band-Edge Emissions 5 9.4.2.8. Power Spectral Density 7	627782005 3 4600

 Title:
 Digi International SIGMA PUMPS GEN V

 To:
 FCC Part 15 Subpart C 15.247 (DTS), ISED RSS-247 Issue 2

 Serial #:
 DIGI107-U4 Rev A

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2017. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

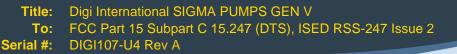
Accredited Laboratory

A2LA has accredited

MICOM LABS Pleasanton, CA

for technical competence in the field of

Electrical Testing


This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 14th day of January 2022.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 2381.01 Valid to February 29, 2024 Revised October 26, 2023

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

1.2. RECOGNITION

MiC@MLabs.

MiCOM Labs, Inc is widely recognized for its wireless testing and certification capabilities. In addition to being recognized for Testing and Certification under Phase 2 Mutual Recognition Agreements (MRA) with Canada, Europe, United Kingdom and Japan, our international recognition includes Conformity Assessment Body (CAB) designation status under agreements with Asia Pacific (APEC) MRA Phase 1 countries giving acceptance of MiCOM Labs test reports. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	MRA Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Test Firm Designation#: US1084
Canada	Industry Canada (ISED)	FCB	APEC MRA 2	US0159 ISED#: 4143A
Japan	Japan MIC (Ministry of Internal Affairs and Communication) Japan Approvals Institute for Telecommunication Equipment (JATE)		Japan MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA 2	NB 2280
United Kingdom	Department for Business, Energy & Industrial Strategy (BEIS)	AB	UK MRA 2	AB 2280
Mexico	Instituto Federal de Telecomunicaciones (IFT)	CAB	Mexico MRA 1	US0159
Australia	Australian Communications and Media Authority (ACMA)			
Hong Kong	Office of the Telecommunication Authority (OFTA)			
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)		APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)			
Vietnam	Ministry of Communication (MIC)			

TCB - Telecommunications Certification Bodies (TCB)

FCB – Foreign Certification Body

CAB - Conformity Assessment Body

NB – Notified Body

AB – Approved Body

MRA – Mutual Recognition Agreement

MRA PhasePhase I - recognition for product testing

Phase II - recognition for both product testing and certification

1.3. PRODUCT CERTIFICATION

MiC[®]MLabs.

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 14th day of January 2022

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 2381.02 Valid to February 29, 2024 Revised October 26, 2023

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 UK – Approved Body (AB), AB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

2. DOCUMENT HISTORY

Document History						
Revision	Date	Comments				
Draft	13 th March 2023	Initial Draft for Client Review				
Rev A	1st November 2023	Initial release.				

In the above table the latest report revision will replace all earlier versions.

3. TEST RESULT CERTIFICATE

Manufacturer:	Digi International
	9350 Excelsior Blvd
	Hopkins Minnesota 55343
	USA

Model: SIGMA PUMPS GEN V

Type Of Equipment: 802.11 b/g/n/a/ac Client

S/N's: 001

Test Date(s): 28th February – 7th March 2023

Tested By: MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA

Telephone: +1 925 462 0304

Fax: +1 925 462 0306

Website: www.micomlabs.com

STANDARD(S)

FCC CFR 47 Part 15 Subpart C 15.247 (DTS) ISED RSS-247 Issue 2

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

Gordon Hurst President & CEO MiCOM Labs, Inc.

TEST RESULTS

EQUIPMENT COMPLIES

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

MiC@MLabs_

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911 D01, D02, D03	D01 Oct 2013, D02 Oct 2011, D03 Oct 2020	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band. 662911 D01 Multiple Transmitter Output v02r01, 662911 D02 MIMO with Cross Polarized Antenna v01, 662911 D03 MIMO Antenna Gain Measurement v01, OET 13TR1003 Directional Gain of 802 11 MIMO with CDD 04 05 2013
11	KDB 558074 D01 v05r02	Apr 2019	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices operating under section 15.247 of the FCC Rules.
ш	A2LA	22nd June 2022	R105 - Requirement's When Making Reference to A2LA Accreditation Status
IV	ANSI C63.10	2020	American National Standard for Testing Unlicensed Wireless Devices
V	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VI	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VII	FCC 47 CFR Part 15.247	Apr 2020	Radio Frequency Devices; Subpart C – Intentional Radiators
VIII	ICES-003	Issue 7; Oct 2020	Information Technology Equipment (Including Digital Apparatus)
IX	M 3003	Edition 5 Sept 202	Expression of Uncertainty and Confidence in Measurements
x	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
хі	RSS-Gen Issue 5	Amendment 1,2 (Feb 2021)	General Requirements for Compliance of Radio Apparatus. With Amendments 1: March 2019 and 2: Feb 2021.
XII	FCC 47 CFR Part 2.1033	May 2021	FCC requirements and rules regarding photographs and test setup diagrams.
XIII	KDB 789033 D02 V02r01	Dec 2017	Guidelines For Compliance Testing Of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Digi International SIGMA PUMPS GEN V to FCC CFR
	47 Part 15 Subpart C 15.247 (DTS) and ISED RSS-247 Issue 2.
Applicant:	Digi International
	9350 Excelsior Blvd
	Hopkins Minnesota 55343 USA
	Digi International
Laboratory performing the tests:	
	575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	
Date EUT received:	
Standard(s) applied:	FCC CFR 47 Part 15 Subpart C 15.247 (DTS)
	ISED RSS-247 Issue 2
Dates of test (from - to):	
No of Units Tested:	
Product Family Name:	Connect Wi-EM 9210 a/b/g/n
Model Number:	50002100-01
Location for use:	Indoors
Declared Frequency Range(s):	2400 - 2483.5 MHz
Type of Modulation:	CCK; OFDM
EUT Modes of Operation:	2400 - 2483.5 MHz:
	b; g; HT-20; HT-40;
Declared Nominal Output Power:	
Transmit/Receive Operation:	Transceiver
Rated Input Voltage and Current:	
Operating Temperature Range:	0°C to +40°C
ITU Emission Designator:	802.11b:13M7G1D
	802.11g: 16M9D1D
	802.11 HT-20: 17M9D1D
	802.11 HT-40: 37M0D1D
	5.13L x 2.07W x 0.655H inches
Weight:	0.1 lbs

5.2. Scope Of Test Program

MiC@MLabs.

Digi International SIGMA PUMPS GEN V

The scope of the test program was to test the Digi International 50002100-01, SIGMA PUMPS GEN V configurations in the frequency ranges 2400 - 2483.5 MHz; for compliance against the following specification:

FCC CFR 47 Part 15 Subpart C 15.247 (DTS)

Radio Frequency Devices; Subpart C – Intentional Radiators

ISED RSS-247 Issue 2

Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and License-Exempt Local Area Network (LE-LEN) Devices

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description	Manufacturer	Model No.	Serial No.
EUT	SIGMA PUMPS GEN V	Digi International	50002100-01	001
Support	Development Board	Digi International		
Support	Laptop	Lenovo	ThinkPad	

5.4. Antenna Details

Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
Digi	ANT1	PCB	2.0	-	360	-	2400 - 2483.5
BF Gain - Beamforming Gain							
Dir BW - Directional BeamWidth							
ss Polarization							
	Digi Beamforming G irectional Beam	Digi ANT1 Beamforming Gain irectional BeamWidth	Digi ANT1 PCB Beamforming Gain irectional BeamWidth	ManufacturerModelFamily(dBi)DigiANT1PCB2.0Beamforming Gain irectional BeamWidth	ManufacturerModelFamily(dBi)BF GainDigiANT1PCB2.0-Beamforming Gain irectional BeamWidth	ManufacturerModelFamily(dBi)BF GainDir BWDigiANT1PCB2.0-360Beamforming Gain irectional BeamWidth	ManufacturerModelFamily(dBi)BF GainDir BWX-PolDigiANT1PCB2.0-360-Beamforming Gain irectional BeamWidth

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# of Ports	Screened	Conn Type	Data Type	Bit Rate
Power + Digital I/O	<3m	1	No	Custom	Data	Variable

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s)	Data Rate with Highest Power	Channel Frequency (MHz)				
(802.11a/b/g/n/ac)	MBit/s	Low	Mid	High		
		2400 - 2483.5 MHz				
b	1	2,412.00	2,437.00	2,462.00		
g	6	2,412.00	2,437.00	2,462.00		
HT-20	6.5	2,412.00	2,437.00	2,462.00		
HT-40	13.5	2,422.00	2,437.00	2,452.00		

5.7. Equipment Modifications

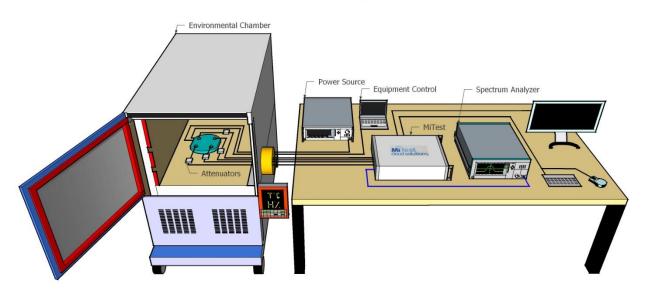
MiC@MLabs.

The following modifications were required to bring the equipment into compliance: 1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

6. TEST SUMMARY

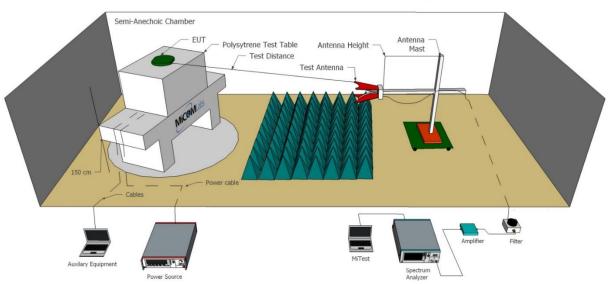

List of Measurements		
Test Header	Result	Data Link
6 dB & 99% Bandwidth	Complies	View Data
Conducted Output Power	Complies	View Data
Power Spectral Density	Complies	View Data
Emissions	Complies	-
(1) Conducted Emissions	Complies	-
(i) Conducted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
(2) Radiated Emissions	Complies	-
(i) TX Spurious & Restricted Band Emissions	Complies	View Data
(ii) Restricted Edge & Band-Edge Emissions	Complies	View Data

7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Conducted RF

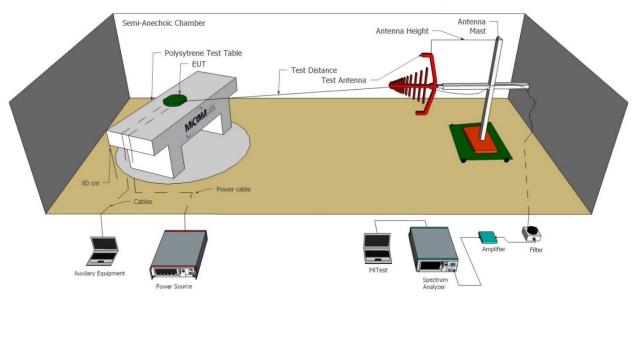
MiTest Automated Test System

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.


	Description		B4 - 1-14	0	Calibration
Asset#	Description	Manufacturer	Model#	Serial#	Due Date
127	Power Supply	HP	6674A	US36370530	Cal when used
248	Resistance Thermometer	Thermotronics	GR2105-02	9340 #1	30 Oct 2023
398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.2.3.0	Not Required
420	USB to GPIB Interface	National Instruments	GPIB-USB HS	1346738	Not Required
440	USB Wideband Power Sensor	Boonton	55006	9178	8 Oct 2023
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	27 Sep 2023
510	Barometer/Thermometer	Control Company	68000-49	170871375	20 Dec 2023
515	MiTest Cloud Solutions RF Test Box	MiCOM	2nd Gen with DFS	515	7 Apr 2023
517	USB Wideband Power Sensor	Boonton	RTP5006	10510	8 Oct 2023
74	Environmental Chamber Chamber 3	Tenney	TTC	12808-1	Not Required
RF#2 GPIB#1	GPIB cable to Power Supply	HP	GPIB	None	Not Required
RF#2 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	7 Apr 2023
RF#2 SMA#2	EUT to Mitest box port 2	Flexco	SMA Cable port2	None	7 Apr 2023
RF#2 SMA#3	EUT to Mitest box port 3	Flexco	SMA Cable port3	None	7 Apr 2023
RF#2 SMA#4	EUT to Mitest box port 4	Flexco	SMA Cable port4	None	7 Apr 2023
RF#2 SMA#SA	Mitest box to SA	Flexco	SMA Cable SA	None	7 Apr 2023

Mic MLabs.

Title:Digi International SIGMA PUMPS GEN VTo:FCC Part 15 Subpart C 15.247 (DTS), ISED RSS-247 Issue 2Serial #:DIGI107-U4 Rev A


7.2. Radiated Emissions

The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions above and below 1GHz.

