

5.2 MAXIMUM PEAK OUTPUT POWER

5.2.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREM IT The Maximum Peak Output Power Measurement is 30dBm.

5.2.2 INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100037	Aug. 15, 2007
Agilent SIGNAL GENERATOR	E8257C	MY43320668	Dec. 07, 2007
TEKTRONIX OSCILLOSCOPE	TDS380	B016335	Jul. 04, 2007
NARDA DETECTOR	4503A	FSCM99899	NA

NOTE:

The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.2.3 TEST PROCEDURES

- 1. A detector was used on the output port of the EUT. An oscilloscope was used to read the response of the detector.
- 2. Replaced the EUT by the signal generator. The center frequency of the S.G was adjusted to the center frequency of the measured channel.
- 3. Adjusted the power to have the same reading on oscilloscope. Record the power level.

5.2.4 DEVIATION FROM TEST STANDARD

No deviation

5.2.5 TEST SETUP

5.2.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

5.2.7 TEST RESULTS

802.11a OFDM modulation

MODULATION TYPE	BPSK	TRANSFER RATE	6Mbps
INPUT POWER (SYSTEM)	120Vac, 60 Hz	001171710110	22deg. C, 68%RH, 972hPa
TESTED BY	Wen Yu		

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (dBm)	PASS / FAIL
1	5745	95.499	19.8	30	PASS
3	5785	97.724	19.9	30	PASS
5	5825	77.625	18.9	30	PASS

DRAFT 802.11n (20MHz) OFDM MODULATION:

MODULATION TYPE	BPSK	TRANSFER RATE	6.5Mbps
INPUT POWER (SYSTEM)	1120\/ac_60 Hz		22deg. C, 68%RH, 972hPa
TESTED BY	Wen Yu		

CHANNEL	CHANNEL PEAK POWER OUTPUT (mW) PEAK POW (de		ER OUTPUT Bm)	TOTAL PEAK	TOTAL PEAK	PEAK POWER	PASS /		
	(MHz)	CHAIN(0)	CHAIN(2)	CHAIN(0)	CHAIN(2)	POWER (mW)	POWER (dBm)	LIMIT (dBm)	FAIL
1	5745	69.18	95.50	18.4	19.8	164.682	22.2	30	PASS
3	5785	72.44	95.50	18.6	19.8	167.943	22.3	30	PASS
5	5825	72.44	87.10	18.6	19.4	159.540	22.0	30	PASS

DRAFT 802.11n (40MHz) OFDM MODULATION:

MODULATION TYPE	BPSK	TRANSFER RATE	13.5Mbps
INPUT POWER (SYSTEM)	1120\/ac 60 Hz	201171710110	28deg. C, 62%RH, 972hPa
TESTED BY	Wen Yu		

CHANNEL	CHANNEL FREQUENCY		OUTPUT (mW)	PEAK POW	ER OUTPUT 3m)	TOTAL PEAK	TOTAL PEAK	PEAK POWER	PASS /
	(MHz)	CHAIN(0)	CHAIN(2)	CHAIN(0)	CHAIN(2)	POWER (mW)	POWER (dBm)	LIMIT (dBm)	FAIL
1	5755	100.00	97.72	20.0	19.9	197.724	23.0	30	PASS
3	5795	83.18	77.62	19.2	18.9	160.801	22.1	30	PASS

5.3 BAND EDGES MEASUREMENT

5.3.1 LIMITS OF BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

5.3.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100037	Aug. 15, 2007

NOTE:

- 1.The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.3.3 TEST PROCEDURE

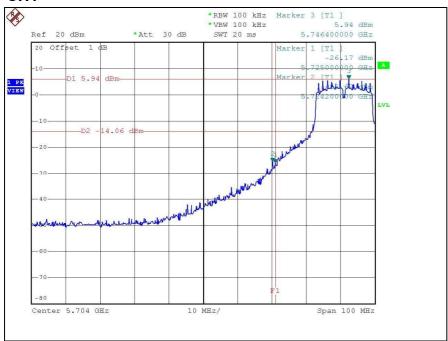
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