Radiated Emissions Above 1GHz Test Setup

Radiated Emissions Below 1GHz Test Setup

Test Equipment Utilized

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	8 Oct 2023
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	24 April 2023
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	29 Sep 2023
342	2.4 GHz Notch Filter	EWT	EWT-14-0203	H1	6 Oct 2023
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	29 Sep 2023
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	30 Sep 2023
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	2 Nov 2023
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	27 Oct 2023
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	27 Oct 2023
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	27 Oct 2023
465	Low Pass Filter DC-1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	6 Oct 2023
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	23 Jun 2023
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	23 Jun 2023
510	Barometer/Thermometer	Control Company	68000-49	170871375	20 Dec 2024
554	Precision SMA Cable	Fairview Microwave	SCE18060101- 400CM	554	23 Jun 2023
145	18 GHz to 26.6 GHz antenna	Millimeter Products Inc	261K/595	145	23 Jun 2024
148	26.5 GHz to 40 GHz Antenna	Millimeter Products Inc	261A/599	148	28 Jun 2024
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using stateof-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

MiC@MLabs.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

9. <u>TEST RESULTS</u>

MiC@MLabs_

9.1. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth							
Standard:	FCC CFR 47:15.247	Ambient Temp. (°C):	24.0 - 27.5				
Test Heading:	6 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (a)(2)	Pressure (mBars):	999 - 1001				
Reference Document(s):	See Normative References						

Test Procedure for 6 dB and 99% Bandwidth Measurement The bandwidth at 6 dB and 99% was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 6 dB and 99% Bandwidth

(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Variant:	802.11b	Duty Cycle (%):	100
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	Measured 6 dB Bandwidth (MHz)				6 dB Bandwidth (MHz)		Limit	Lowest
Frequency		Por	t(s)				Linit	Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2412.0	<u>8.200</u>				8.200	8.200	≥500.0	-7.70
2437.0	<u>8.200</u>				8.200	8.200	≥500.0	-7.70
2462.0	<u>8.200</u>				8.200	8.200	≥500.0	-7.70

Test	N	leasured 99%	Bandwidth (M	Hz)			
Frequency		Po	ort(s)		Maximum 99% Bandwidth (MHz)		
MHz	а	b	С	d			
2412.0	<u>13.543</u>				13.543		
2437.0	<u>13.573</u>				13.573		
2462.0	<u>13.629</u>				13.629		

Traceability to Industry Recognized Test Methodologies					
Work Instruction: WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB				

Variant:	802.11g	Duty Cycle (%):	99
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	Measured 6 dB Bandwidth (MHz)				6 dB Bandwidth (MHz)		Limit	Lowest
Frequency	Port(s)			Margin				
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2412.0	<u>16.330</u>				16.330	16.330	≥500.0	-15.83
2437.0	<u>16.330</u>				16.330	16.330	≥500.0	-15.83
2462.0	<u>16.270</u>				16.270	16.270	≥500.0	-15.77

Test	Ν	leasured 99%	Bandwidth (M	Hz)			
Frequency		Po	ort(s)		Maximum 99% Bandwidth (MHz)		
MHz	а	b	С	d			
2412.0	<u>16.642</u>				16.642		
2437.0	<u>16.855</u>				16.855		
2462.0	<u>16.687</u>				16.687		

Traceability to Industry Recognized Test Methodologies					
Work Instruction: WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB				

Variant:	802.11n HT-20	Duty Cycle (%):	99
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	Measured 6 dB Bandwidth (MHz)			6 dB Bandwidth (MHz)		Limit	Lowest	
Frequency		Por	t(s))				Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2412.0	<u>17.470</u>				17.470	17.470	≥500.0	-16.97
2437.0	<u>17.400</u>				17.400	17.400	≥500.0	-16.90
2462.0	<u>17.400</u>				17.400	17.400	≥500.0	-16.90

Test	Measured 99% Bandwidth (MHz)				
Frequency		Po	Port(s)		Maximum 99% Bandwidth (MHz)
MHz	а	b	С	d	
2412.0	<u>17.696</u>				17.696
2437.0	<u>17.835</u>				17.835
2462.0	<u>17.734</u>				17.734

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

Variant:	802.11n HT-40	Duty Cycle (%):	91
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	Measured 6 dB Bandwidth (MHz)			6 dB Bandwidth (MHz)		Limit	Lowest	
Frequency	Port(s)					Linit	Margin	
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2422.0	<u>36.130</u>				36.130	36.130	≥500.0	-35.63
2437.0	<u>36.270</u>				36.270	36.270	≥500.0	-35.77
2452.0	<u>36.270</u>				36.270	36.270	≥500.0	-35.77

Test	Measured 99% Bandwidth (MHz)				
Frequency		Port(s)			Maximum 99% Bandwidth (MHz)
MHz	а	b	С	d	
2422.0	<u>36.510</u>				36.510
2437.0	<u>36.959</u>				36.959
2452.0	<u>36.563</u>				36.563

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

9.2. Conducted Output Power

Conducted Test Conditions for Fundamental Emission Output Power							
Standard:	FCC CFR 47:15.247	CC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading: Output Power		Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (b) & (c)	Pressure (mBars):	999 - 1001				
Reference Document(s):	See Normative References						

Test Procedure for Fundamental Emission Output Power Measurement In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions at nominal voltage only. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information

Calculated Power = A + G + Y+ 10 log (1/x) dBm

A = Total Power $[10^{*}Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for non-frequency hopping systems:

(3) For systems using digital modulation in the 902-928 MHz and 2400-2483.5 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

(iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-tomultipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

(2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5

MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

(i) Different information must be transmitted to each receiver.

(ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:

(A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.

(B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.

(iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.

(iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Variant:	802.11b	Duty Cycle (%):	100.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	2.00
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated Total Power	Limit	Morgin	
Frequency	Port(s)			Σ Port(s)	Linin	Margin	EUT Power Setting	
MHz	а	b	С	d	dBm	dBm	dB	J
2412.0	17.74				17.74	30.00	-12.26	18.00
2437.0	17.75				17.75	30.00	-12.25	18.00
2462.0	17.74				17.74	30.00	-12.26	18.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Measurement Uncertainty:	±1.33 dB			

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Variant:	802.11g	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	2.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated Total Power	Limit	Margin	
Frequency	Port(s)			Σ Port(s)	Linint	wargin	EUT Power Setting	
MHz	а	b	C	d	dBm	dBm	dB	3
2412.0	15.71				15.71	30.00	-14.29	16.00
2437.0	17.36				17.36	30.00	-12.64	18.00
2462.0	15.69				15.69	30.00	-14.31	16.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Due to band-edge compliance issues power was reduced on the low and high channels (see radiated band-edge results Section 9.4.2.1)

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	2.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated Total Power	Limit	Margin	
Frequency		Por	t(s)		Σ Port(s)	Linin	wargin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	J
2412.0	15.55				15.55	30.00	-14.45	16.00
2437.0	17.25				17.25	30.00	-12.75	18.00
2462.0	15.52				15.52	30.00	-14.48	16.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Due to band-edge compliance issues power was reduced on the low and high channels (see radiated band-edge results Section 9.4.2.1)

Variant:	802.11n HT-40	Duty Cycle (%):	91.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	2.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated Total Power	Limit	Margin	
Frequency		Por	t(s)		Σ Port(s)	Liint	wargin	EUT Power Setting
MHz	а	b	с	d	dBm	dBm	dB	J
2422.0	9.14				9.14	30.00	-20.86	9.00
2437.0	17.52				17.52	30.00	-12.48	18.00
2452.0	6.92				6.92	30.00	-23.08	7.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Due to band-edge compliance issues power was reduced on the low and high channels (see radiated band-edge results Section 9.4.2.1)

9.3. Power Spectral Density

MiC@MLabs_

Conducted Test Conditions for Power Spectral Density							
Standard:	Standard: FCC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5						
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45				
Standard Section(s):	15.247 (e) Pressure (mBars): 999 - 1001						
Reference Document(s):	See Normative References						

Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the measured made in a 3 kHz resolution bandwidth using the analyzer auto-coupled sweep-time. A peak value was found over the full emission bandwidth and the spectrum downloaded for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE:

It may be observed that the spectrum in some antenna port plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information

Calculated Power = A + 10 log (1/x) dBm A = Total Power Spectral Density [10 Log10 $(10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})$] x = Duty Cycle

Limits Power Spectral Density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Variant:	802.11b	Duty Cycle (%):	100.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	2.00
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Power	Spectral Densit	y	Amplitude Summation	Amplitude Summation + Limit	
Frequency		Port(s) (d	Bm/3KHz)	DCCF (+0 dB)	Linin	Margin	
MHz	a b c d				dBm/3KHz	dBm/3KHz	dB
2412.0	<u>-14.240</u>				<u>-14.240</u>	8.0	-22.2
2437.0	<u>-14.307</u>				<u>-14.307</u>	8.0	-22.3
2462.0	<u>-13.680</u>				<u>-13.680</u>	8.0	-21.7

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Variant:	802.11g	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	2.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Power	Spectral Densit	у	Amplitude		
Test Frequency	Port(s) (dBm/3KHz)				Summation + DCCF (+0.04 dB)	Limit	Margin
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2412.0	<u>-19.225</u>				<u>-19.181</u>	8.0	-27.2
2437.0	<u>-17.717</u>				<u>-17.673</u>	8.0	-25.7
2462.0	<u>-19.591</u>				<u>-19.547</u>	8.0	-27.5

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	2.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Power	Spectral Densit	y	Amplitude Summation +		
Frequency	Port(s) (dBm/3KHz)				DCCF (+0.04 dB)	Limit	Margin
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2412.0	<u>-19.597</u>				<u>-19.553</u>	8.0	-27.6
2437.0	<u>-17.981</u>				<u>-17.937</u>	8.0	-25.9
2462.0	<u>-19.743</u>				<u>-19.699</u>	8.0	-27.7

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Variant:	802.11n HT-40	Duty Cycle (%):	91.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	2.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	Measured Power Spectral Density				Amplitude Summation +		
Frequency	Port(s) (dBm/3KHz)				DCCF (+0.41 dB)	Limit	Margin
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2422.0	<u>-29.911</u>				<u>-29.501</u>	8.0	-37.5
2437.0	<u>-21.429</u>				<u>-21.385</u>	8.0	-29.4
2452.0	<u>-31.682</u>				<u>-31.272</u>	8.0	-39.3

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	+2.81 dB

DCCF - Duty Cycle Correction Factor

9.4. <u>Emissions</u>

9.4.1. Conducted Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions							
Standard:	FCC CFR 47:15.247 Ambient Temp. (°C): 24.0 - 27.5						
Test Heading:	Max Unwanted Emission Levels	32 - 45					
Standard Section(s):	15.247 (d) Pressure (mBars): 999 - 1001						
Reference Document(s):	See Normative References						

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

9.4.1.1. Conducted Spurious Emissions

Equipment Configuration for	Conducted Spurious Emissions - Average
-----------------------------	--

Variant:	802.11b	Duty Cycle (%):	100
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	ССК	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	Frequency		Conducted Spurious Emissions - Average (dBm)						
Frequency	Range	Por	ta	Po	rt b	Po	rt c	Ро	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2412.0	30.0 - 26000.0	<u>-66.622</u>	-39.22						
2437.0	30.0 - 26000.0	<u>-66.195</u>	-39.49						
2462.0	30.0 - 26000.0	<u>-65.976</u>	-39.47						
2402.0	30.0 - 20000.0	-05.970	-39.47						

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Equipment Configuration for Conducted Spurious Emissions - Average

Variant:	802.11g	Duty Cycle (%):	99
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	Frequency	Conducted Spurious Emissions - Average (dBm)							
requency	Range	Por	ta	Po	rt b	Po	rt c	Poi	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2412.0 30	30.0 - 26000.0	<u>-66.614</u>	-41.08						
2437.0 30	30.0 - 26000.0	<u>-66.154</u>	-40.56						
2462.0 30	30.0 - 26000.0	<u>-65.919</u>	-41.57						

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Equipment Configuration for Conducted Spurious Emissions - Average

Variant:	802.11n HT-20	Duty Cycle (%):	99
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Test	Frequency	Conducted Spurious Emissions - Average (dBm)							
Frequency	Range	Por	ta	Po	rt b	Po	rt c	Po	rt d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2412.0	30.0 - 26000.0	<u>-66.565</u>	-41.31						
2437.0	30.0 - 26000.0	<u>-66.134</u>	-40.71						
2462.0	30.0 - 26000.0	<u>-66.011</u>	-41.60						
2462.0	30.0 - 26000.0	<u>-66.011</u>	-41.60						

Traceability to Industry Recognized Test Methodologies

	5 5
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Equipment Configuration for Conducted Spurious Emissions - Average

Variant:	802.11n HT-40	Duty Cycle (%):	91
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

				Conducted Spurious Emissions - Average (dBm)					
Port a		rt b	Po	rt c	Por	rt d			
Limit	SE	Limit	SE	Limit	SE	Limit			
-48.69									
-41.46									
-50.16									
07	26 -48.69 07 -41.46	26 -48.69 07 -41.46	26 -48.69 07 -41.46	26 -48.69 07 -41.46	26 -48.69 07 -41.46	26 -48.69 07 -41.46			

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

9.4.1.2. Conducted Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	802.11b	Duty Cycle (%):	100.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2412.0 MHz	412.0 MHz				
Band-Edge Frequency:	2400.0 MHz	00.0 MHz				
Test Frequency Range:	2350.0 - 2422.0	2350.0 - 2422.0 MHz				
	Band-Edge Markers and Limit Revised Limit Margi				Margin	
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-50.70</u>	-29.82	2402.40			-2.400

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Variant:	802.11g	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2412.0 MHz					
Band-Edge Frequency:	2400.0 MHz	00.0 MHz				
Test Frequency Range:	2350.0 - 2422.0	350.0 - 2422.0 MHz				
	Band-E	Band-Edge Markers and Limit Revised Limit Margi				Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-42.95</u>	-35.52	2401.60			-1.600

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2412.0 MHz	412.0 MHz					
Band-Edge Frequency:	2400.0 MHz	00.0 MHz					
Test Frequency Range:	2350.0 - 2422.0	350.0 - 2422.0 MHz					
	Band-E	Band-Edge Markers and Limit Revised				Margin	
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)	
а	<u>-42.59</u>	-35.75	2401.20			-1.200	

Traceability to Industry Recognized Test Methodologies

	-
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Variant:	802.11n HT-40	Duty Cycle (%):	91.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2422.0 MHz					
Band-Edge Frequency:	2400.0 MHz	400.0 MHz				
Test Frequency Range:	2292.0 - 2442.0 N	2292.0 - 2442.0 MHz				
	Band-Ed	Band-Edge Markers and Limit Revise			d Limit	Margin
Port(s)	M1 Amplitude Plot Limit M2 Frequency (dBm) (dBm) (MHz)		Amplitude (dBm)	M2A Frequency (MHz)	(MHz)	
а	<u>-48.27</u>	-45.57	2400.80			-0.800

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Variant:	802.11b	Duty Cycle (%):	100.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2462.0 MHz	462.0 MHz				
Band-Edge Frequency:	2483.5 MHz	183.5 MHz				
Test Frequency Range:	2452.0 - 2524.0	452.0 - 2524.0 MHz				
	Band-E	Band-Edge Markers and Limit Revised Limit Margin			Margin	
Port(s)	M3 Amplitude Plot Limit M2 Frequency (dBm) (dBm) (MHz)		Amplitude (dBm)	M2A Frequency (MHz)	(MHz)	
а	<u>-61.51</u>	-30.00	2471.40			-12.100

Traceability to Industry Recognized Test Methodologies

	-
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Variant:	802.11g	Duty Cycle (%):	99.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2462.0 MHz	462.0 MHz				
Band-Edge Frequency:	2483.5 MHz	83.5 MHz				
Test Frequency Range:	2452.0 - 2524.0	452.0 - 2524.0 MHz				
	Band-E	Band-Edge Markers and Limit			Revised Limit	
Port(s)	M3 Amplitude Plot Limit M2 Frequency (dBm) (dBm) (MHz)		Amplitude (dBm)	M2A Frequency (MHz)	(MHz)	
а	<u>-50.09</u>	-35.66	2472.60			-10.900

Traceability to Industry Recognized Test Methodologies

	-
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Variant:	802.11n HT-20	Duty Cycle (%):	99.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2462.0 MHz					
Band-Edge Frequency:	2483.5 MHz	483.5 MHz				
Test Frequency Range:	2452.0 - 2524.0	2452.0 - 2524.0 MHz				
	Band-E	Band-Edge Markers and Limit Revised Limit Margin			Margin	
Port(s)	M3 Amplitude Plot Limit M2 Frequency Amplitude (dBm) (MHz) (MHz) (MHz) (MHz) (MHz)			(MHz)		
а	<u>-48.60</u>	-36.10	2473.00			-10.500

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Variant:	802.11n HT-40	Duty Cycle (%):	91.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JK
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	2452.0 MHz	452.0 MHz							
Band-Edge Frequency:	2483.5 MHz	183.5 MHz							
Test Frequency Range:	2432.0 - 2582.0 M	32.0 - 2582.0 MHz							
	Band-Edg	ge Markers ar	nd Limit	Revise	d Limit	Margin			
Port(s)	M3 Amplitude (dBm)	I MH							
а	<u>-65.65</u>	-48.08	2473.00			-10.500			

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

9.4.2. Radiated Emissions

MiC@MLabs.

9.4.2.1. TX Spurious & Restricted Band Emissions

Radiated Test C	onditions for Radiated Spurious	s and Band-Edge Emissions (Re	estricted Bands)
Standard:	FCC CFR 47 Part 15 Subpart C 15.247 (DTS)	Ambient Temp. (ºC):	20.0 - 24.5
Test Heading:	Radiated Spurious and Band- Edge Emissions	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.205, 15.209	Pressure (mBars):	999 - 1001
Reference Document(s):	See Normative References		
Radiated emissions for restricted in both horizontal and vertical pol 360° with a spectrum analyzer in used to remove the fundamental Measurements on any restricted employing peak and average dete	arities. The emissions are record peak hold mode. Depending on the frequency. The highest emissions band frequency or frequencies about ectors. All measurements were p	d in the anechoic chamber at a 3- led and maximized as a function o le frequency band spanned a notc relative to the limit are listed for e ove 1 GHz are based on the use o erformed using a resolution bandw	f azimuth by rotation through h filter and waveguide filter was each frequency spanned. f measurement instrumentatior vidth of 1 MHz.
document.	Radiated Spurious and Band-Edge	e Measurement were per the Radia	ated Test Set-up specified in thi
Orientation testing of the EUT was Band Edge emissions with the int		g upright was determined to be the	e worst case for Spurious and
Limits for Restricted Bands Peak emission: 74 dBuV/m Average emission: 54 dBuV/m			
EUT transmissions followed by a		ction11.12.2.5.2 Trace averaging a e.	across on and off times of the
Field Strength Calculation The field strength is calculated by reading. All factors are included in FS = R + AF + CORR - FO		Cable Loss, and subtracting Amplif	ier Gain from the measured
where: FS = Field Strength R = Measured Spectrum analyze AF = Antenna Factor CORR = Correction Factor = CL - CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Wave	- AG + NFL		
	1.5 dBmV; Antenna Factor of 8.5 o 1 dB. The Field Strength (FS) of	IB; Cable Loss of 1.3 dB; Falloff Father the measured emission is:	actor of 0 dB, an Amplifier Gain
FS = 51.5 + 8.5 + 1.3 - 26.0 +1 =	36.3 dBmV/m		
Conversion between dBmV/m (or Level (dBmV/m) = 20 * Log (leve	dBmV) and mV/m (or mV) are as I (mV/m))	follows:	
40 dBmV/m = 100 mV/m 48 dBmV/m = 250 mV/m Restricted Bands of Operation (a) Except as shown in paragraph		emissions are permitted in any of	the frequency bands listed

below:

	Frequenc	y Band	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

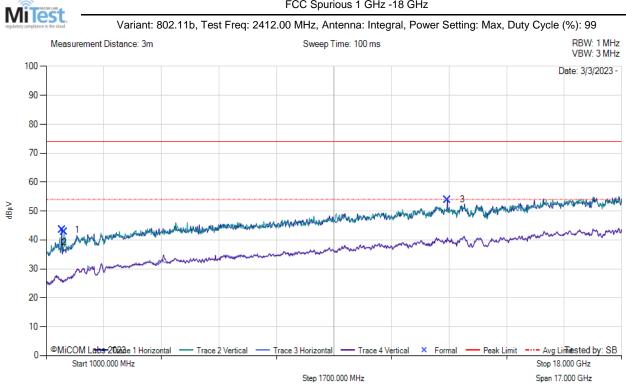
(6) Transmitters operating under the provisions of subparts D or F of this part.

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).


Emissions were measured up to 26GHz, however no emissions were found to be within 6 dB of the limit.

Equipment Configuration for FCC Spurious 1 GHz -18 GHz

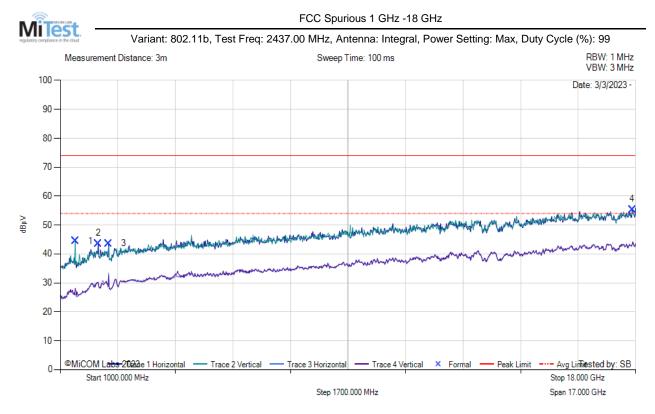
Antenna:	Integral	Variant:	802.11b
Antenna Gain (dBi):	Not Applicable	Modulation:	CCK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2412.00	Data Rate:	1 mbit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1459.00	58.32	1.53	28.62	43.50	MaxP	Horizontal	199	0	74.0	-30.5	Pass
2	1527.00	57.86	1.58	28.22	42.76	MaxP	Vertical	199	180	74.0	-31.2	Pass
3	12849.00	56.62	5.61	39.19	53.91	MaxP	Horizontal	149	90	74.0	-20.1	Pass

Test Notes: 120VAC 1A powers support equipment. EUT is DC powered. Laptop provides software tools needed to run test mode.

Issue Date: 1st November 2023 Page: 52 of 120 This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report. MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com


FCC Spurious 1 GHz -18 GHz

Equipment Configuration for FCC Spurious 1 GHz -18 GHz

Antenna:	Integral	Variant:	802.11b
Antenna Gain (dBi):	Not Applicable	Modulation:	CCK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2437.00	Data Rate:	1 mbit/s
Power Setting:	Max	Tested By:	SB

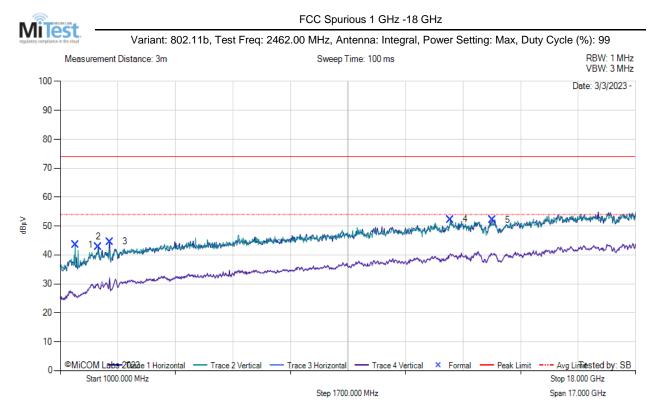
Test Measurement Results

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1442.00	59.22	1.53	28.76	44.54	MaxP	Vertical	199	209	74.0	-29.5	Pass
2	2122.00	54.39	1.85	31.74	43.60	MaxP	Horizontal	199	300	74.0	-30.4	Pass
3	2428.00	53.71	1.99	32.23	43.59	MaxP	Horizontal	99	90	74.0	-30.4	Pass
4	17898.00	49.05	6.28	40.75	55.41	MaxP	Horizontal	149	150	74.0	-18.6	Pass

Test Notes: 120VAC 1A powers support equipment. EUT is DC powered. Laptop provides software tools needed to run test mode.

 Issue Date:
 1st November 2023
 Page:
 53 of 120

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Equipment Configuration for FCC Spurious 1 GHz -18 GHz

Antenna:	Integral	Variant:	802.11b
Antenna Gain (dBi):	Not Applicable	Modulation:	CCK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2462.00	Data Rate:	1 mbit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

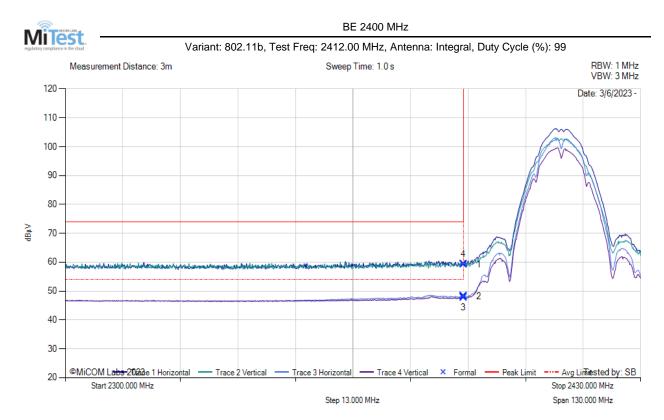
	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1442.00	58.16	1.53	28.76	43.48	MaxP	Vertical	99	209	74.0	-30.5	Pass
2	2122.00	53.66	1.85	31.74	42.87	MaxP	Horizontal	199	270	74.0	-31.1	Pass
3	2462.00	54.59	2.00	32.33	44.60	MaxP	Horizontal	99	90	74.0	-29.4	Pass
4	12526.00	52.90	5.47	39.16	52.22	MaxP	Vertical	199	29	74.0	-21.8	Pass
5	13767.00	54.31	5.10	38.61	52.17	MaxP	Horizontal	199	330	74.0	-21.8	Pass

Test Notes: 120VAC 1A powers support equipment. EUT is DC powered. Laptop provides software tools needed to run test mode.