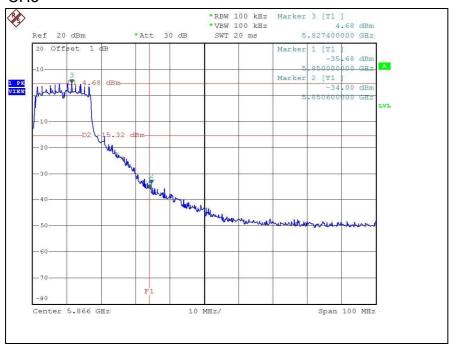
5.3.4 DEVIATION FROM TEST STANDARD

No deviation

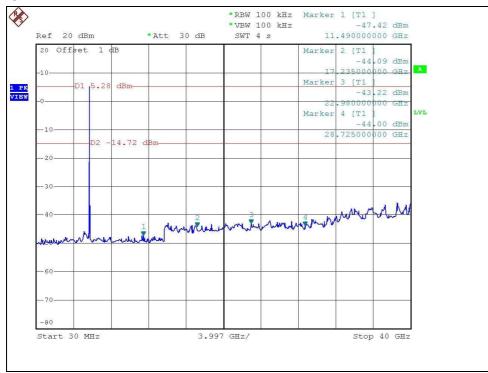
5.3.5 EUT OPERATING CONDITION

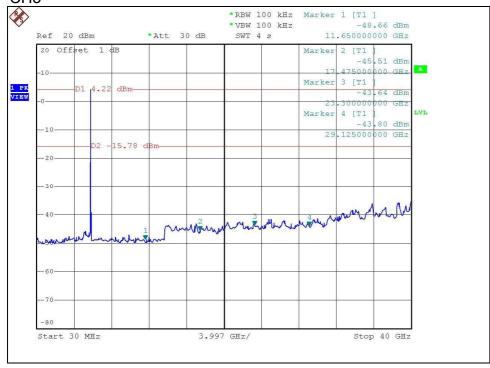
The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.


5.3.6 TEST RESULTS

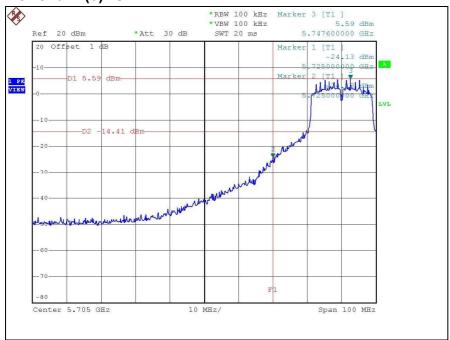

The spectrum plots are attached on the following pages. D2 line indicates the highest level, D1 line indicates the 20dB offset below D2. It shows compliance with the requirement in part 15.247(d).