 Issue Date:
 1st November 2023
 Page:
 54 of 120

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com



9.4.2.2. Restricted Edge & Band-Edge Emissions

Equipment Configuration for BE 2400 MHz

Antenna:	Integral	Variant:	802.11b
Antenna Gain (dBi):	2	Modulation:	ССК
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2412.00	Data Rate:	1 mbit/s
Power Setting:	18	Tested By:	SB

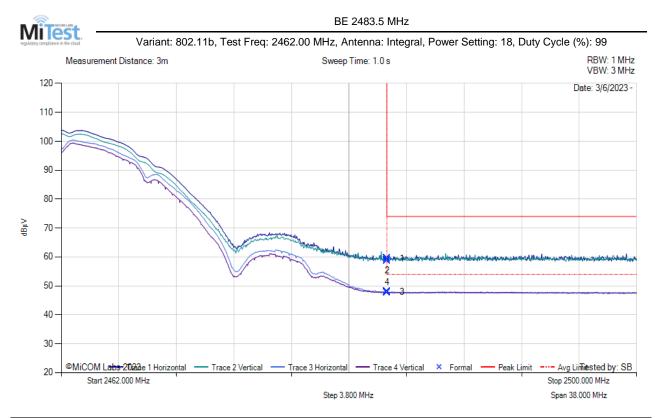
Test Measurement Results

	2300.00 - 2430.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2389.96	27.26	1.96	32.04	59.26	MaxP	Vertical	149	209	74.0	-14.7	Pass
2	2389.96	16.23	1.96	32.04	48.23	AVG	Horizontal	149	90	54.0	-5.8	Pass
3	2389.96	15.84	1.96	32.04	47.85	AVG	Vertical	149	209	54.0	-6.2	Pass
4	2389.96	27.26	1.96	32.04	59.26	MaxP	Vertical	149	209	74.0	-14.7	Pass

Test Notes: 120VAC 1A powers support equipment. EUT is DC powered. Laptop provides software tools needed to run test mode.

 Issue Date:
 1st November 2023
 Page:
 55 of 120

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Equipment Configuration for BE 2483.5 MHZ

Antenna:	Integral	Variant:	802.11b
Antenna Gain (dBi):	2	Modulation:	CCK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2462.00	Data Rate:	1 mbit/s
Power Setting:	18	Tested By:	SB

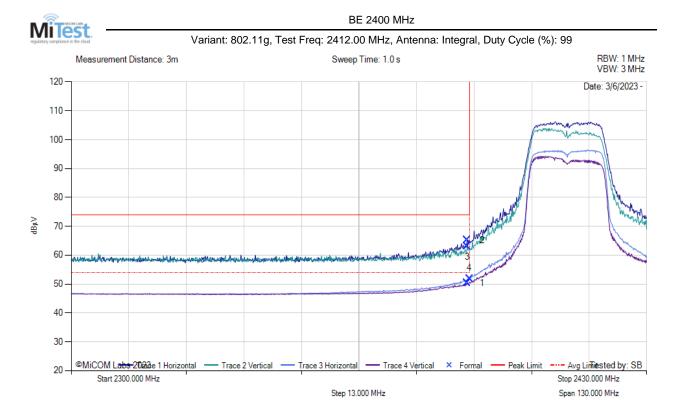
Test Measurement Results

	2462.00 - 2500.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2483.51	27.05	1.98	32.37	59.40	MaxP	Vertical	99	209	74.0	-14.6	Pass
2	2483.51	26.53	1.98	32.37	58.88	MaxP	Horizontal	99	150	74.0	-15.1	Pass
3	2483.51	15.52	1.98	32.37	47.87	AVG	Horizontal	99	90	54.0	-6.1	Pass
4	2483.51	15.36	1.98	32.37	47.71	AVG	Vertical	199	29	54.0	-6.3	Pass

Test Notes: 120VAC 1A powers support equipment. EUT is DC powered. Laptop provides software tools needed to run test mode.

 Issue Date:
 1st November 2023
 Page:
 56 of 120

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

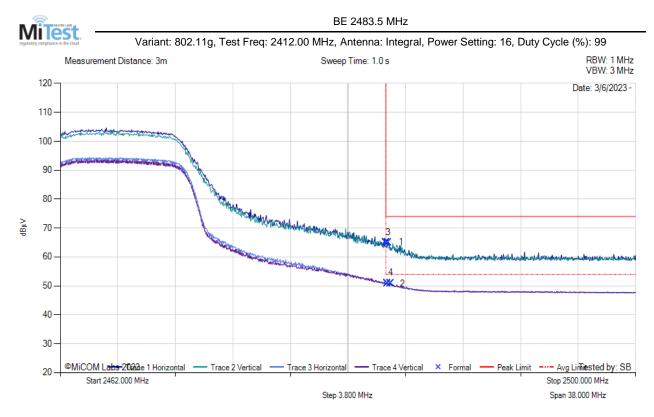
Equipment Configuration for BE 2400 MHZ

Antenna:	Integral	Variant:	802.11g
Antenna Gain (dBi):	2	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2412.00	Data Rate:	1 mbit/s
Power Setting:	16	Tested By:	SB

Test Measurement Results

	2300.00 - 2430.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	2389.44	18.38	1.96	32.04	50.38	AVG	Vertical	149	209	54.0	-3.6	Pass	
2	2389.44	33.20	1.96	32.04	65.20	MaxP	Horizontal	99	240	74.0	-8.8	Pass	
3	2389.44	31.04	1.96	32.04	63.05	MaxP	Vertical	149	209	74.0	-11.0	Pass	
4	2389.96	19.88	1.96	32.04	51.88	AVG	Horizontal	149	90	54.0	-2.1	Pass	

Test Notes: 120VAC 1A powers support equipment. EUT is DC powered. Laptop provides software tools needed to run test mode.


Issue Date:1st November 2023Page:57 of 120This test report may be reproduced in full only.The document may only be updated by MiCOM Labs
personnel. All changes will be noted in the Document History section of the report.MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Equipment Configuration for BE 2483.5 MHZ

Antenna:	Integral	Variant:	802.11g
Antenna Gain (dBi):	2	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2412.00	Data Rate:	6 mbit/s
Power Setting:	16	Tested By:	SB

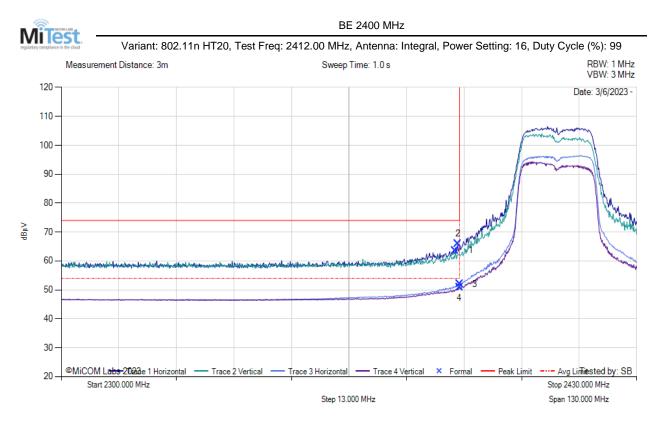
Test Measurement Results

	2462.00 - 2500.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	2483.51	32.71	1.98	32.37	65.06	MaxP	Vertical	98	59	74.0	-8.9	Pass	
2	2483.58	18.47	1.98	32.37	50.82	AVG	Horizontal	98	90	54.0	-3.2	Pass	
3	2483.66	32.61	1.98	32.37	64.96	MaxP	Horizontal	98	90	74.0	-9.0	Pass	
4	2483.81	18.59	1.98	32.37	50.94	AVG	Vertical	98	59	54.0	-3.1	Pass	

Test Notes: 120VAC 1A powers support equipment. EUT is DC powered. Laptop provides software tools needed to run test mode.

 Issue Date:
 1st November 2023
 Page:
 58 of 120

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Equipment Configuration for BE 2400 MHZ

Antenna:	Integral	Variant:	802.11n HT20
Antenna Gain (dBi):	2	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2412.00	Data Rate:	6.5 mbit/s
Power Setting:	16	Tested By:	SB

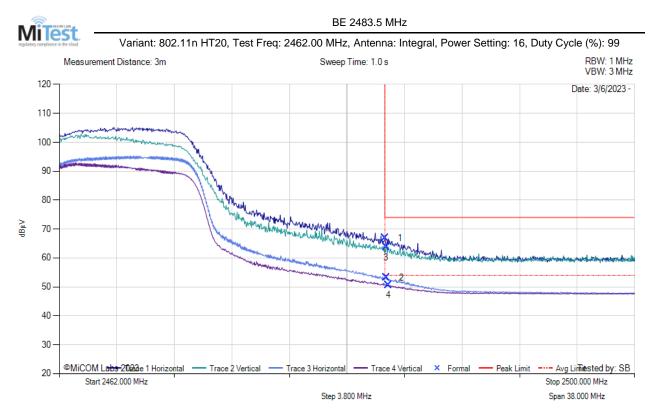
Test Measurement Results

	2300.00 - 2430.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	2389.05	31.60	1.96	32.04	63.60	MaxP	Vertical	99	149	74.0	-10.4	Pass	
2	2389.57	33.88	1.96	32.04	65.88	MaxP	Horizontal	149	30	74.0	-8.1	Pass	
3	2389.96	19.98	1.96	32.04	51.98	AVG	Horizontal	149	90	54.0	-2.0	Pass	
4	2389.96	18.85	1.96	32.04	50.85	AVG	Vertical	149	209	54.0	-3.1	Pass	

Test Notes: 120VAC 1A powers support equipment. EUT is DC powered. Laptop provides software tools needed to run test mode.

 Issue Date:
 1st November 2023
 Page:
 59 of 120

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Equipment Configuration for BE 2483.5 MHZ

Antenna:	Integral	Variant:	802.11n HT20
Antenna Gain (dBi):	2	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2462.00	Data Rate:	6.5 mbit/s
Power Setting:	16	Tested By:	SB

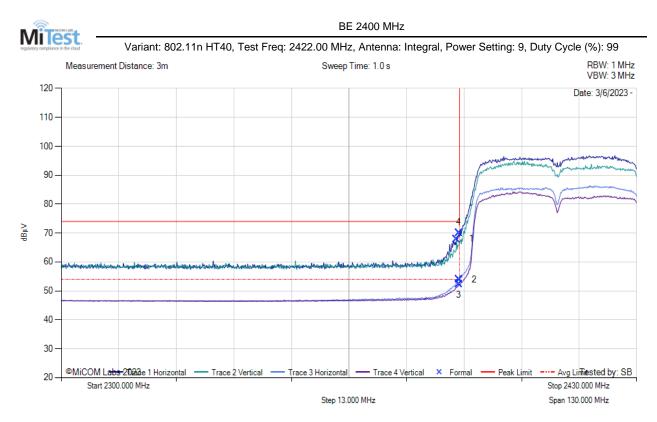
Test Measurement Results

	2462.00 - 2500.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	2483.51	34.57	1.98	32.37	66.92	MaxP	Horizontal	99	90	74.0	-7.1	Pass	
2	2483.58	20.83	1.98	32.37	53.18	AVG	Horizontal	99	90	54.0	-0.8	Pass	
3	2483.58	31.42	1.98	32.37	63.77	MaxP	Vertical	199	59	74.0	-10.2	Pass	
4	2483.74	18.38	1.98	32.37	50.73	AVG	Vertical	199	59	54.0	-3.3	Pass	

Test Notes: 120VAC 1A powers support equipment. EUT is DC powered. Laptop provides software tools needed to run test mode.

 Issue Date:
 1st November 2023
 Page:
 60 of 120

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Equipment Configuration for BE 2400 MHZ

Antenna:	Integral	Variant:	802.11n HT40
Antenna Gain (dBi):	2	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2422.00	Data Rate:	13.5 mbit/s
Power Setting:	9	Tested By:	SB

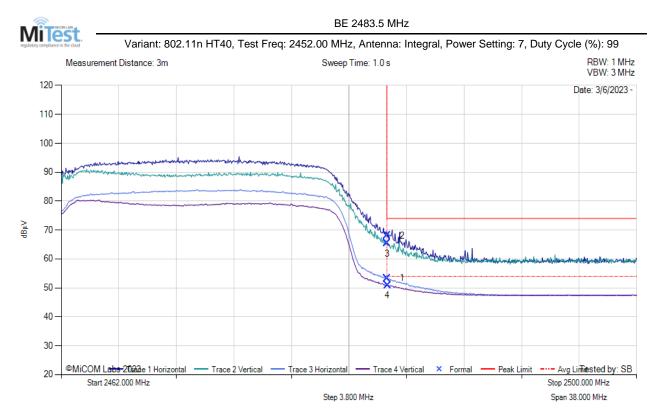
Test Measurement Results

2300.00 - 2430.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2389.31	35.98	1.96	32.04	67.98	MaxP	Vertical	149	209	74.0	-6.0	Pass
2	2389.83	21.87	1.96	32.04	53.87	AVG	Horizontal	149	90	54.0	-0.1	Pass
3	2389.83	20.28	1.96	32.04	52.28	AVG	Vertical	149	209	54.0	-1.7	Pass
4	2389.83	38.11	1.96	32.04	70.12	MaxP	Horizontal	149	90	74.0	-3.9	Pass

Test Notes: 120VAC 1A powers support equipment. EUT is DC powered. Laptop provides software tools needed to run test mode.