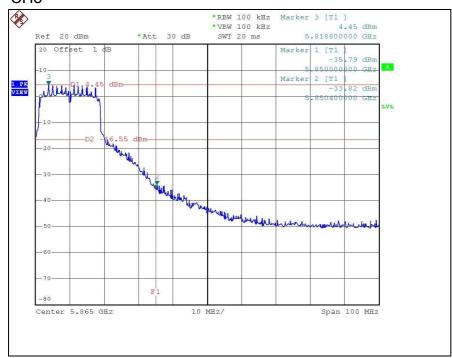
802.11a OFDM modulation


CH1

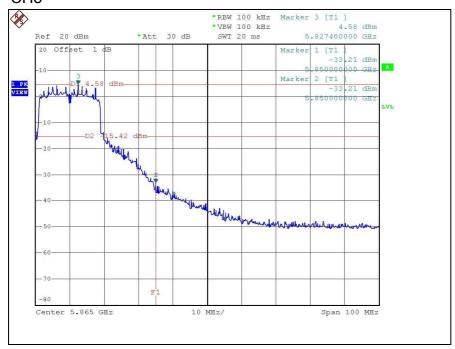


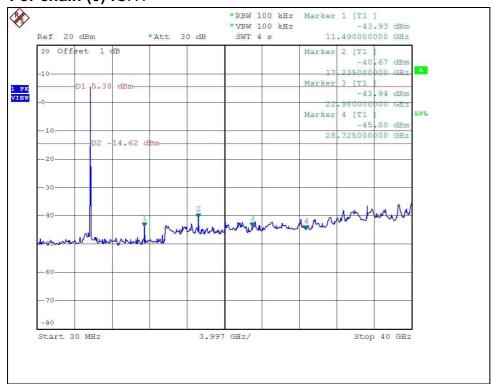
CH1

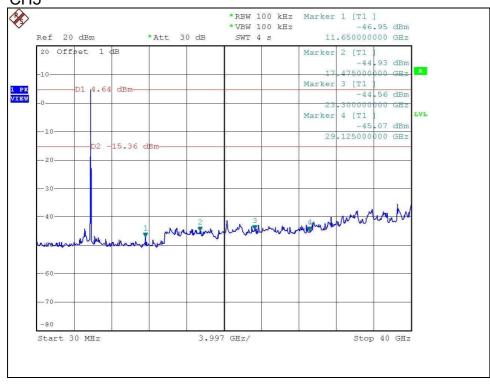


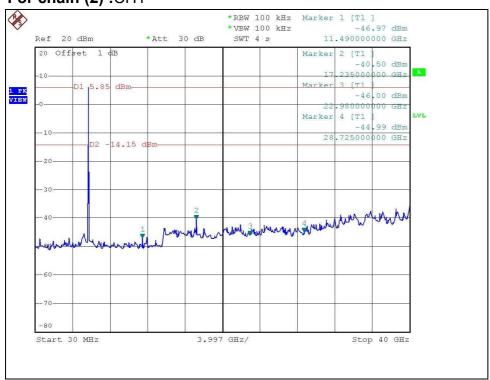


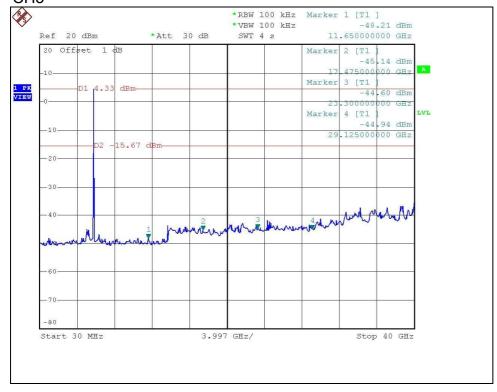

DRAFT 802.11n (20MHz) OFDM MODULATION:

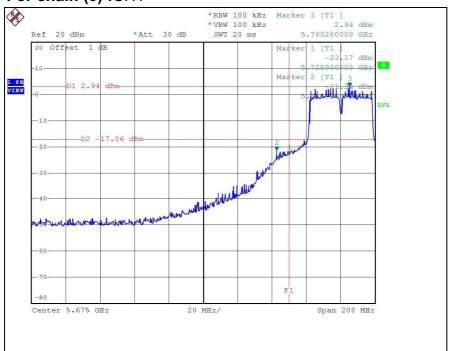

For chain (0):CH1

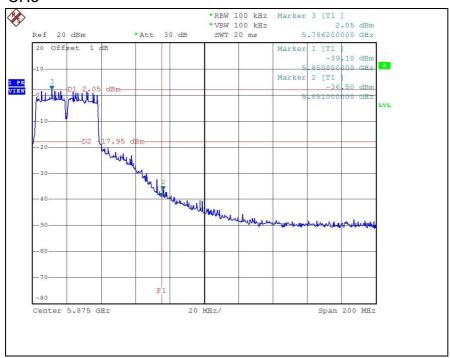




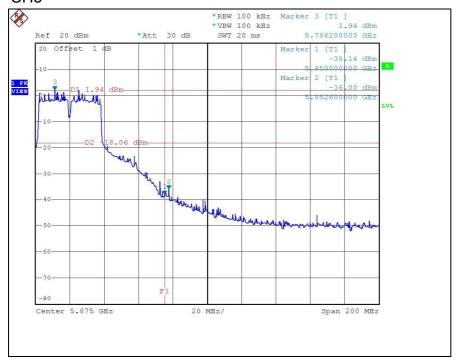


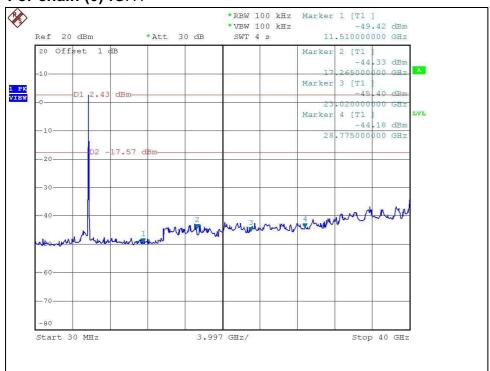


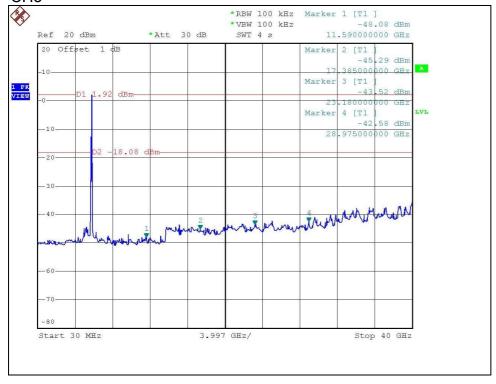


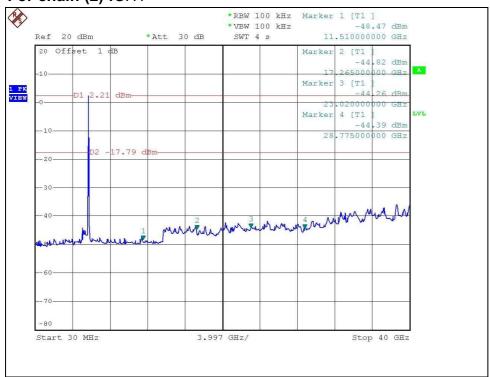


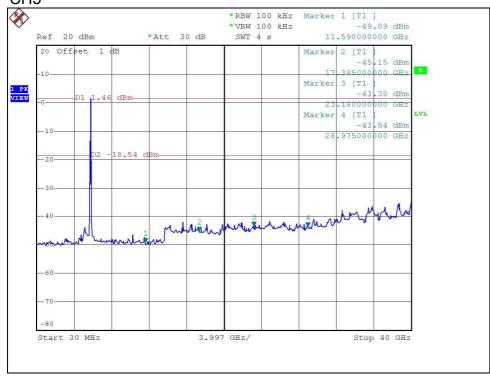

DRAFT 802.11n (40MHz) OFDM MODULATION:


For chain (0):CH1









5.4 ANTENNA REQUIREMENT

5.4.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247(a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

5.4.2 ANTENNA CONNECTED CONSTRUCTION

There are three antennas provided to this EUT, please refer to the following table:

Transmitter	Antenna		Gain(dBi)				
Circuit	Type Antenna Connector		2412~2462 (MHz)	5150~5250 (MHz)	5725~5850 (MHz)		
Chain(0)			2.4	3.12	1.91		
Chain(1)	Printed UFL		0.46	3.72	2.32		
Chain(2)			3.67	1.86	1.44		

6. INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA FCC, UL, A2LA TUV Rheinland

Japan VCCI Norway NEMKO

Canada INDUSTRY CANADA, CSA

R.O.C. CNLA, BSMI, NCC

Netherlands Telefication

Singapore PSB, GOST-ASIA(MOU)

Russia CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site:

<u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:Hsin Chu EMC/RF Lab:Tel: 886-2-26052180Tel: 886-3-5935343Fax: 886-2-26052943Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also

APPENDIX-A

APPENDIX-A
MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB
No any modifications are made to the EUT by the lab during the test.