 Issue Date:
 1st November 2023
 Page:
 61 of 120

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Equipment Configuration for BE 2483.5 MHZ

Antenna:	Integral	Variant:	802.11n HT40
Antenna Gain (dBi):	2	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2452.00	Data Rate:	13.5 mbit/s
Power Setting:	7	Tested By:	SB

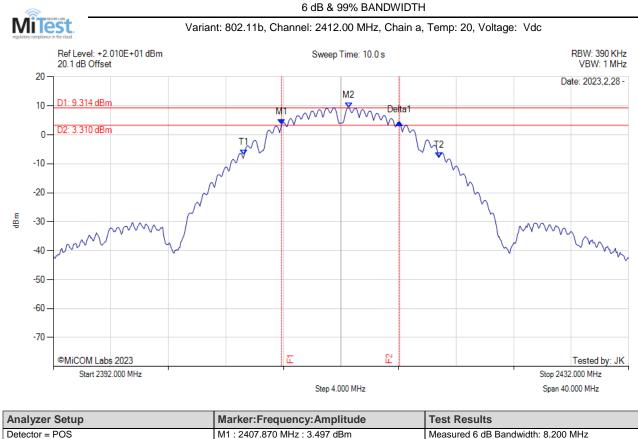
Test Measurement Results

2462.00 - 2500.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2483.51	21.02	1.98	32.37	53.37	AVG	Horizontal	99	90	54.0	-0.6	Pass
2	2483.51	35.78	1.98	32.37	68.13	MaxP	Horizontal	99	90	74.0	-5.9	Pass
3	2483.51	33.12	1.98	32.37	65.47	MaxP	Vertical	99	149	74.0	-8.5	Pass
4	2483.55	18.62	1.98	32.37	50.97	AVG	Vertical	199	59	54.0	-3.0	Pass

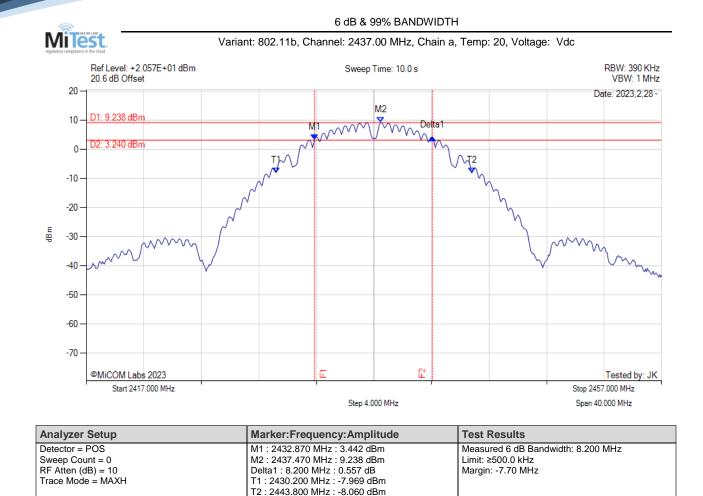
Test Notes: 120VAC 1A powers support equipment. EUT is DC powered. Laptop provides software tools needed to run test mode.

 Issue Date:
 1st November 2023
 Page:
 62 of 120

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

A. APPENDIX - GRAPHICAL IMAGES

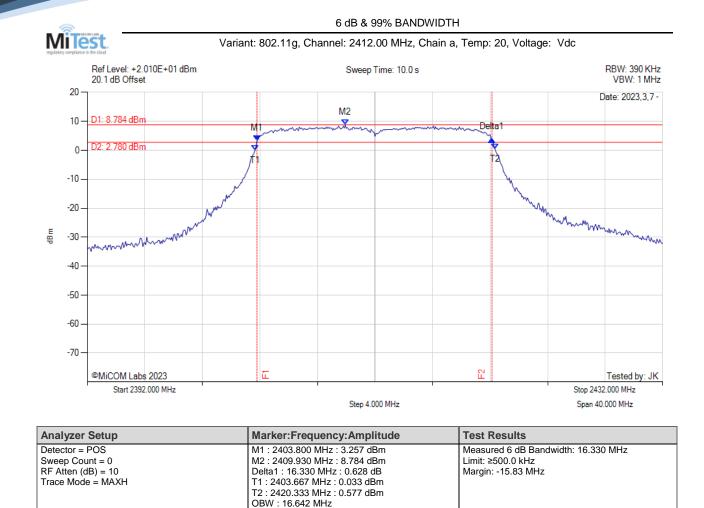


A.1. 6 dB & 99% Bandwidth

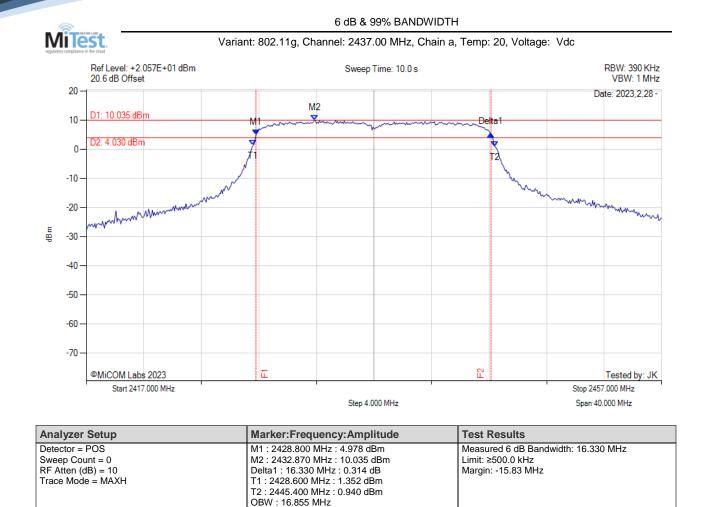
Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = POS	M1 : 2407.870 MHz : 3.497 dBm	Measured 6 dB Bandwidth: 8.200 MHz	
Sweep Count = 0	M2 : 2412.530 MHz : 9.314 dBm	Limit: ≥500.0 kHz	
RF Atten (dB) = 10	Delta1 : 8.200 MHz : 0.715 dB	Margin: -7.70 MHz	
Trace Mode = MAXH	T1 : 2405.267 MHz : -7.069 dBm		
	T2 : 2418.800 MHz : -7.853 dBm		
	OBW : 13.543 MHz		

OBW : 13.573 MHz

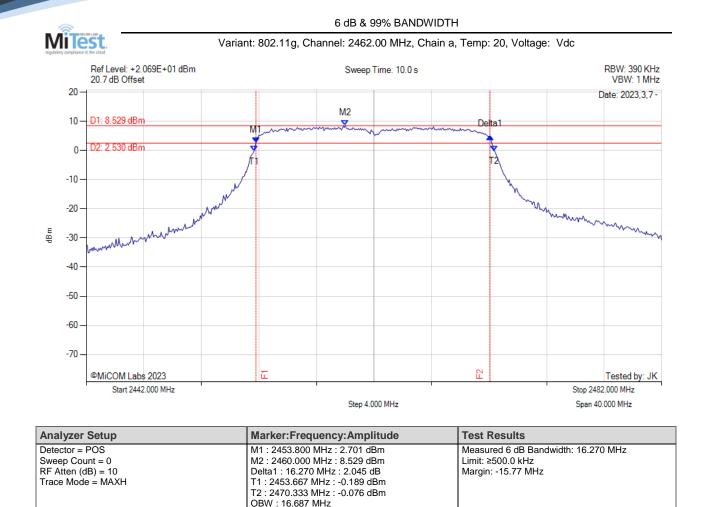
6 dB & 99% BANDWIDTH MiTes Variant: 802.11b, Channel: 2462.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.069E+01 dBm Sweep Time: 10.0 s RBW: 390 KHz 20.7 dB Offset VBW: 1 MHz 20 Date: 2023,2,28 -M2 D1: 9.120 dBm 10 \mathcal{M} \sim 02: 3.120 dBm 0 ŢΛ -10 -20 dBm -30 Λĺ -40 -50 -60 -70 ©MiCOM Labs 2023 Tested by: JK Start 2442.000 MHz Stop 2482.000 MHz Step 4.000 MHz Span 40.000 MHz **Analyzer Setup** Marker:Frequency:Amplitude **Test Results** Detector = POS M1: 2457.870 MHz: 3.407 dBm Measured 6 dB Bandwidth: 8.200 MHz Sweep Count = 0 M2: 2462.530 MHz: 9.120 dBm Limit: ≥500.0 kHz RF Atten (dB) = 10 Delta1 : 8.200 MHz : 0.579 dB Margin: -7.70 MHz

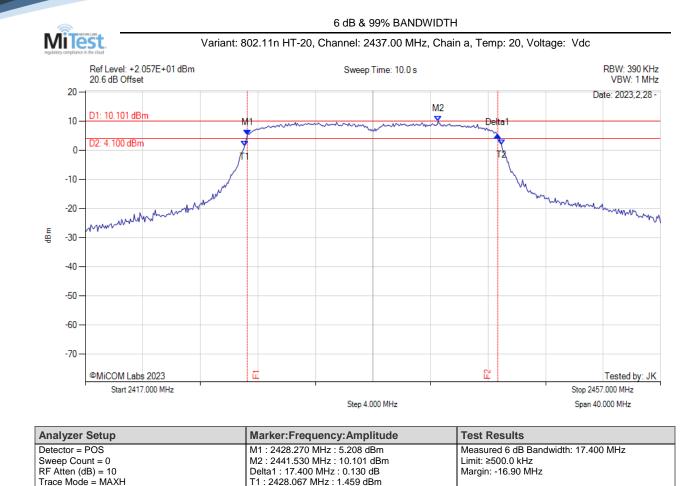

T1 : 2455.200 MHz : -7.960 dBm T2 : 2468.800 MHz : -8.144 dBm

OBW : 13.629 MHz

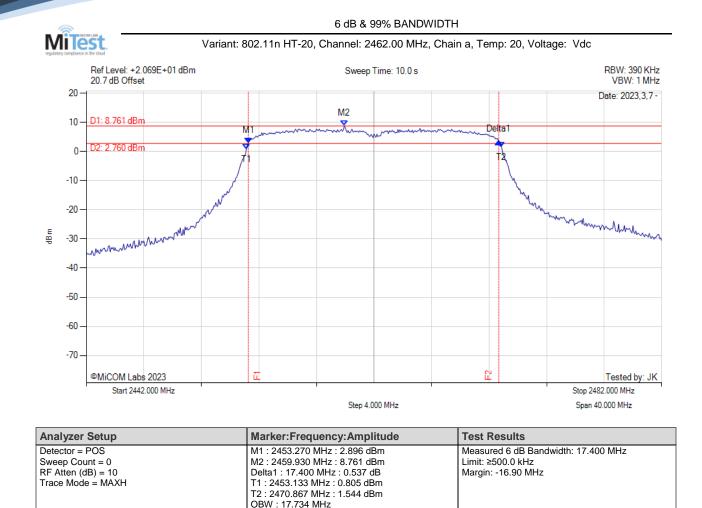

back to matrix

Trace Mode = MAXH

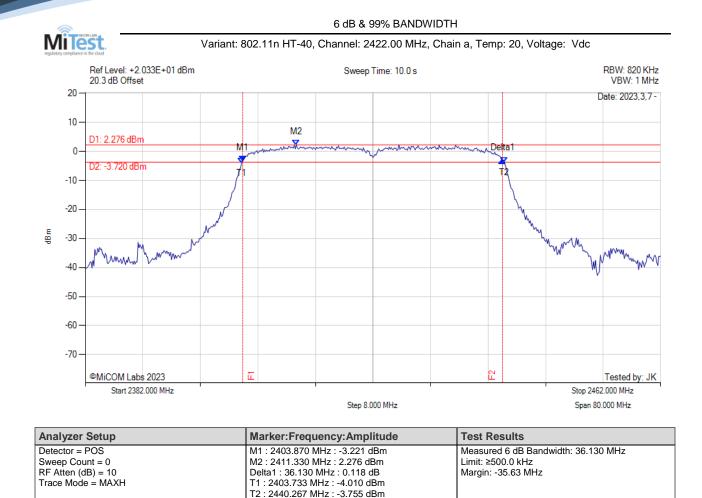




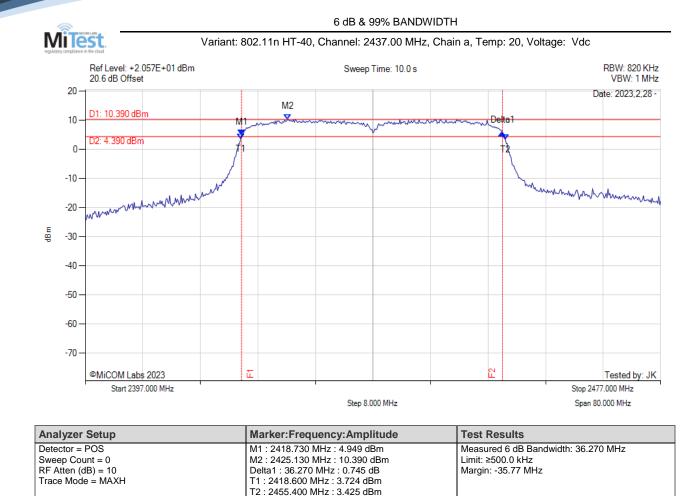
OBW : 17.696 MHz

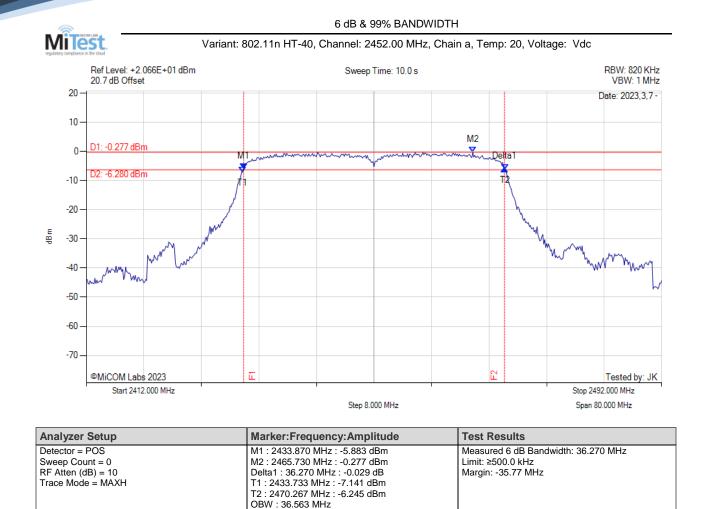


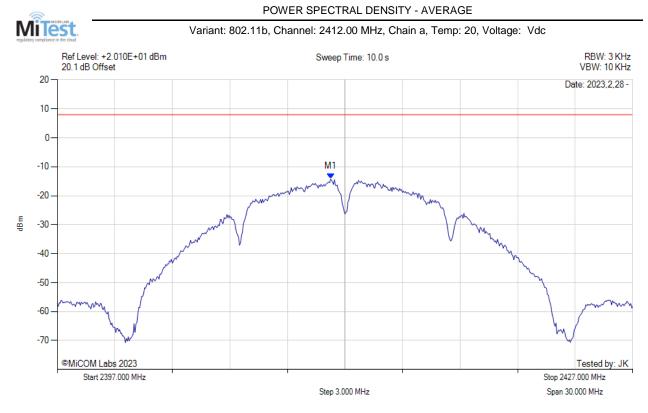
T2: 2445.933 MHz: 2.042 dBm


OBW : 17.835 MHz

back to matrix	




OBW : 36.510 MHz


OBW : 36.959 MHz

A.2. Power Spectral Density

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 2411.250 MHz : -14.240 dBm	Limit: ≤ 8.000 dBm

Mites Variant: 802.11b, Channel: 2412.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.010E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.1 dB Offset VBW: 10 KHz 20 Date: 2023,2,28 -10 0--10 M1 -20 dB m -30 -40 -50 -60 -70 -©MiCOM Labs 2023 Tested by: JK Start 2397.000 MHz Stop 2427.000 MHz Step 3.000 MHz Span 30.000 MHz

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2411.300 MHz : -14.240 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2411.300 MHz : -14.240 dBm	Margin: -22.2 dB
RF Atten (dB) = 10	Duty Cycle Correction Factor : +0 dB	
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE Mites Variant: 802.11b, Channel: 2437.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.057E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.6 dB Offset VBW: 10 KHz 20 Date: 2023,2,28 -10 0--10 M1 -20 đBm -30 -40 -50 -60 -70 -©MiCOM Labs 2023 Tested by: JK Start 2422.000 MHz Stop 2452.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 2437.800 MHz : -14.307 dBm	Limit: ≤ 8.000 dBm

POWER SPECTRAL DENSITY - AVERAGE Mites Variant: 802.11b, Channel: 2437.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.057E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.6 dB Offset VBW: 10 KHz 20 -Date: 2023,2,28 -10 0--10 M1 -20 đBm -30 -40 -50 -60 -70 -©MiCOM Labs 2023 Tested by: JK Start 2422.000 MHz Stop 2452.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2437.800 MHz : -14.307 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2437.800 MHz : -14.307 dBm	Margin: -22.3 dB
RF Atten (dB) = 10	Duty Cycle Correction Factor : +0 dB	
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE Mites Variant: 802.11b, Channel: 2462.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.069E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.7 dB Offset VBW: 10 KHz 20 -Date: 2023,2,28 -10 0-M1 -10 -20 đBm -30 -40 -50 -60 -70 ©MiCOM Labs 2023 Tested by: JK Start 2447.000 MHz Stop 2477.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0	M1 : 2461.300 MHz : -13.680 dBm	Limit: ≤ 8.000 dBm
RF Atten (dB) = 10 Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE Mites Variant: 802.11b, Channel: 2462.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.069E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.7 dB Offset VBW: 10 KHz 20 -Date: 2023,2,28 -10 0-M1 -10 -20 đBm -30 -40 -50 -60 -70 ©MiCOM Labs 2023 Tested by: JK Start 2447.000 MHz Stop 2477.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2461.300 MHz : -13.680 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2461.300 MHz : -13.680 dBm	Margin: -21.7 dB
RF Atten (dB) = 10	Duty Cycle Correction Factor : +0 dB	
Trace Mode = VIEW		

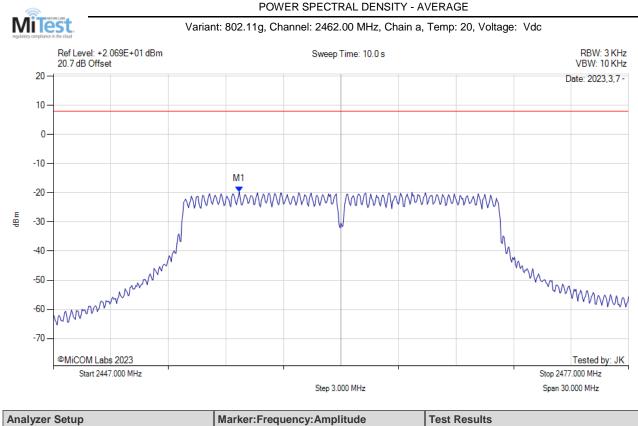
POWER SPECTRAL DENSITY - AVERAGE Mites Variant: 802.11g, Channel: 2412.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.010E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.1 dB Offset VBW: 10 KHz 20 Date: 2023,3,7 -10 0 -10 Μ1 -20 dB m -30 h -40 mmmmm -50 -60 -70 ©MiCOM Labs 2023 Tested by: JK Start 2397.000 MHz Stop 2427.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2415.450 MHz : -19.225 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE Mites Variant: 802.11g, Channel: 2412.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.010E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.1 dB Offset VBW: 10 KHz 20 Date: 2023,3,7 -10 0 -10 Μ1 -20 dB m -30 h -40 mmmmm -50 -60 -70 ©MiCOM Labs 2023 Tested by: JK Start 2397.000 MHz Stop 2427.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2415.500 MHz : -19.225 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2415.500 MHz : -19.181 dBm	Margin: -27.2 dB
RF Atten (dB) = 10	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11g, Channel: 2437.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.057E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.6 dB Offset VBW: 10 KHz 20 Date: 2023,2,28 -10 0 -10 M1 -20 đBm -30 hannow -40 wwwwwww -50 -60 -70 -©MiCOM Labs 2023 Tested by: JK Start 2422.000 MHz Stop 2452.000 MHz Step 3.000 MHz Span 30.000 MHz


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2441.050 MHz : -17.717 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11g, Channel: 2437.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.057E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.6 dB Offset VBW: 10 KHz 20 Date: 2023,2,28 -10 0 -10 M1 -20 dBm -30 h -40 wwwwwww -50 -60 -70 -©MiCOM Labs 2023 Tested by: JK Start 2422.000 MHz Stop 2452.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2441.100 MHz : -17.717 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2441.100 MHz : -17.673 dBm	Margin: -25.7 dB
RF Atten (dB) = 10	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2456.700 MHz : -19.591 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11g, Channel: 2462.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.069E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.7 dB Offset VBW: 10 KHz 20 -Date: 2023,3,7 -10 0 -10 M1 -20 mm The man the second s đBm -30 hummen -40 www.wwww -50 -60 -70 ©MiCOM Labs 2023 Tested by: JK Start 2447.000 MHz Stop 2477.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2456.700 MHz : -19.591 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2456.700 MHz : -19.547 dBm	Margin: -27.5 dB
RF Atten (dB) = 10	Duty Cycle Correction Factor : +0.04 dB	-
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11n HT-20, Channel: 2412.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.010E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.1 dB Offset VBW: 10 KHz 20 Date: 2023,3,7 -10 0 -10 M1 month market warman market warman and the second se -20 dB m -30 hummunn -40 -50 mon -60 -70 ©MiCOM Labs 2023 Tested by: JK Start 2397.000 MHz Stop 2427.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER Sweep Count = 0 RF Atten (dB) = 10 Trace Mode = VIEW	M1 : 2414.500 MHz : -19.597 dBm	Limit: ≤ 8.000 dBm

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11n HT-20, Channel: 2412.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.010E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.1 dB Offset VBW: 10 KHz 20 Date: 2023,3,7 -10 0 -10 M1 month market warman market warman and the second se -20 dB m -30 hummunn -40 -50 monter -60 -70 ©MiCOM Labs 2023 Tested by: JK Start 2397.000 MHz Stop 2427.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2414.500 MHz : -19.597 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2414.500 MHz : -19.553 dBm	Margin: -27.6 dB
RF Atten (dB) = 10	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11n HT-20, Channel: 2437.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.057E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.6 dB Offset VBW: 10 KHz 20 Date: 2023,2,28 -10 0 -10 Μ1 -20 đBm -30 month wwwwwww -40 -50 -60 -70 -©MiCOM Labs 2023 Tested by: JK Start 2422.000 MHz Stop 2452.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2440.750 MHz : -17.981 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11n HT-20, Channel: 2437.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.057E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.6 dB Offset VBW: 10 KHz 20 Date: 2023,2,28 -10 0 -10 Μ1 -20 dBm -30 month wwwwwww -40 -50 -60 -70 -©MiCOM Labs 2023 Tested by: JK Start 2422.000 MHz Stop 2452.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2440.800 MHz : -17.981 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2440.800 MHz : -17.937 dBm	Margin: -25.9 dB
RF Atten (dB) = 10	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11n HT-20, Channel: 2462.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.069E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.7 dB Offset VBW: 10 KHz 20 -Date: 2023,3,7 -10 0 -10 M1 -20 đBm -30 -40 wwwwww -50 -60 -70 ©MiCOM Labs 2023 Tested by: JK Start 2447.000 MHz Stop 2477.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2466.700 MHz : -19.743 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11n HT-20, Channel: 2462.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.069E+01 dBm Sweep Time: 10.0 s RBW: 3 KHz 20.7 dB Offset VBW: 10 KHz 20 -Date: 2023,3,7 -10 0 -10 M1 -20 đBm -30 -40 wwwwww -50 -60 -70 ©MiCOM Labs 2023 Tested by: JK Start 2447.000 MHz Stop 2477.000 MHz Step 3.000 MHz Span 30.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2466.700 MHz : -19.743 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2466.700 MHz : -19.699 dBm	Margin: -27.7 dB
RF Atten (dB) = 10	Duty Cycle Correction Factor : +0.04 dB	-
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11n HT-40, Channel: 2422.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.033E+01 dBm Sweep Time: 20.0 s RBW: 3 KHz 20.3 dB Offset VBW: 10 KHz 20 Date: 2023.3.7 -10 0 -10 -20 M1 dBm -30 -40 -50 -60 Tested by MK -70 ©MiCOM Labs 2023 Start 2392.000 MHz Step 6.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2409.500 MHz : -29.911 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11n HT-40, Channel: 2422.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.033E+01 dBm Sweep Time: 20.0 s RBW: 3 KHz 20.3 dB Offset VBW: 10 KHz 20 Date: 2023,3,7 -10 0 -10 -20 M1 dBm -30 -40 -50 -60 Tested by MK -70 ©MiCOM Labs 2023 Start 2392.000 MHz Step 6.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2409.500 MHz : -29.911 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2409.500 MHz : -29.501 dBm	Margin: -37.5 dB
RF Atten (dB) = 10	Duty Cycle Correction Factor : +0.41 dB	
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11n HT-40, Channel: 2437.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.057E+01 dBm Sweep Time: 20.0 s RBW: 3 KHz 20.6 dB Offset VBW: 10 KHz 20 Date: 2023,2,28 -10 0 -10 M1 -20 Manualanta đBm -30 -40 manum manum -50 -60 -70 -©MiCOM Labs 2023 Tested by: JK Start 2407.000 MHz Stop 2467.000 MHz Step 6.000 MHz Span 60.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2427.000 MHz : -21.429 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11n HT-40, Channel: 2437.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.057E+01 dBm Sweep Time: 20.0 s RBW: 3 KHz 20.6 dB Offset VBW: 10 KHz 20 Date: 2023,2,28 -10 0 -10 M1 -20 Manualanta đBm -30 -40 manum manum -50 -60 -70 -©MiCOM Labs 2023 Tested by: JK Start 2407.000 MHz Stop 2467.000 MHz Step 6.000 MHz Span 60.000 MHz

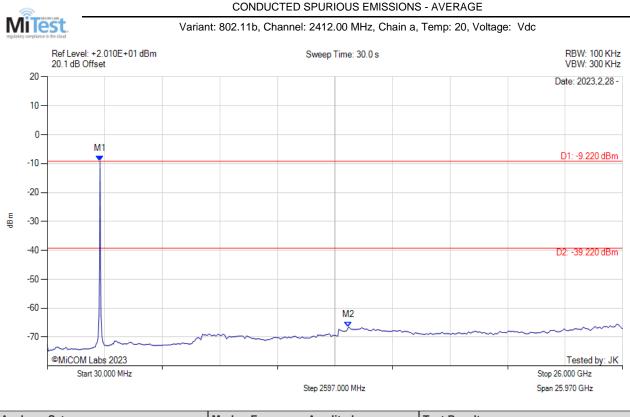
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2427.000 MHz : -21.429 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2427.000 MHz : -21.385 dBm	Margin: -29.4 dB
RF Atten (dB) = 10	Duty Cycle Correction Factor : +0.41 dB	-
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11n HT-40, Channel: 2452.00 MHz, Chain a, Temp: 20, Voltage: Vdc Ref Level: +2.066E+01 dBm Sweep Time: 20.0 s RBW: 3 KHz 20.7 dB Offset VBW: 10 KHz 20 -Date: 2023,3,7 -10 0 -10 -20 M1 đBm -30 Marthall Martin Marthall Marthall -40 -50 -60 AMICOM Labs 2023 -70 -Start 2422.000 MHz Step 6.000 MHz Span 60.000 MHz

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2443.300 MHz : -31.682 dBm	Limit: ≤ 8.000 dBm
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

POWER SPECTRAL DENSITY - AVERAGE MiTes Variant: 802.11n HT-40, Channel: 2452.00 MHz, SUM, Temp: 20, Voltage: Vdc Ref Level: +2.066E+01 dBm Sweep Time: 20.0 s RBW: 3 KHz 20.7 dB Offset VBW: 10 KHz 20 -Date: 2023,3,7 -10 0 -10 -20 M1 đBm -30 Marthall Martin Marthall Marthall -40 -50 -60 AMICOM Labs 2023 -70 -Start 2422.000 MHz Step 6.000 MHz Span 60.000 MHz

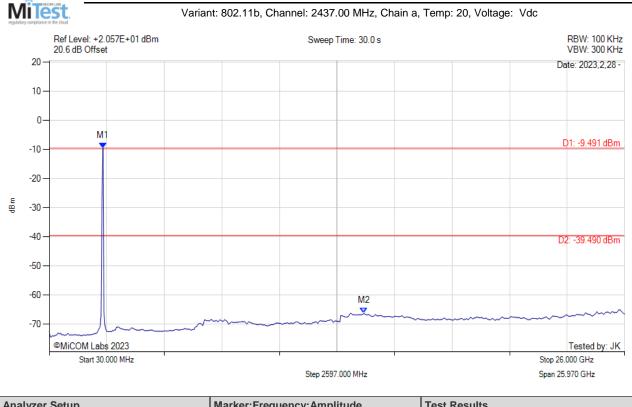
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2443.300 MHz : -31.682 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2443.300 MHz : -31.272 dBm	Margin: -39.3 dB
RF Atten (dB) = 10	Duty Cycle Correction Factor : +0.41 dB	
Trace Mode = VIEW		


Title: Digi International S To: FCC Part 15 Subpa Serial #: DIGI107-U4 Rev A

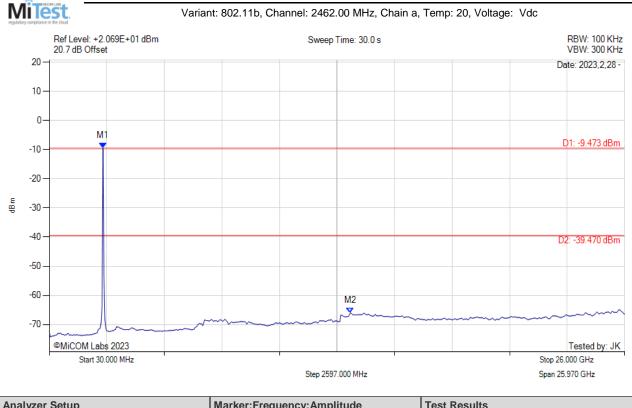
Title:Digi International SIGMA PUMPS GEN VTo:FCC Part 15 Subpart C 15.247 (DTS), ISED RSS-247 Issue 2ial #:DIGI107-U4 Rev A

A.3. Emissions

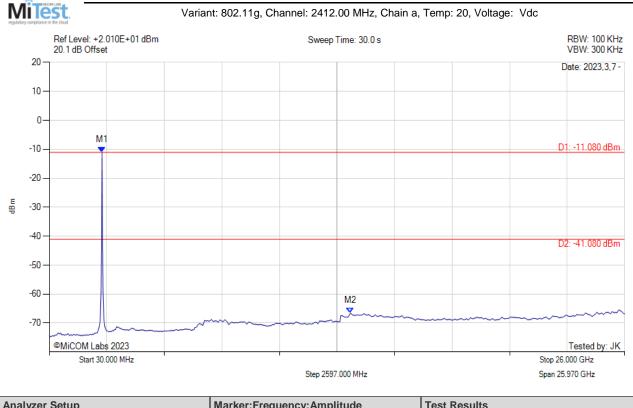
A.3.1. Conducted Emissions


A.3.1.1. Conducted Spurious Emissions

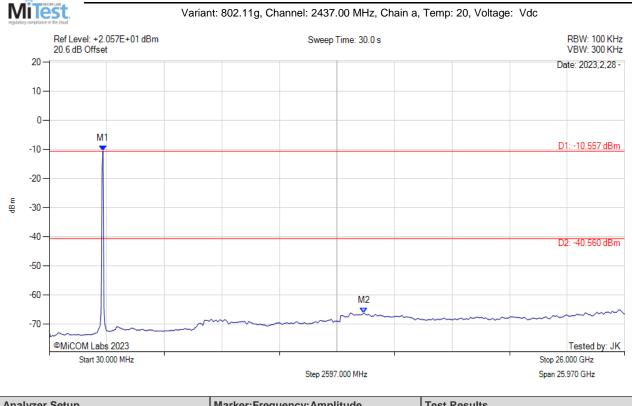
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2410.000 MHz : -9.220 dBm	Limit: -39.22 dBm
Sweep Count = 0	M2 : 13.620 GHz : -66.622 dBm	Margin: -27.40 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		


CONDUCTED SPURIOUS EMISSIONS - AVERAGE

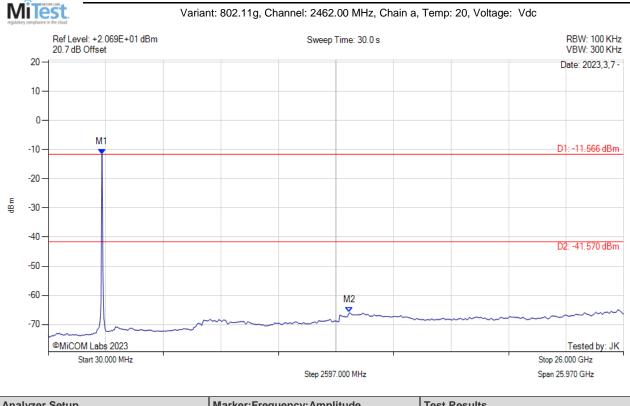
Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVER	M1 : 2450.000 MHz : -9.491 dBm	Limit: -39.49 dBm	
Sweep Count = 0	M2 : 14.230 GHz : -66.195 dBm	Margin: -26.70 dB	
RF Atten (dB) = 10			
Trace Mode = VIEW			


CONDUCTED SPURIOUS EMISSIONS - AVERAGE

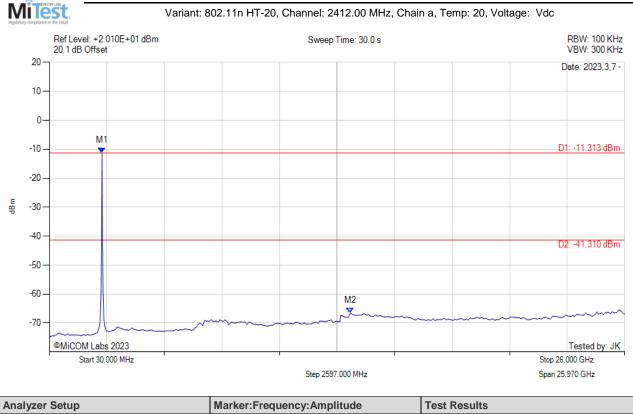
Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVER	M1 : 2450.000 MHz : -9.473 dBm	Limit: -39.47 dBm	
Sweep Count = 0	M2 : 13.620 GHz : -65.976 dBm	Margin: -26.51 dB	
RF Atten (dB) = 10			
Trace Mode = VIEW			


CONDUCTED SPURIOUS EMISSIONS - AVERAGE

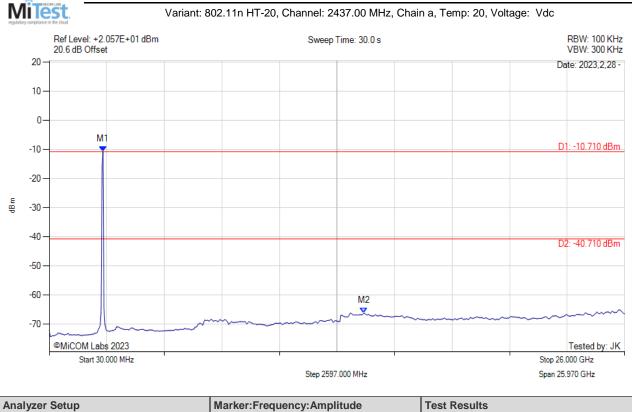
Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVER	M1 : 2410.000 MHz : -11.080 dBm	Limit: -41.08 dBm	
Sweep Count = 0	M2 : 13.620 GHz : -66.614 dBm	Margin: -25.53 dB	
RF Atten (dB) = 10			
Trace Mode = VIEW			


CONDUCTED SPURIOUS EMISSIONS - AVERAGE

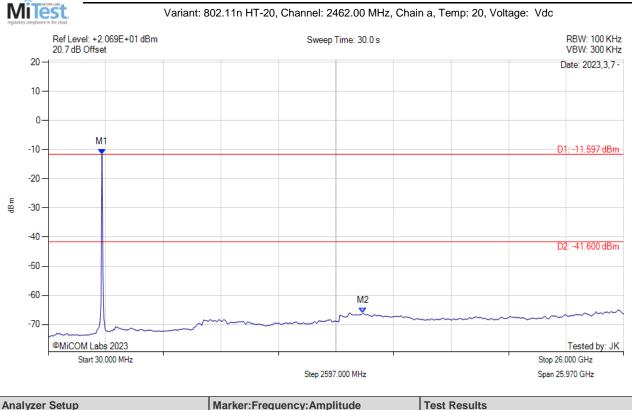
Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVER	M1 : 2450.000 MHz : -10.557 dBm	Limit: -40.56 dBm	
Sweep Count = 0	M2 : 14.230 GHz : -66.154 dBm	Margin: -25.59 dB	
RF Atten (dB) = 10			
Trace Mode = VIEW			


CONDUCTED SPURIOUS EMISSIONS - AVERAGE

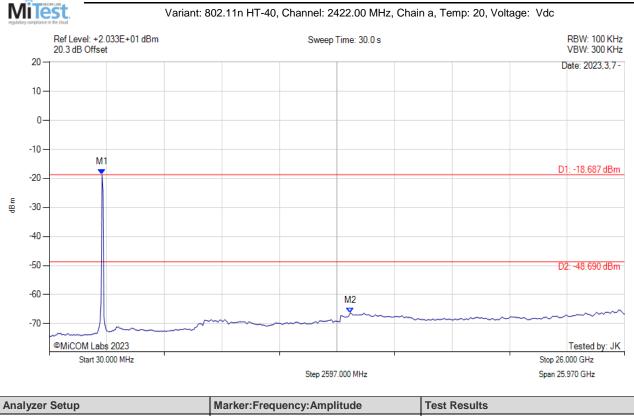
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -11.566 dBm	Limit: -41.57 dBm
Sweep Count = 0	M2 : 13.620 GHz : -65.919 dBm	Margin: -24.35 dB
RF Atten (dB) = 10		-
Trace Mode = VIEW		


CONDUCTED SPURIOUS EMISSIONS - AVERAGE

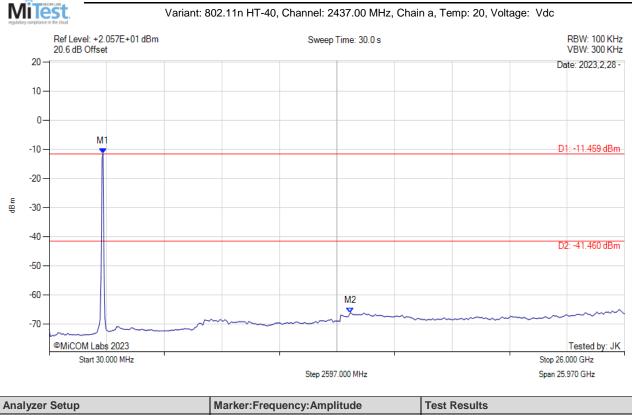
Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVER	M1 : 2410.000 MHz : -11.313 dBm	Limit: -41.31 dBm	
Sweep Count = 0	M2 : 13.620 GHz : -66.565 dBm	Margin: -25.25 dB	
RF Atten (dB) = 10			
Trace Mode = VIEW			


CONDUCTED SPURIOUS EMISSIONS - AVERAGE

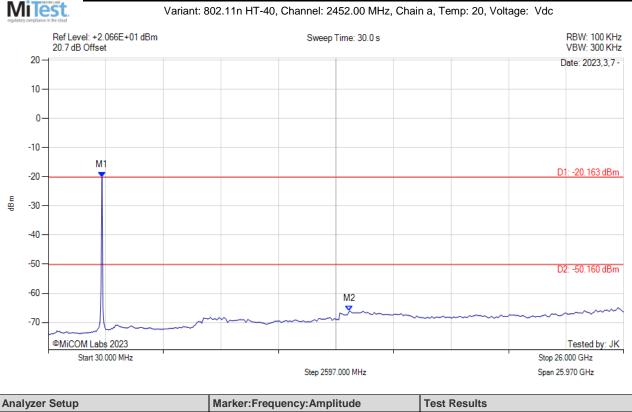
Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVER	M1 : 2450.000 MHz : -10.710 dBm	Limit: -40.71 dBm	
Sweep Count = 0	M2 : 14.230 GHz : -66.134 dBm	Margin: -25.42 dB	
RF Atten (dB) = 10			
Trace Mode = VIEW			


CONDUCTED SPURIOUS EMISSIONS - AVERAGE

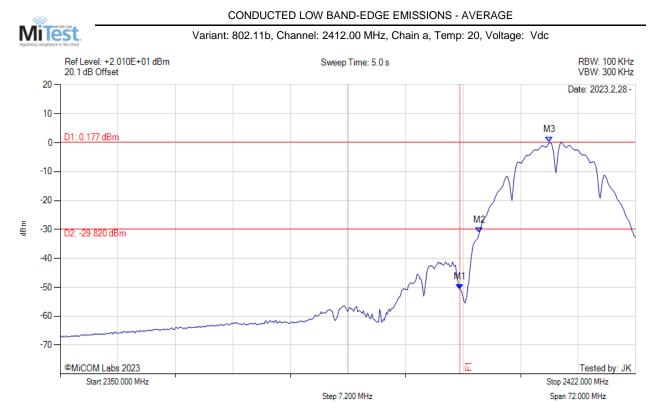
Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVER	M1 : 2450.000 MHz : -11.597 dBm	Limit: -41.60 dBm	
Sweep Count = 0	M2 : 14.230 GHz : -66.011 dBm	Margin: -24.41 dB	
RF Atten (dB) = 10			
Trace Mode = VIEW			


CONDUCTED SPURIOUS EMISSIONS - AVERAGE

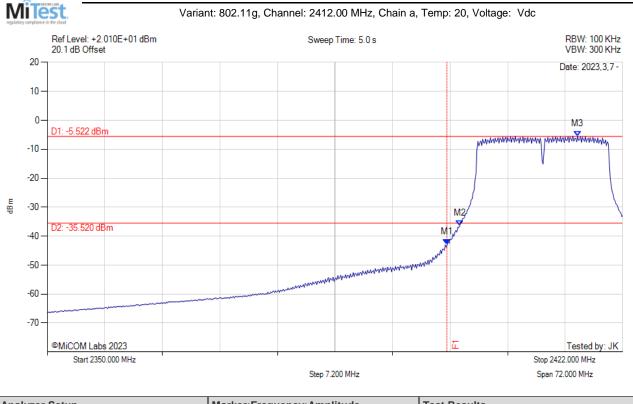
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2410.000 MHz : -18.687 dBm	Limit: -48.69 dBm
Sweep Count = 0	M2 : 13.620 GHz : -66.326 dBm	Margin: -17.64 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		


CONDUCTED SPURIOUS EMISSIONS - AVERAGE

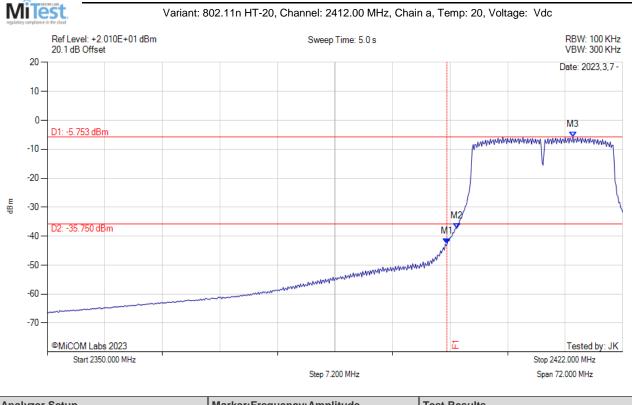
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -11.459 dBm	Limit: -41.46 dBm
Sweep Count = 0	M2 : 13.620 GHz : -66.107 dBm	Margin: -24.65 dB
RF Atten (dB) = 10		
Trace Mode = VIEW		


CONDUCTED SPURIOUS EMISSIONS - AVERAGE

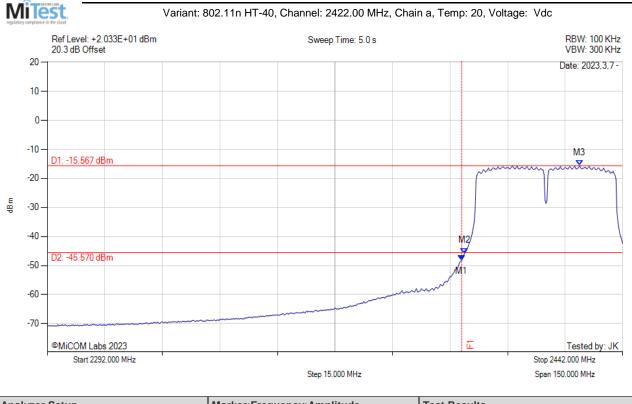
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2450.000 MHz : -20.163 dBm	Limit: -50.16 dBm
Sweep Count = 0	M2 : 13.620 GHz : -66.087 dBm	Margin: -15.93 dB
RF Atten (dB) = 10		-
Trace Mode = VIEW		


A.3.1.2. Conducted Band-Edge Emissions

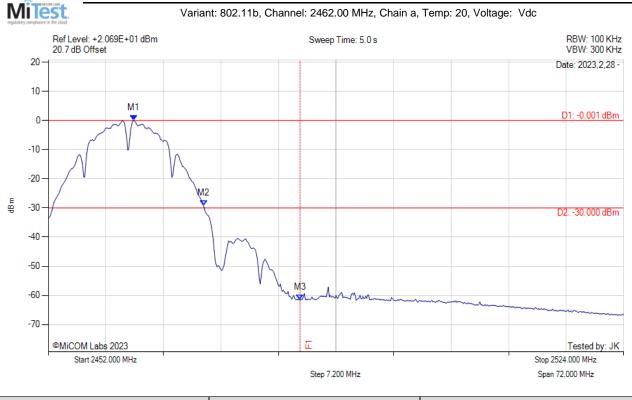
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0	M1 : 2400.000 MHz : -50.699 dBm M2 : 2402.440 MHz : -31.105 dBm M3 : 2411.200 MHz : 0.177 dBm	Channel Frequency: 2412.00 MHz


CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

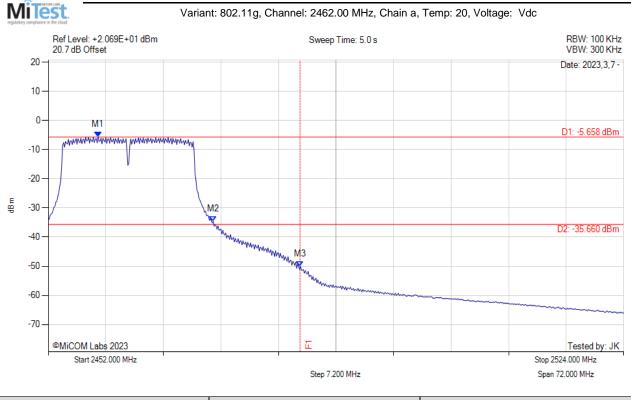
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2400.000 MHz : -42.945 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2 : 2401.600 MHz : -36.478 dBm	
RF Atten (dB) = 10	M3 : 2416.360 MHz : -5.522 dBm	
Trace Mode = VIEW		


CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

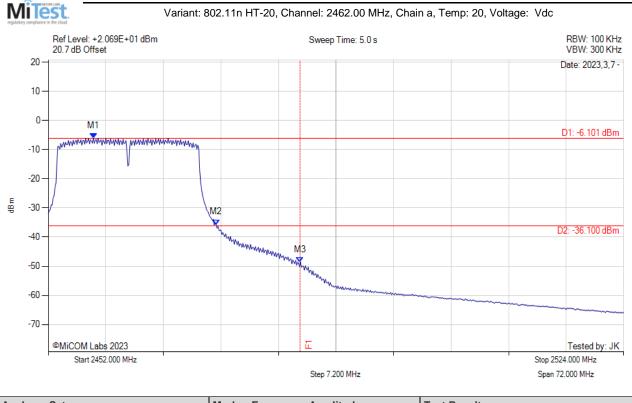
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2400.000 MHz : -42.593 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2 : 2401.240 MHz : -37.397 dBm	
RF Atten (dB) = 10	M3 : 2415.760 MHz : -5.753 dBm	
Trace Mode = VIEW		


CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

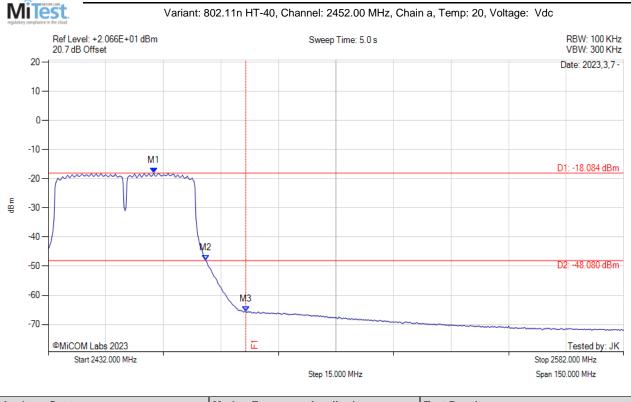
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2400.000 MHz : -48.268 dBm	Channel Frequency: 2422.00 MHz
Sweep Count = 0	M2 : 2400.750 MHz : -45.706 dBm	
RF Atten (dB) = 10	M3 : 2430.750 MHz : -15.567 dBm	
Trace Mode = VIEW		


CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2462.680 MHz : -0.001 dBm	Channel Frequency: 2462.00 MHz
Sweep Count = 0	M2 : 2471.440 MHz : -29.276 dBm	
RF Atten (dB) = 10	M3 : 2483.500 MHz : -61.510 dBm	
Trace Mode = VIEW		


CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2458.240 MHz : -5.658 dBm	Channel Frequency: 2462.00 MHz
Sweep Count = 0	M2 : 2472.640 MHz : -34.634 dBm	
RF Atten (dB) = 10	M3 : 2483.500 MHz : -50.086 dBm	
Trace Mode = VIEW		


CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2457.640 MHz : -6.101 dBm	Channel Frequency: 2462.00 MHz
Sweep Count = 0	M2 : 2473.000 MHz : -35.734 dBm	
RF Atten (dB) = 10	M3 : 2483.500 MHz : -48.598 dBm	
Trace Mode = VIEW		

CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVER	M1 : 2459.500 MHz : -18.084 dBm	Channel Frequency: 2452.00 MHz
Sweep Count = 0	M2 : 2473.000 MHz : -47.931 dBm	
RF Atten (dB) = 10	M3 : 2483.500 MHz : -65.652 dBm	
Trace Mode = VIEW		

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com